Refinements and Abstractions of Signal-Event (Timed) Languages

Paul Gastin

LSV

ENS de Cachan & CNRS

Paul.Gastin@lsv.ens-cachan.fr

Joint work with Béatrice Bérard and Antoine Petit

FSTTCS Workshop, Dec. 12th, 2006

Outline

Introduction

Signal-Event (Timed) Words and Automata

Signal-Event (Timed) Substitutions

Recognizable substitutions

Intersection

Conclusion

Refinements and Abstractions

Abstract level Concrete level

ConnectToServer abstraction Details used to establish the connection

Refinements and Abstractions

Abstract level

ConnectToServer

ConnectToServer

ConnectToServer

ConnectToServer

ConnectToServer

ConnectToServer

ConnectToServer

Details used to establish the connection

Formalisation of refinement

Let $\sigma:A\to \mathcal{P}(B^*)$ be a substitution.

Abstract level

Language $K \subseteq A^*$

Concrete level

$$\begin{array}{ll} & \xrightarrow{\text{refinement}} & \sigma(a) \subseteq B^* \\ & \xrightarrow{\text{refinement}} & \sigma(w) = \sigma(a)\sigma(b)\sigma(a)\sigma(a)\sigma(c) \subseteq B^* \\ & \xrightarrow{\text{refinement}} & \sigma(K) = \bigcup_{w \in K} \sigma(w) \subseteq B^* \end{array}$$

Refinements and Abstractions

Abstract level

Concrete level

refinement

 ${\sf ConnectToServer}$

Details used to establish the connection

Formalisation of abstraction

Let $\sigma: A \to \mathcal{P}(B^*)$ be a substitution.

Abstract level

Concrete level

$$\sigma^{-1}(L) = \{ w \in A^* \mid \sigma(w) \cap L \neq \emptyset \}$$

$$L\subseteq B^*$$

Adding time to the picture

Timed refinement		
Abstract level	refinement abstraction	Concrete level
${\sf ConnectToServer}^2$		$Req\cdotWait^2\cdotAck$
${\sf ConnectToServer}^{4.5}$		$Req \cdot Wait^1 \cdot Nack \cdot Wait^{0.5} \cdot Retry \cdot Wait^3 \cdot Ack$

An abstract action a with duration d should be replaced by a concrete execution (word) w with the same duration $\|w\| = d$.

Adding time to the picture

Timed refinement		
Abstract level	abstraction	Concrete level
${\sf ConnectToServer}^2$		$Req\cdotWait^2\cdotAck$
${\sf ConnectToServer}^{4.5}$		$Req \cdot Wait^1 \cdot Nack \cdot Wait^{0.5} \cdot Retry \cdot Wait^3 \cdot Ack$

An abstract action a with duration d should be replaced by a concrete execution (word) w with the same duration ||w|| = d.

Outline

Introduction

Signal-Event (Timed) Words and Automata

Signal-Event (Timed) Substitutions

Recognizable substitutions

Intersection

Conclusion

Asarin - Caspi - Maler 2002

- $ightharpoonup \Sigma_e$ finite set of (instantaneous) events
- $ightharpoonup \Sigma_s$ finite set of signals
- lacksquare \mathbb{T} time domain, $\overline{\mathbb{T}} = \mathbb{T} \cup \{\infty\}$
- Notation: a^d for $(a,d) \in \Sigma_s \times \overline{\mathbb{T}}$
- Σ^{∞} set of signal-event (timed) words Example: $a^3ffgb^{1.5}a^2f$
- ▶ Signal stuttering: $a^2 a^3 \approx a^5$, $a^{\infty} = a^2 a^2 a^2 \cdots$, $a^1 = a^{\frac{1}{2}} + a^{\frac{1}{4}} + a^{\frac{1}{8}} + \dots$

Asarin - Caspi - Maler 2002

- $ightharpoonup \Sigma_e$ finite set of (instantaneous) events
- $ightharpoonup \Sigma_s$ finite set of signals
- lacksquare \mathbb{T} time domain, $\overline{\mathbb{T}}=\mathbb{T}\cup\{\infty\}$
- $\Sigma = \Sigma_e \cup (\Sigma_s \times \mathbb{T})$
- Notation: a^d for $(a,d) \in \Sigma_s \times \overline{\mathbb{T}}$
- Σ^{∞} set of signal-event (timed) words Example: $a^3 f f q b^{1.5} a^2 f$
- Signal stuttering: $a^2 a^3 \approx a^5$, $a^{\infty} = a^2 a^2 a^2 \cdots$, $a^1 = a^{\frac{1}{2}} + a^{\frac{1}{4}} + a^{\frac{1}{8}} + \dots$

