Refinements and Abstractions of Signal-Event (Timed) Languages

LSV
ENS de Cachan & CNRS
Paul.Gastin@lsv.ens-cachan.fr

Joint work with Béatrice Bérard and Antoine Petit

MFPS, May 26th, 2006

Paul Gastin

Outline

Signal-Event (Timed) Words and Automata

Signal-Event (Timed) Substitutions

Closure under substitutions

Closure under inverse substitutions

Conclusion

Refinements and Abstractions

Abstract level Concrete level

refinement

abstraction

ConnectToServer Details used to establish the connection

Formalisation of refinement

Let $\sigma:A\to \mathcal{P}(B^*)$ be a substitution.

Abstract level Concrete level

 $\text{Behavior } w = abaac \in A^* \quad \xrightarrow{\text{refinement}} \quad \sigma(w) = \sigma(a)\sigma(b)\sigma(a)\sigma(a)\sigma(c) \subseteq B^*$

(□ → (┛ → (Ξ → (Ξ → Ξ → 짓 へ 3/29)

Refinements and Abstractions

Abstract level Concrete level

refinement

Formalisation of abstraction

Let $\sigma:A\to \mathcal{P}(B^*)$ be a substitution.

Abstract level

Concrete level

 $\sigma^{-1}(L) = \{w \in A^* \mid \sigma(w) \cap L \neq \emptyset\} \quad \xleftarrow{\text{abstraction}} \quad L \subseteq B^*$

(ロ > ← 罰 > ← ≣ > ← ≣ > → 및 ◆ Q (~ 4/29)

Adding time to the picture

Timed refinement

refinement

Abstract level

Concrete level

abstraction

 ${\sf ConnectToServer}^2$

 $\mathsf{Reg} \cdot \mathsf{Wait}^2 \cdot \mathsf{Ack}$

 ${\sf ConnectToServer}^{4.5}$

 $\mathsf{Req} \cdot \mathsf{Wait}^1 \cdot \mathsf{Nack} \cdot \mathsf{Wait}^{0.5} \cdot \mathsf{Retry} \cdot \mathsf{Wait}^3 \cdot \mathsf{Ack}$

An abstract action a with duration d should be replaced by a concrete execution (word) w with the same duration $\|w\|=d$.

4 D > 4 D > 4 E > 4 E > E 9 Q @ 7/29

Signal-Event (Timed) Words

Asarin - Caspi - Maler 2002

- Σ_e finite set of (instantaneous) events
- Σ_s finite set of signals
- ${\mathbb T}$ time domain, $\overline{{\mathbb T}}={\mathbb T}\cup\{\infty\}$
- $\Sigma = \Sigma_e \cup (\Sigma_s \times \mathbb{T})$
- Notation: a^d for $(a,d) \in \Sigma_s \times \overline{\mathbb{T}}$
- Σ^{∞} set of signal-event (timed) words

Example: $a^3 f f g b^{1.5} a^2 f$

Signal stuttering: $a^2a^3 \approx a^5$, $a^\infty = a^2a^2a^2\cdots$

Outline

Introduction

Signal-Event (Timed) Substitutions

Closure under substitutions

Closure under inverse substitutions

Conclusion

Signal-Event (Timed) Words

Unobservable signal au

- Useful to hide signals:
 - Signal-event word $\xrightarrow{\text{hiding signals}}$ Classical timed words

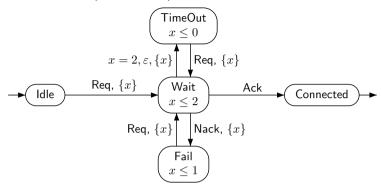
$$a^3fb^1gfa^2f$$

$$\tau^3 f \tau^1 g f \tau^2 f = (f,3)(g,4)(f,4)(f,6)$$

- $au^0 pprox arepsilon$: an hidden signal with zero duration is not observable.
- $a^0\not\approx\varepsilon$: a signal, even of zero duration, is observable.
- $\tau^2 \not\approx \varepsilon$: we still observe a time delay but the actual signal has been hidden.
- Example : $a^2\tau^0a^1f\tau^0g\tau^1fb^2b^2b^2\cdots\approx a^3fg\tau^1fb^\infty$
- Signal-event words $SE(\Sigma) = \Sigma^{\infty}/\approx$

Signal-Event (Timed) automata

- States emit signals
- ► Transitions emit (instantaneous) events



- $ightharpoonup \operatorname{\mathsf{Run}}: \operatorname{\mathsf{Idle}}^3 \cdot \operatorname{\mathsf{Req}} \cdot \operatorname{\mathsf{Wait}}^2 \cdot \operatorname{\mathsf{TimeOut}}^0 \cdot \operatorname{\mathsf{Req}} \cdot \operatorname{\mathsf{Wait}}^1 \cdot \operatorname{\mathsf{Ack}} \cdot \operatorname{\mathsf{Connected}}^8$
- SEL : languages accepted by SE-automata without ε -transitions.
- SEL_{ε} : languages accepted by SE-automata with ε -transitions.

