# Refinements and Abstractions of Signal-Event (Timed) Languages

Paul Gastin

LSV

ENS de Cachan & CNRS Paul.Gastin@lsv.ens-cachan.fr

Joint work with Béatrice Bérard and Antoine Petit

MFPS, May 26th, 2006

< □ > < □ > < 三 > < 三 > < 三 > ○ Q ( 1/29

# Outline

#### Introduction

Signal-Event (Timed) Words and Automata

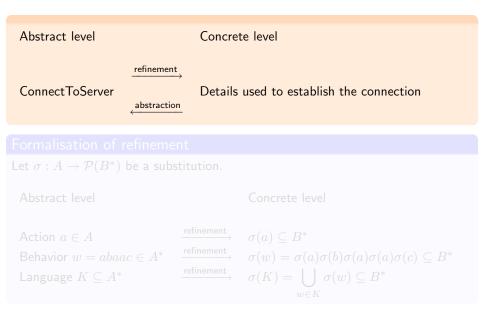
Signal-Event (Timed) Substitutions

**Closure under substitutions** 

**Closure under inverse substitutions** 

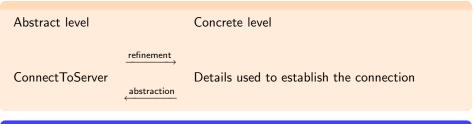
Conclusion

### **Refinements and Abstractions**



< □ > < □ > < □ > < 三 > < 三 > 三 のへで 3/29

### **Refinements and Abstractions**



#### Formalisation of refinement

Let  $\sigma: A \to \mathcal{P}(B^*)$  be a substitution.

Abstract level

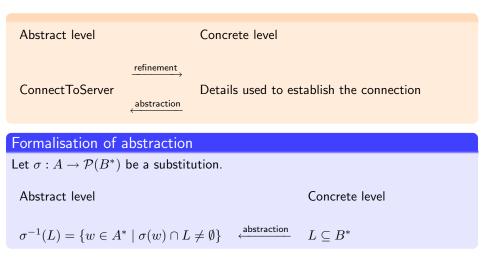
#### Concrete level

Action  $a \in A$ Behavior  $w = abaac \in A^*$ Language  $K \subseteq A^*$ 



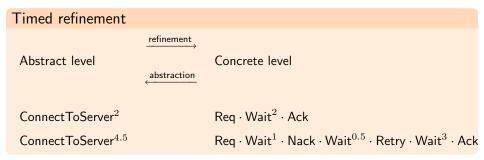
$$\begin{split} &\sigma(a)\subseteq B^*\\ &\sigma(w)=\sigma(a)\sigma(b)\sigma(a)\sigma(a)\sigma(c)\subseteq B^*\\ &\sigma(K)=\bigcup_{w\in K}\sigma(w)\subseteq B^* \end{split}$$

# **Refinements and Abstractions**



< □ > < □ > < □ > < 三 > < 三 > 三 のへぐ 4/29

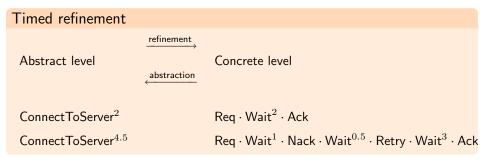
# Adding time to the picture



An abstract action a with duration d should be replaced by a concrete execution (word) w with the same duration ||w|| = d.

< □ > < □ > < □ > < 三 > < 三 > 三 のへで 5/29

# Adding time to the picture



An abstract action a with duration d should be replaced by a concrete execution (word) w with the same duration ||w|| = d.