Asarin - Caspi - Maler 2002

- $ightharpoonup \Sigma_e$ finite set of (instantaneous) events
- $ightharpoonup \Sigma_s$ finite set of signals
- lacksquare \mathbb{T} time domain, $\overline{\mathbb{T}}=\mathbb{T}\cup\{\infty\}$
- $\Sigma = \Sigma_e \cup (\Sigma_s \times \mathbb{T})$
- Notation: a^d for $(a,d) \in \Sigma_s \times \overline{\mathbb{T}}$
- Σ^{∞} set of signal-event (timed) words Example: $a^3 f f q b^{1.5} a^2 f$
- Signal stuttering: $a^2a^3\approx a^5$, $a^\infty=a^2a^2a^2\cdots$, $a^1=a^{\frac{1}{2}}+a^{\frac{1}{4}}+a^{\frac{1}{8}}+\ldots$

Unobservable signal au

Useful to hide signals:

Signal-event word hiding signals

Classical time-event words

$$a^3fb^1gfa^2f$$

$$\tau^3 f \tau^1 g f \tau^2 f = (f,3)(g,4)(f,4)(f,6)$$

- $au^0 pprox arepsilon$: an hidden signal with zero duration is not observable.
 - $a^0 \not\approx \varepsilon$: a signal, even of zero duration, is observable.
 - $\tau^2 \approx \varepsilon$: we still observe a time delay but the actual signal has been hidden.
 - Example: $a^2\tau^0a^1f\tau^0g\tau^1fb^2b^2b^2\cdots\approx a^3fg\tau^1fb^{\infty}$
- ▶ Signal-event words $SE(\Sigma) = \Sigma^{\infty}/\approx$

Unobservable signal au

Useful to hide signals:

Signal-event word $\xrightarrow{\text{hiding signals}}$

Classical time-event words

$$a^3fb^1gfa^2f$$

$$\tau^3 f \tau^1 g f \tau^2 f = (f, 3)(g, 4)(f, 4)(f, 6)$$

- au $au^0 pprox arepsilon$: an hidden signal with zero duration is not observable.
 - $a^0 \not\approx \varepsilon$: a signal, even of zero duration, is observable.
 - $\tau^2\not\approx\varepsilon$: we still observe a time delay but the actual signal has been hidden.
 - Example: $a^2\tau^0a^1f\tau^0q\tau^1fb^2b^2b^2\cdots\approx a^3fq\tau^1fb^\infty$
- ▶ Signal-event words $SE(\Sigma) = \Sigma^{\infty}/\approx$

Unobservable signal au

Useful to hide signals:

Signal-event word hiding signals

Classical time-event words

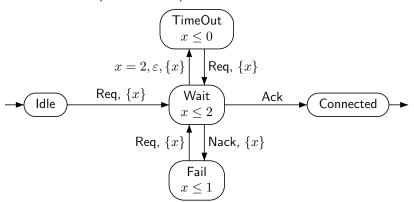
$$a^3fb^1gfa^2f$$

$$\tau^3 f \tau^1 g f \tau^2 f = (f, 3)(g, 4)(f, 4)(f, 6)$$

- au $au^0 pprox arepsilon$: an hidden signal with zero duration is not observable.
 - $a^0 \not\approx \varepsilon$: a signal, even of zero duration, is observable.
 - $\tau^2\not\approx\varepsilon$: we still observe a time delay but the actual signal has been hidden.
 - Example: $a^2\tau^0a^1f\tau^0g\tau^1fb^2b^2b^2\cdots \approx a^3fg\tau^1fb^\infty$
- Signal-event words $SE(\Sigma) = \Sigma^{\infty}/\approx$

Signal-Event (Timed) automata

- States emit signals
- Transitions emit (instantaneous) events



- ► Run: Idle³ · Reg · Wait² · TimeOut⁰ · Reg · Wait¹ · Ack · Connected⁸
- SEL: languages accepted by SE-automata without ε -transitions.
- SEL_{ε} : languages accepted by SE-automata with ε -transitions.