Signal-Event (Timed) Substitutions

Definition

- Abstract alphabet : Σ_e and Σ_s
- Concrete alphabet : Σ_e' and Σ_s'
- Substitution σ from $SE(\Sigma)$ to $SE(\Sigma')$ defined by:

$$a \in \Sigma_e : L_a \subseteq (\Sigma'_e \cup \Sigma'_s \times \{0\})^*$$

$$\sigma(a) = L_a$$

 $a \in \Sigma_s \setminus \{\tau\}$: $L_a \subseteq SE(\Sigma')$ not containing Zeno words.

$$\sigma(a^d) = \{ w \in L_a \mid ||w|| = d \}$$

$$a = \tau : L_{\tau} = \{\tau\} \times \overline{\mathbb{T}}$$

$$\sigma(\tau^d) = \{\tau^d\}$$

Remark

If we allow Zeno words in L_a then we may get transfinite words as refinements. Example: if $b^1 f b^{1/2} f b^{1/4} f \cdots \in L_a$ and $L_a = \{q\}$ then $\sigma(a^2 q)$ is transfinite.

Outline

Introduction

Signal-Event (Timed) Words and Automata

3 Signal-Event (Timed) Substitutions

Closure under substitutions

Closure under inverse substitutions

Conclusion

Signal-Event (Timed) Substitutions

Remark

In general, SE-substitutions are not morphisms

Example: if $L_a = \{b^2\}$ then $\sigma(a^1) = \emptyset$ and $\sigma(a^2) \neq \sigma(a^1)\sigma(a^1)$

Substitutions are applied to SE-words in normal form:

 $\sigma(a^2\tau^0a^1f\tau^0g\tau^1fb^2b^2b^2\cdots) = \sigma(a^3)\sigma(f)\sigma(g)\tau^1\sigma(f)\sigma(b^\infty)$

Proposition

Let σ be a timed substitution, given by a family $(L_a)_{a\in\Sigma_e\cup\Sigma_s}$. Then, σ is a morphism if and only if for each signal $a\in\Sigma_s$ we have

- 1. L_a is closed under concatenation: for all $u, v \in L_a$ with $||u|| < \infty$, we have $uv \in L_a$,
- 2. L_a is closed under decomposition: for each $v \in L_a$ with $\|v\| = d$, for all $d_1 \in \mathbb{T}$, $d_2 \in \overline{\mathbb{T}}$ such that $d = d_1 + d_2$, there exist $v_i \in L_a$ with $\|v_i\| = d_i$ such that $v = v_1 v_2$.

Recognizable substitutions

Definition

Let σ be a substitution defined by $(L_a)_{a \in \Sigma_e \cup \Sigma_s}$. Then,

- σ is a SEL-substitution if each L_a is in SEL
- σ is a $SEL_{\varepsilon}-substitution$ if each L_a is in SEL_{ε}

Closure under substitutions

SEL is not closed under SEL-substitution

$$L = \{a^0 f\} \text{ is recognized by } \longrightarrow \overbrace{a} \qquad \overbrace{x \leq 0} \longrightarrow$$

$$L_a = \{b\} imes \overline{\mathbb{T}} ext{ is recognized by } lacktrianglet$$

$$L_f = \{c^0g\}$$
 is recognized by c g τ $x \leq 0$

 $\sigma(L) = \{b^0c^0g\}$ cannot be accepted without ε -transitions.

Theorem

- 1. The class SEL_{ε} is closed under SEL_{ε} -substitutions.
- 2. The class SEL is closed under SEL-substitution satisfying $L_f \subseteq \Sigma'_e((\Sigma'_s \times \{0\})\Sigma'_e)^*$ for each $f \in \Sigma_e$, i.e., each word in L_f must start and end with an instantaneous event.

Outline

Introduction

Signal-Event (Timed) Words and Automata

Signal-Event (Timed) Substitutions

4 Closure under substitutions

Closure under inverse substitutions

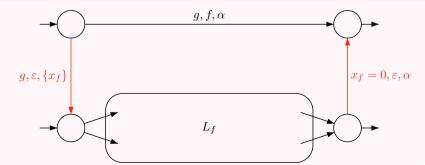
Conclusion

Closure under substitutions

Theorem

- 1. The class SEL_{ε} is closed under SEL_{ε} -substitutions.
- 2. The class SEL is closed under SEL-substitution satisfying $L_f \subseteq \Sigma'_e((\Sigma'_s \times \{0\})\Sigma'_e)^*$ for each $f \in \Sigma_e$.