< □ > < □ > < □ > < 三 > < 三 > 三 のへで 5/29

# Outline

#### Introduction

2 Signal-Event (Timed) Words and Automata

Signal-Event (Timed) Substitutions

**Closure under substitutions** 

**Closure under inverse substitutions** 

Conclusion

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

#### Asarin - Caspi - Maler 2002

- $\Sigma_e$  finite set of (instantaneous) events
- $\Sigma_s$  finite set of signals
- $\mathbb{T}$  time domain,  $\overline{\mathbb{T}} = \mathbb{T} \cup \{\infty\}$
- $\blacktriangleright \Sigma = \Sigma_e \cup (\Sigma_s \times \mathbb{T})$
- Notation:  $a^d$  for  $(a,d) \in \Sigma_s \times \overline{\mathbb{T}}$
- ►  $\Sigma^{\infty}$  set of signal-event (timed) words Example:  $a^3 f f g b^{1.5} a^2 f$
- Signal stuttering:  $a^2a^3 \approx a^5$ ,  $a^{\infty} = a^2a^2a^2\cdots$

#### <ロ>< 団> < 団> < 三> < 三> < 三> 三 の Q ( 7/29

#### Asarin - Caspi - Maler 2002

- $\Sigma_e$  finite set of (instantaneous) events
- $\Sigma_s$  finite set of signals
- $\mathbb{T}$  time domain,  $\overline{\mathbb{T}} = \mathbb{T} \cup \{\infty\}$
- $\Sigma = \Sigma_e \cup (\Sigma_s \times \mathbb{T})$
- Notation:  $a^d$  for  $(a,d) \in \Sigma_s \times \overline{\mathbb{T}}$
- ►  $\Sigma^{\infty}$  set of signal-event (timed) words Example:  $a^3 f f g b^{1.5} a^2 f$
- Signal stuttering:  $a^2a^3 \approx a^5$ ,  $a^{\infty} = a^2a^2a^2\cdots$

< □ > < @ > < ≧ > < ≧ > 注 のへで 7/29

#### Asarin - Caspi - Maler 2002

- $\Sigma_e$  finite set of (instantaneous) events
- $\Sigma_s$  finite set of signals
- $\mathbb{T}$  time domain,  $\overline{\mathbb{T}} = \mathbb{T} \cup \{\infty\}$
- $\Sigma = \Sigma_e \cup (\Sigma_s \times \mathbb{T})$
- Notation:  $a^d$  for  $(a,d) \in \Sigma_s \times \overline{\mathbb{T}}$
- ►  $\Sigma^{\infty}$  set of signal-event (timed) words Example:  $a^3 f f g b^{1.5} a^2 f$
- Signal stuttering:  $a^2a^3 \approx a^5$ ,  $a^{\infty} = a^2a^2a^2\cdots$

#### Unobservable signal $\tau$

Useful to hide signals:

Signal-event word

hiding signals

#### Classical timed words

 $a^3fb^1gfa^2f$ 

#### $\tau^3 f \tau^1 g f \tau^2 f = (f,3)(g,4)(f,4)(f,6)$

<ロ>

•  $\tau^0 \approx \varepsilon$ : an hidden signal with zero duration is not observable.  $a^0 \not\approx \varepsilon$ : a signal, even of zero duration, is observable.  $\tau^2 \not\approx \varepsilon$ : we still observe a time delay but the actual signal has been hidden Example:  $a^2 \tau^0 a^1 f \tau^0 g \tau^1 f b^2 b^2 b^2 \cdots \approx a^3 f g \tau^1 f b^\infty$ 

• Signal-event words  $SE(\Sigma) = \Sigma^{\infty} / \approx$ 

#### Unobservable signal $\tau$

Useful to hide signals:

Signal-event word

hiding signals

#### Classical timed words

< □ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ > ⊇ のへぐ 8/29

 $a^3fb^1gfa^2f \qquad \qquad \tau^3f\tau^1gf\tau^2f = (f,3)(g,4)(f,4)(f,6)$ 

•  $\tau^0 \approx \varepsilon$ : an hidden signal with zero duration is not observable.  $a^0 \not\approx \varepsilon$ : a signal, even of zero duration, is observable.  $\tau^2 \not\approx \varepsilon$ : we still observe a time delay but the actual signal has been hidden. Example:  $a^2 \tau^0 a^1 f \tau^0 g \tau^1 f b^2 b^2 b^2 \cdots \approx a^3 f g \tau^1 f b^\infty$ 

Signal-event words  $SE(\Sigma) = \Sigma^{\infty} / pprox$ 

#### Unobservable signal au

Useful to hide signals:

Signal-event word

hiding signals

Classical timed words

 $a^3fb^1gfa^2f$ 

$$\tau^3 f \tau^1 g f \tau^2 f = (f,3)(g,4)(f,4)(f,6)$$

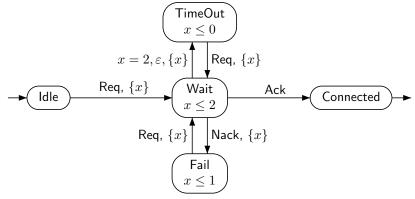
< □ > < □ > < □ > < 三 > < 三 > 三 のへで 8/29

•  $\tau^0 \approx \varepsilon$ : an hidden signal with zero duration is not observable.  $a^0 \not\approx \varepsilon$ : a signal, even of zero duration, is observable.  $\tau^2 \not\approx \varepsilon$ : we still observe a time delay but the actual signal has been hidden. Example:  $a^2 \tau^0 a^1 f \tau^0 g \tau^1 f b^2 b^2 b^2 \cdots \approx a^3 f g \tau^1 f b^\infty$ 

• Signal-event words  $SE(\Sigma) = \Sigma^{\infty} / \approx$ 

# Signal-Event (Timed) automata

- States emit signals
- Transitions emit (instantaneous) events



- $\blacktriangleright \ \mathsf{Run} : \ \mathsf{Idle}^3 \cdot \mathsf{Req} \cdot \mathsf{Wait}^2 \cdot \mathsf{TimeOut}^0 \cdot \mathsf{Req} \cdot \mathsf{Wait}^1 \cdot \mathsf{Ack} \cdot \mathsf{Connected}^8$
- ▶ SEL : languages accepted by SE-automata without  $\varepsilon$ -transitions.
- ▶  $SEL_{\varepsilon}$  : languages accepted by SE-automata with  $\varepsilon$ -transitions.

# Outline

#### Introduction

Signal-Event (Timed) Words and Automata

- Signal-Event (Timed) Substitutions
  - **Closure under substitutions**
  - **Closure under inverse substitutions**
  - Conclusion

#### Definition

- Abstract alphabet :  $\Sigma_e$  and  $\Sigma_s$
- Concrete alphabet :  $\Sigma'_e$  and  $\Sigma'_s$
- Substitution  $\sigma$  from  $SE(\Sigma)$  to  $SE(\Sigma')$  defined by:

$$a \in \Sigma_e : L_a \subseteq (\Sigma'_e \cup \Sigma'_s \times \{0\})^*$$
  

$$\sigma(a) = L_a$$
  

$$\tau \in \Sigma_s \setminus \{\tau\} : L_a \subseteq SE(\Sigma') \text{ not containing Zeno words}$$
  

$$\sigma(a^d) = \{w \in L_a \mid ||w|| = d\}$$
  

$$a = \tau : L_\tau = \{\tau\} \times \overline{\mathbb{T}}$$
  

$$\sigma(\tau^d) = \{\tau^d\}$$

#### Remark

If we allow Zeno words in  $L_a$  then we may get transfinite words as refinements. Example: if  $b^1 f b^{1/2} f b^{1/4} f \cdots \in L_a$  and  $L_g = \{g\}$  then  $\sigma(a^2g)$  is transfinite.

#### Definition

- Abstract alphabet :  $\Sigma_e$  and  $\Sigma_s$
- Concrete alphabet :  $\Sigma'_e$  and  $\Sigma'_s$
- Substitution  $\sigma$  from  $SE(\Sigma)$  to  $SE(\Sigma')$  defined by:

$$a \in \Sigma_e : L_a \subseteq (\Sigma'_e \cup \Sigma'_s \times \{0\})^*$$
  

$$\sigma(a) = L_a$$
  

$$e \in \Sigma_s \setminus \{\tau\} : L_a \subseteq SE(\Sigma') \text{ not containing Zeno words}$$
  

$$\sigma(a^d) = \{w \in L_a \mid ||w|| = d\}$$
  

$$a = \tau : L_\tau = \{\tau\} \times \overline{\mathbb{T}}$$
  

$$\sigma(\tau^d) = \{\tau^d\}$$

#### Remark

If we allow Zeno words in  $L_a$  then we may get transfinite words as refinements. Example: if  $b^1 f b^{1/2} f b^{1/4} f \cdots \in L_a$  and  $L_g = \{g\}$  then  $\sigma(a^2g)$  is transfinite.