Outline

Introduction

Signal-Event (Timed) Words and Automata

3 Signal-Event (Timed) Substitutions

Recognizable substitutions

Intersection

Conclusion

Definition

- Abstract alphabet : Σ_e and Σ_s
- $\,\blacktriangleright\,$ Concrete alphabet : Σ_e' and Σ_s'
- ▶ Substitution σ from $SE(\Sigma)$ to $SE(\Sigma')$ defined by:

$$a\in\Sigma_e:\ L_a\subseteq(\Sigma_e'\cup\Sigma_s' imes\{0\})^*$$
 $\sigma(a)=L_a$ $\Sigma_s\setminus\{ au\}:\ L_a\subseteq SE(\Sigma')$ not contain

$$a\in \Sigma_s\setminus \{ au\}$$
: $L_a\subseteq SE(\Sigma')$ not containing Zeno words.
$$\sigma(a^d)=\{w\in L_a\mid \|w\|=d\}$$

$$a = \tau : L_{\tau} = \{\tau\} \times \overline{\mathbb{T}}$$

$$\sigma(\tau^d) = \{\tau^d\}$$

Remark

If we allow Zeno words in L_a then we may get transfinite words as refinements Example: if $b^1fb^{1/2}fb^{1/4}f\cdots \in L_a$ and $L_a=\{g\}$ then $\sigma(a^2g)$ is transfinite.

Definition

- Abstract alphabet : Σ_e and Σ_s
- $lackbox{ }$ Concrete alphabet : Σ_e' and Σ_s'
- ▶ Substitution σ from $SE(\Sigma)$ to $SE(\Sigma')$ defined by:

$$a \in \Sigma_e: L_a \subseteq (\Sigma_e' \cup \Sigma_s' \times \{0\})^*$$

$$\sigma(a) = L_a$$

$$a \in \Sigma_s \setminus \{\tau\}: L_a \subseteq SE(\Sigma') \text{ not containing Zeno words.}$$

$$\sigma(a^d) = \{w \in L_a \mid \|w\| = d\}$$

$$a = \tau: L_\tau = \{\tau\} \times \overline{\mathbb{T}}$$

$$\sigma(\tau^d) = \{\tau^d\}$$

Remark

If we allow Zeno words in L_a then we may get transfinite words as refinements. Example: if $b^1fb^{1/2}fb^{1/4}f\cdots \in L_a$ and $L_q=\{g\}$ then $\sigma(a^2g)$ is transfinite.

Remark

In general, SE-substitutions are not morphisms

Example: if
$$L_a=\{b^2\}$$
 then $\sigma(a^1)=\emptyset$ and $\sigma(a^2)\neq\sigma(a^1)\sigma(a^1)$

Substitutions are applied to SE-words in normal form:

$$\sigma(a^2\tau^0a^1f\tau^0g\tau^1fb^2b^2b^2\cdots)=\sigma(a^3)\sigma(f)\sigma(g)\tau^1\sigma(f)\sigma(b^\infty)$$

Proposition

Let σ be a timed substitution, given by a family $(L_a)_{a \in \Sigma_e \cup \Sigma_s}$. Then, σ is a morphism if and only if for each signal $a \in \Sigma_s$ we have

- 1. L_a is closed under concatenation: for all $u,v\in L_a$ with $\|u\|<\infty$, we have $uv\in L_a$,
- 2. L_a is closed under decomposition: for each $v \in L_a$ with ||v|| = d, for all $d_1 \in \mathbb{T}$, $d_2 \in \overline{\mathbb{T}}$ such that $d = d_1 + d_2$, there exist $v_i \in L_a$ with $||v_i|| = d_i$ such that $v = v_1v_2$.

Remark

In general, SE-substitutions are not morphisms

Example: if
$$L_a=\{b^2\}$$
 then $\sigma(a^1)=\emptyset$ and $\sigma(a^2)\neq\sigma(a^1)\sigma(a^1)$

Substitutions are applied to SE-words in normal form:

$$\sigma(a^2\tau^0a^1f\tau^0g\tau^1fb^2b^2b^2\cdots)=\sigma(a^3)\sigma(f)\sigma(g)\tau^1\sigma(f)\sigma(b^\infty)$$

Proposition

Let σ be a timed substitution, given by a family $(L_a)_{a\in\Sigma_e\cup\Sigma_s}$.