Handling events is easy for SEL_{ε} -substitutions.

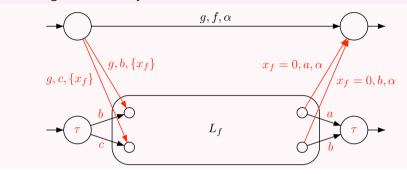


Closure under substitutions

Theorem

- 1. The class SEL_{ε} is closed under SEL_{ε} -substitutions.
- 2. The class SEL is closed under SEL-substitution satisfying $L_f \subseteq \Sigma'_e((\Sigma'_s \times \{0\})\Sigma'_e)^*$ for each $f \in \Sigma_e$.

Handling events is easy for *SEL*-substitutions.

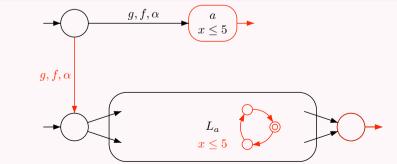


Closure under substitutions

Theorem

- 1. The class SEL_{ε} is closed under SEL_{ε} -substitutions.
- 2. The class SEL is closed under SEL-substitution satisfying $L_f \subseteq \Sigma'_e((\Sigma'_s \times \{0\})\Sigma'_e)^*$ for each $f \in \Sigma_e$.

Handling signals is easy for SEL-substitutions.



←□→←罰→←置→←置→ 量 夕久で 19/29

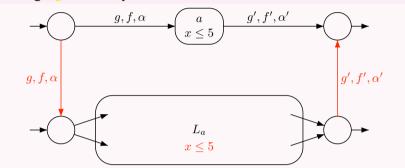
[□ > 4∰ > 4 ≣ > 4 ≣ > ■ 40 Q € 17/20

Closure under substitutions

Theorem

- 1. The class SEL_{ε} is closed under SEL_{ε} -substitutions.
- 2. The class SEL is closed under SEL-substitution satisfying $L_f \subseteq \Sigma'_e((\Sigma'_s \times \{0\})\Sigma'_e)^*$ for each $f \in \Sigma_e$.

Handling signals is easy for *SEL*-substitutions.



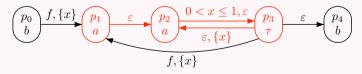
Closure under substitutions

Theorem

- 1. The class SEL_{ε} is closed under SEL_{ε} -substitutions.
- 2. The class SEL is closed under SEL-substitution satisfying $L_f \subseteq \Sigma'_e((\Sigma'_s \times \{0\})\Sigma'_e)^*$ for each $f \in \Sigma_e$.

Handling signals for SEL_{ε} -substitutions is harder.

Remember that substitutions are applied to SE-words in normal form.



A possible run gives : $fa^{0.3}a^{0.6}\tau^0a^{0.5}\tau^1a^{0.6}\tau^0a^{0.5}\tau^0b^3 \approx fa^{1.4}\tau^1a^{1.1}b^3$

We have to synchronize a-blocks of $\mathcal A$ with the automaton $\mathcal A_a$ taking into account τ -states that may be crossed instantaneously.

Closure under substitutions

Theorem

- 1. The class SEL_{ε} is closed under SEL_{ε} -substitutions.
- 2. The class SEL is closed under SEL-substitution satisfying $L_f \subseteq \Sigma'_e((\Sigma'_s \times \{0\})\Sigma'_e)^*$ for each $f \in \Sigma_e$.

Handling signals for SEL_{ε} -substitutions is harder.

Zeno runs in A_a must be removed.

- L_a accepted by $f, \{x\}$ c $x \le 2$ ε
- b^1fc^2 is accepted by an infinite Zeno run: $b^1fc^1 au^0c^{1/2} au^0c^{1/4}\cdots$
- We get $gb^1fc^2g\in\sigma(ga^3g)$.

We have to replace the Zeno run of A_a by a finite run.

Outline

Introduction

Signal-Event (Timed) Words and Automata

Signal-Event (Timed) Substitutions

Closure under substitutions

5 Closure under inverse substitutions

Conclusion

←□ → ←□ → ← □ → □ → □ ← 23/29

Normal form for SE-automata

Theorem

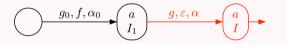
Let $\mathcal A$ be a SE-automaton. We can effectively construct an equivalent SE-automaton $\mathcal A'$ such that:

- 1. no infinite run of \mathcal{A}' accepts a finite word with finite duration, and
- 2. no finite run of A' accepts a word with infinite duration.

Main problem

We have to replace infinite accepting ε -loops

by finite accepting runs.



Closure under inverse substitutions

Theorem

- 1. The class $SEL_{arepsilon}$ is closed under inverse $SEL_{arepsilon}$ -substitution.
- 2. The class SEL is closed under inverse SEL-substitution acting only on events: $L_a = \{a\} \times \overline{\mathbb{T}}$ for all $a \in \Sigma_s$.