#### Remark

#### In general, SE-substitutions are not morphisms

Example: if  $L_a = \{b^2\}$  then  $\sigma(a^1) = \emptyset$  and  $\sigma(a^2) \neq \sigma(a^1)\sigma(a^1)$ Substitutions are applied to SE-words in normal form:  $\sigma(a^2\tau^0a^1f\tau^0g\tau^1fb^2b^2b^2\cdots) = \sigma(a^3)\sigma(f)\sigma(g)\tau^1\sigma(f)\sigma(b^{\infty})$ 

#### Proposition

Let  $\sigma$  be a timed substitution, given by a family  $(L_a)_{a \in \Sigma_e \cup \Sigma_s}$ . Then,  $\sigma$  is a morphism if and only if for each signal  $a \in \Sigma_s$  we have

- 1.  $L_a$  is closed under concatenation: for all  $u, v \in L_a$  with  $||u|| < \infty$ , we have  $uv \in L_a$
- 2.  $L_a$  is closed under decomposition: for each  $v \in L_a$  with ||v|| = d, for all  $d_1 \in \mathbb{T}$ ,  $d_2 \in \overline{\mathbb{T}}$  such that  $d = d_1 + d_2$ , there exist  $v_i \in L_a$  with  $||v_i|| = d_i$  such that  $v = v_1v_2$ .

#### Remark

In general, SE-substitutions are not morphisms

Example: if  $L_a = \{b^2\}$  then  $\sigma(a^1) = \emptyset$  and  $\sigma(a^2) \neq \sigma(a^1)\sigma(a^1)$ Substitutions are applied to SE-words in normal form:  $\sigma(a^2\tau^0a^1f\tau^0q\tau^1fb^2b^2b^2\cdots) = \sigma(a^3)\sigma(f)\sigma(q)\tau^1\sigma(f)\sigma(b^\infty)$ 

#### Proposition

Let  $\sigma$  be a timed substitution, given by a family  $(L_a)_{a \in \Sigma_e \cup \Sigma_s}$ . Then,  $\sigma$  is a morphism if and only if for each signal  $a \in \Sigma_s$  we have

- 1.  $L_a$  is closed under concatenation: for all  $u, v \in L_a$  with  $||u|| < \infty$ , we have  $uv \in L_a$ ,
- 2.  $L_a$  is closed under decomposition: for each  $v \in L_a$  with ||v|| = d, for all  $d_1 \in \mathbb{T}$ ,  $d_2 \in \overline{\mathbb{T}}$  such that  $d = d_1 + d_2$ , there exist  $v_i \in L_a$  with  $||v_i|| = d_i$  such that  $v = v_1v_2$ .

# **Recognizable substitutions**

#### Definition

Let  $\sigma$  be a substitution defined by  $(L_a)_{a \in \Sigma_e \cup \Sigma_s}$ . Then,

- $\sigma$  is a SEL substitution if each  $L_a$  is in SEL
- $\sigma$  is a  $SEL_{\varepsilon} substitution$  if each  $L_a$  is in  $SEL_{\varepsilon}$

# Outline

Introduction

Signal-Event (Timed) Words and Automata

Signal-Event (Timed) Substitutions

4 Closure under substitutions

**Closure under inverse substitutions** 

Conclusion

<□ → < □ → < ⊇ → < ⊇ → < ⊇ → ⊇ の < @ 14/29

#### SEL is not closed under SEL - substitution

• 
$$L = \{a^0 f\}$$
 is recognized by   
•  $L_a = \{b\} \times \overline{\mathbb{T}}$  is recognized by   
•  $L_f = \{c^0 g\}$  is recognized by   
•  $c$   $g$   $\tau$   
 $x \le 0$ 

•  $\sigma(L) = \{b^0 c^0 g\}$  cannot be accepted without  $\varepsilon$ -transitions.

#### Theorem

1. The class  $SEL_{\varepsilon}$  is closed under  $SEL_{\varepsilon}$ -substitutions.

2. The class *SEL* is closed under *SEL*-substitution satisfying  $L_f \subseteq \Sigma'_e((\Sigma'_s \times \{0\})\Sigma'_e)^*$  for each  $f \in \Sigma_e$ , i.e., each word in  $L_f$  must start and end with an instantaneous event.

#### SEL is not closed under SEL - substitution

• 
$$L = \{a^0 f\}$$
 is recognized by   
•  $L_a = \{b\} \times \overline{\mathbb{T}}$  is recognized by   
•  $L_f = \{c^0 g\}$  is recognized by   
•  $c$   $g$   $\tau$   
 $x \le 0$ 

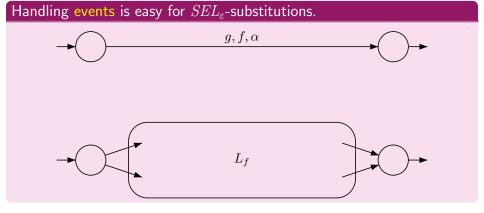
•  $\sigma(L) = \{b^0 c^0 g\}$  cannot be accepted without  $\varepsilon$ -transitions.

#### Theorem

- 1. The class  $SEL_{\varepsilon}$  is closed under  $SEL_{\varepsilon}$ -substitutions.
- 2. The class *SEL* is closed under *SEL*-substitution satisfying  $L_f \subseteq \Sigma'_e((\Sigma'_s \times \{0\})\Sigma'_e)^*$  for each  $f \in \Sigma_e$ , i.e., each word in  $L_f$  must start and end with an instantaneous event.

#### Theorem

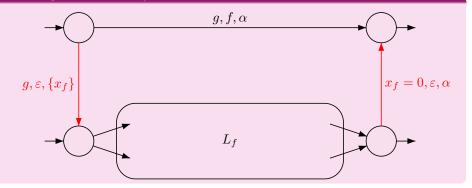
- 1. The class  $SEL_{\varepsilon}$  is closed under  $SEL_{\varepsilon}$ -substitutions.
- 2. The class *SEL* is closed under *SEL*-substitution satisfying  $L_f \subseteq \Sigma'_e((\Sigma'_s \times \{0\})\Sigma'_e)^*$  for each  $f \in \Sigma_e$ .



#### Theorem

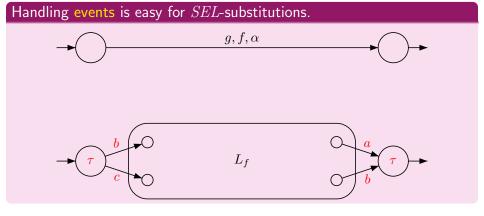
- 1. The class  $SEL_{\varepsilon}$  is closed under  $SEL_{\varepsilon}$ -substitutions.
- 2. The class *SEL* is closed under *SEL*-substitution satisfying  $L_f \subseteq \Sigma'_e((\Sigma'_s \times \{0\})\Sigma'_e)^*$  for each  $f \in \Sigma_e$ .

#### Handling events is easy for $SEL_{\varepsilon}$ -substitutions.



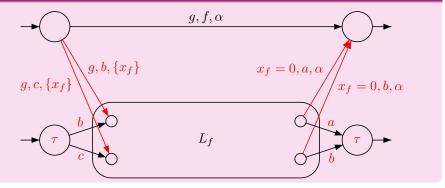
#### Theorem

- 1. The class  $SEL_{\varepsilon}$  is closed under  $SEL_{\varepsilon}$ -substitutions.
- 2. The class *SEL* is closed under *SEL*-substitution satisfying  $L_f \subseteq \Sigma'_e((\Sigma'_s \times \{0\})\Sigma'_e)^*$  for each  $f \in \Sigma_e$ .