The class SEL is not closed under arbitrary inverse SEL-substitution

Let
$$\Sigma_s = \Sigma_s' = \{a, b\}$$
 and $\Sigma_e = \Sigma_e' = \{f\}$.

Let σ be the SEL-substitution defined by $L_a=\{a^1f\}$, $L_b=\{b^0\}$ and $L_f=\{f\}$.

$$L = \{a^1 f b^0\}$$
 is a SEL .

$$\sigma^{-1}(L) = \{a^1b^0\}$$
 is not a SEL .

Closure under inverse substitutions

Theorem

- 1. The class SEL_{ε} is closed under inverse SEL_{ε} -substitution.
- 2. The class SEL is closed under inverse SEL-substitution acting only on events: $L_a = \{a\} \times \overline{\mathbb{T}}$ for all $a \in \Sigma_s$.

Proof: word case

- Let $\sigma: A \to \mathcal{P}(B^*)$ be a rational substitution
- Let $\Pi_A:(A\uplus B)^*\to A^*$ and $\Pi_B:(A\uplus B)^*\to B^*$ be the projections
- Let $M = \left(\bigcup_{a \in A} a\sigma(a)\right)^* \subseteq (A \uplus B)^*$ is rational.
- Then, $\sigma^{-1}(L) = \Pi_A(\Pi_B^{-1}(L) \cap M)$

Closure under intersection

Remark

- Easy for the class SEL or for classical timed languages.
- More difficult with signals and ε -transitions due to stuttering and unobservability of τ^0 .
- Asarin, Caspi and Maler 97 did not deal with these difficulties and considered finite runs only.
- Asarin, Caspi and Maler 02 deals with the intersection of classical timed automata only.
- Dima 00 gives a construction to remove stuttering for automata with a single clock.
- Durand-Lose 04 gives a construction for intersection taking stuttering into account but restricted to finite runs and without zero-duration signals.
 His approach do not extend to infinite runs since it would introduce Zeno runs leading to transfinite problems

<ロ> < 個> < 個> < 置> < 重> < 重 > ■ 9 < 0 27/29

Closure under inverse substitutions

Theorem

- 1. The class SEL_{ε} is closed under inverse SEL_{ε} -substitution.
- 2. The class SEL is closed under inverse SEL-substitution acting only on events: $L_a = \{a\} \times \overline{\mathbb{T}}$ for all $a \in \Sigma_s$.

Proof: Signal-event words

- Let $\hat{\Sigma}_e = \Sigma_e \uplus \Sigma'_e$ and $\hat{\Sigma}_s = \Sigma_s \times \Sigma'_s$.
- Let $\Pi_1:SE(\hat{\Sigma})\to SE(\Sigma)$ and $\Pi_2:SE(\hat{\Sigma})\to SE(\Sigma')$ be the natural projections
- $\sigma^{-1}(L)=\Pi_1(\Pi_2^{-1}(L)\cap M) \text{ for a suitable language } M, \text{ in the class } SEL_\varepsilon.$ if $f\in \Sigma_e$ then $f\cdot \sigma(f)$ is replaced by $f\cdot \{w\in SE(\hat{\Sigma})\mid w=(\tau,b_0)^0f_1(\tau,b_1)^0f_2\cdots (\tau,b_n)^0 \text{ with } b_0^0f_1b_1^0f_2\cdots b_n^0\in \sigma(f)\}$ if $a\in \Sigma_s$ then $a\cdot \sigma(a)$ is replaced by $\{w\in SE(\hat{\Sigma})\mid w=(a,b_0)^{d_0}f_1(a,b_1)^{d_1}f_2\cdots \text{ with } b_0^{d_0}f_1b_1^{d_1}f_2\cdots\in \sigma(a^{d_0+d_1+\cdots})\}$
 - If L is in the class SEL_{ε} , then so is $\Pi_2^{-1}(L)$.
 - The class SEL_{ε} is closed under intersection.

Outline

Introduction

Signal-Event (Timed) Words and Automata

Signal-Event (Timed) Substitutions

Closure under substitutions

Closure under inverse substitutions

6 Conclusion

Conclusion

- ► Signal-event words are the natural objects for studying refinements, abstractions and other problems.
- $\begin{tabular}{ll} \bf Extending \ classical \ results \ to \ SE-automata \ is \ not \ always \ easy \ due \ to \\ \hline \varepsilon\mbox{-transitions, signal \ stuttering, \ unobservability \ of} \ \tau^0\mbox{, \ Zeno \ runs, } \ \ldots \ \end{tabular}$
- ▶ We have proved closure properties (intersection, refinement, abstraction) for the general case of SE-automata.