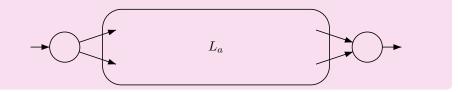
#### Theorem

- 1. The class  $SEL_{\varepsilon}$  is closed under  $SEL_{\varepsilon}$ -substitutions.
- 2. The class *SEL* is closed under *SEL*-substitution satisfying  $L_f \subseteq \Sigma'_e((\Sigma'_s \times \{0\})\Sigma'_e)^*$  for each  $f \in \Sigma_e$ .



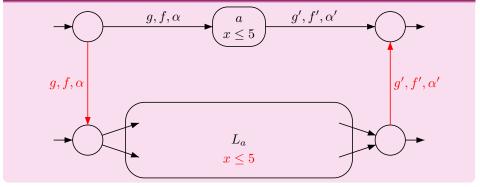
#### Theorem

- 1. The class  $SEL_{\varepsilon}$  is closed under  $SEL_{\varepsilon}$ -substitutions.
- 2. The class *SEL* is closed under *SEL*-substitution satisfying  $L_f \subseteq \Sigma'_e((\Sigma'_s \times \{0\})\Sigma'_e)^*$  for each  $f \in \Sigma_e$ .



#### Theorem

- 1. The class  $SEL_{\varepsilon}$  is closed under  $SEL_{\varepsilon}$ -substitutions.
- 2. The class *SEL* is closed under *SEL*-substitution satisfying  $L_f \subseteq \Sigma'_e((\Sigma'_s \times \{0\})\Sigma'_e)^*$  for each  $f \in \Sigma_e$ .

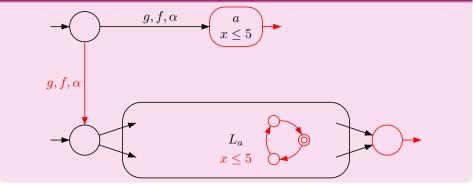


#### Theorem

- 1. The class  $SEL_{\varepsilon}$  is closed under  $SEL_{\varepsilon}$ -substitutions.
- 2. The class *SEL* is closed under *SEL*-substitution satisfying  $L_f \subseteq \Sigma'_e((\Sigma'_s \times \{0\})\Sigma'_e)^*$  for each  $f \in \Sigma_e$ .

#### Theorem

- 1. The class  $SEL_{\varepsilon}$  is closed under  $SEL_{\varepsilon}$ -substitutions.
- 2. The class *SEL* is closed under *SEL*-substitution satisfying  $L_f \subseteq \Sigma'_e((\Sigma'_s \times \{0\})\Sigma'_e)^*$  for each  $f \in \Sigma_e$ .

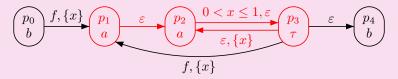


#### Theorem

- 1. The class  $SEL_{\varepsilon}$  is closed under  $SEL_{\varepsilon}$ -substitutions.
- 2. The class *SEL* is closed under *SEL*-substitution satisfying  $L_f \subseteq \Sigma'_e((\Sigma'_s \times \{0\})\Sigma'_e)^*$  for each  $f \in \Sigma_e$ .

#### Handling signals for $SEL_{\varepsilon}$ -substitutions is harder.

Remember that substitutions are applied to SE-words in normal form.



A possible run gives :  $fa^{0.3}a^{0.6}\tau^0a^{0.5}\tau^1a^{0.6}\tau^0a^{0.5}\tau^0b^3 \approx fa^{1.4}\tau^1a^{1.1}b^3$ 

We have to synchronize *a*-blocks of A with the automaton  $A_a$  taking into account  $\tau$ -states that may be crossed instantaneously.

#### Theorem

- 1. The class  $SEL_{\varepsilon}$  is closed under  $SEL_{\varepsilon}$ -substitutions.
- 2. The class *SEL* is closed under *SEL*-substitution satisfying  $L_f \subseteq \Sigma'_e((\Sigma'_s \times \{0\})\Sigma'_e)^*$  for each  $f \in \Sigma_e$ .

#### Handling signals for $SEL_{\varepsilon}$ -substitutions is harder.

Zeno runs in  $\mathcal{A}_a$  must be removed.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- $b^1 f c^2$  is accepted by an infinite Zeno run:  $b^1 f c^1 au^0 c^{1/2} au^0 c^{1/4} \cdots$
- We get  $gb^1fc^2g \in \sigma(ga^3g)$ .

We have to replace the Zeno run of  $A_a$  by a finite run.

# Normal form for SE-automata

#### Theorem

Let  ${\mathcal A}$  be a SE-automaton. We can effectively construct an equivalent SE-automaton  ${\mathcal A}'$  such that:

- 1. no infinite run of  $\mathcal{A}^\prime$  accepts a finite word with finite duration, and
- 2. no finite run of  $\mathcal{A}'$  accepts a word with infinite duration.

#### Main problem

We have to replace infinite accepting  $\varepsilon$ -loops

by finite accepting runs.

# Normal form for SE-automata

#### Theorem

Let  ${\mathcal A}$  be a SE-automaton. We can effectively construct an equivalent SE-automaton  ${\mathcal A}'$  such that:

- 1. no infinite run of  $\mathcal{A}^\prime$  accepts a finite word with finite duration, and
- 2. no finite run of  $\mathcal{A}'$  accepts a word with infinite duration.

Main problem

#### We have to replace infinite accepting $\varepsilon$ -loops



by finite accepting runs.

$$\underbrace{ \begin{array}{c} g_0, f, \alpha_0 \end{array}}_{g_0, f, \alpha_0} \underbrace{ \begin{array}{c} a \\ I_1 \end{array}}_{I_1} \underbrace{ \begin{array}{c} g, \varepsilon, \alpha \\ I \end{array}}_{I} \underbrace{ \begin{array}{c} a \\ I \end{array}}_{I} \end{array} } \underbrace{ \begin{array}{c} a \\ I \end{array} }_{I} \end{array}$$

# Outline

#### Introduction

Signal-Event (Timed) Words and Automata

Signal-Event (Timed) Substitutions

**Closure under substitutions** 

5 Closure under inverse substitutions

Conclusion

#### Theorem

- 1. The class  $SEL_{\varepsilon}$  is closed under inverse  $SEL_{\varepsilon}$ -substitution.
- The class SEL is closed under inverse SEL-substitution acting only on events: L<sub>a</sub> = {a} × T
   for all a ∈ Σ<sub>s</sub>.

・ロト (日) (三) (三) (三) (日)

The class SEL is not closed under arbitrary inverse SEL-substitution

- Let  $\Sigma_s = \Sigma'_s = \{a, b\}$  and  $\Sigma_e = \Sigma'_e = \{f\}.$
- Let  $\sigma$  be the *SEL*-substitution defined by  $L_a = \{a^1 f\}$ ,  $L_b = \{b^0\}$  and  $L_f = \{f\}$ .
- $L = \{a^1 f b^0\}$  is a *SEL*.
- $\sigma^{-1}(L) = \{a^1 b^0\} \text{ is not a } SEL.$

#### Theorem

- 1. The class  $SEL_{\varepsilon}$  is closed under inverse  $SEL_{\varepsilon}$ -substitution.
- The class SEL is closed under inverse SEL-substitution acting only on events: L<sub>a</sub> = {a} × T
   for all a ∈ Σ<sub>s</sub>.

The class *SEL* is not closed under arbitrary inverse *SEL*-substitution

Let 
$$\Sigma_s = \Sigma'_s = \{a, b\}$$
 and  $\Sigma_e = \Sigma'_e = \{f\}$ .  
Let  $\sigma$  be the *SEL*-substitution defined by  $L_a = \{a^1 f\}$ ,  $L_b = \{b^0\}$  and  $L_f = \{f\}$ .  
 $L = \{a^1 f b^0\}$  is a *SEL*.  
 $\sigma^{-1}(L) = \{a^1 b^0\}$  is not a *SEL*.

< □ > < □ > < □ > < 三 > < 三 > 三 の へ @ 24/29

#### Theorem

- 1. The class  $SEL_{\varepsilon}$  is closed under inverse  $SEL_{\varepsilon}$ -substitution.
- 2. The class *SEL* is closed under inverse *SEL*-substitution acting only on events:  $L_a = \{a\} \times \overline{\mathbb{T}}$  for all  $a \in \Sigma_s$ .

< □ > < □ > < □ > < 三 > < 三 > 三 の < ℃ 25/29

#### Proof: word case

- Let  $\sigma: A \to \mathcal{P}(B^*)$  be a rational substitution
- ▶ Let  $\Pi_A : (A \uplus B)^* \to A^*$  and  $\Pi_B : (A \uplus B)^* \to B^*$  be the projections

• Let 
$$M = \left(\bigcup_{a \in A} a\sigma(a)\right)^* \subseteq (A \uplus B)^*$$
 is rational.

• Then,  $\sigma^{-1}(L) = \prod_A (\prod_B^{-1}(L) \cap M)$ 

#### Theorem

- 1. The class  $SEL_{\varepsilon}$  is closed under inverse  $SEL_{\varepsilon}$ -substitution.
- 2. The class *SEL* is closed under inverse *SEL*-substitution acting only on events:  $L_a = \{a\} \times \overline{\mathbb{T}}$  for all  $a \in \Sigma_s$ .

#### Proof: Signal-event words

- Let  $\hat{\Sigma}_e = \Sigma_e \uplus \Sigma'_e$  and  $\hat{\Sigma}_s = \Sigma_s \times \Sigma'_s$ .
- ▶ Let  $\Pi_1 : SE(\hat{\Sigma}) \to SE(\Sigma)$  and  $\Pi_2 : SE(\hat{\Sigma}) \to SE(\Sigma')$  be the natural projections

#### • $\sigma^{-1}(L) = \Pi_1(\Pi_2^{-1}(L) \cap M)$ for a suitable language M, in the class $SEL_{\varepsilon}$ . if $f \in \Sigma_e$ then $f \cdot \sigma(f)$ is replaced by $f \cdot \{w \in SE(\hat{\Sigma}) \mid w = (\tau, b_0)^0 f_1(\tau, b_1)^0 f_2 \cdots (\tau, b_n)^0 \text{ with } b_0^0 f_1 b_1^0 f_2 \cdots b_n^0 \in \sigma(f)\}$ if $a \in \Sigma_s$ then $a \cdot \sigma(a)$ is replaced by $\{w \in SE(\hat{\Sigma}) \mid w = (a, b_0)^{d_0} f_1(a, b_1)^{d_1} f_2 \cdots \text{ with } b_0^{d_0} f_1 b_1^{d_1} f_2 \cdots \in \sigma(a^{d_0+d_1+\cdots})\}$

- If L is in the class  $SEL_{\varepsilon}$ , then so is  $\Pi_2^{-1}(L)$ .
- The class  $SEL_{\varepsilon}$  is closed under intersection.

# **Closure under intersection**

#### Remark

- Easy for the class SEL or for classical timed languages.
- More difficult with signals and  $\varepsilon$ -transitions due to stuttering and unobservability of  $\tau^0$ .
- Asarin, Caspi and Maler 97 did not deal with these difficulties and considered finite runs only.
   Asarin, Caspi and Maler 02 deals with the intersection of classical timed automata only.
- Dima 00 gives a construction to remove stuttering for automata with a single clock.
- Durand-Lose 04 gives a construction for intersection taking stuttering into account but restricted to finite runs and without zero-duration signals.
   His approach do not extend to infinite runs since it would introduce Zeno runs leading to transfinite problems

# Outline

#### Introduction

Signal-Event (Timed) Words and Automata

Signal-Event (Timed) Substitutions

**Closure under substitutions** 

**Closure under inverse substitutions** 





# Conclusion

- Signal-event words are the natural objects for studying refinements, abstractions and other problems.
- Extending classical results to SE-automata is not always easy due to  $\varepsilon$ -transitions, signal stuttering, unobservability of  $\tau^0$ , Zeno runs, ...
- We have proved closure properties (intersection, refinement, abstraction) for the general case of SE-automata.