- Then, σ is a morphism if and only if for each signal $a\in \Sigma_s$ we have
 - 1. L_a is closed under concatenation: for all $u, v \in L_a$ with $||u|| < \infty$, we have $uv \in L_a$,
 - 2. L_a is closed under decomposition: for each $v \in L_a$ with $\|v\| = d$, for all $d_1 \in \mathbb{T}$, $d_2 \in \overline{\mathbb{T}}$ such that $d = d_1 + d_2$, there exist $v_i \in L_a$ with $\|v_i\| = d_i$ such that $v = v_1v_2$.

Outline

Introduction

Signal-Event (Timed) Words and Automata

Signal-Event (Timed) Substitutions

Recognizable substitutions

Intersection

Conclusion

Recognizable substitutions

Definition

Let σ be a substitution defined by $(L_a)_{a \in \Sigma_e \cup \Sigma_s}$. Then,

- lacktriangledown σ is a SEL-substitution if each L_a is in SEL
- ullet σ is a SEL_{ε} -substitution if each L_a is in SEL_{ε}

SEL is not closed under SEL-substitutions

$$L = \{a^0 f\} \text{ is recognized by } \longrightarrow \overbrace{a} \qquad \overbrace{x \leq 0} \qquad \blacktriangleright$$

$$L_a = \{b\} imes \overline{\mathbb{T}} \text{ is recognized by } \longrightarrow b$$

• $\sigma(L) = \{b^0c^0g\}$ cannot be accepted without ε -transitions.

Theorem

The class SEL is closed under SEL-substitutions satisfying for each $f \in \Sigma_e$

$$L_f \subseteq \Sigma_e'((\Sigma_s' \times \{0\})\Sigma_e')$$

i.e. each word in $L_{\mathcal{L}}$ must start and end with an instantaneous event

SEL is not closed under SEL-substitutions

$$L = \{a^0 f\} \text{ is recognized by } \longrightarrow \overbrace{a} \qquad \overbrace{x \leq 0} \longrightarrow$$

$$L_a = \{b\} imes \overline{\mathbb{T}} \text{ is recognized by } \longrightarrow b$$

• $\sigma(L) = \{b^0c^0g\}$ cannot be accepted without ε -transitions.

Theorem

The class SEL is closed under SEL-substitutions satisfying for each $f \in \Sigma_e$

$$L_f \subseteq \Sigma'_e((\Sigma'_s \times \{0\})\Sigma'_e)^*$$

i.e., each word in L_f must start and end with an instantaneous event.

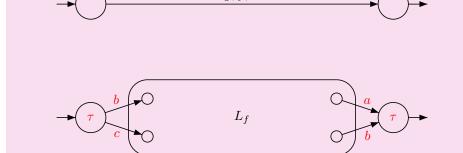
Theorem

The class SEL is closed under SEL-substitutions satisfying for each $f \in \Sigma_e$

$$L_f \subseteq \Sigma'_e((\Sigma'_s \times \{0\})\Sigma'_e)^*$$

 g, f, α

i.e., each word in L_f must start and end with an instantaneous event.

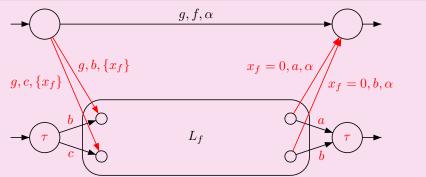


Theorem

The class SEL is closed under SEL-substitutions satisfying for each $f \in \Sigma_e$

$$L_f \subseteq \Sigma'_e((\Sigma'_s \times \{0\})\Sigma'_e)^*$$

i.e., each word in L_f must start and end with an instantaneous event.

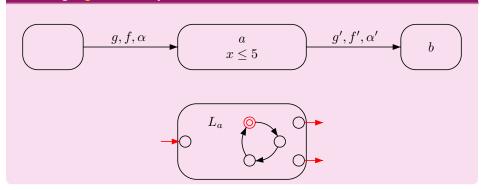


Theorem

The class SEL is closed under SEL-substitutions satisfying for each $f \in \Sigma_e$

$$L_f \subseteq \Sigma'_e((\Sigma'_s \times \{0\})\Sigma'_e)^*$$

i.e., each word in L_f must start and end with an instantaneous event.

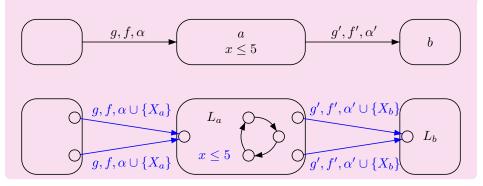


Theorem

The class SEL is closed under SEL-substitutions satisfying for each $f \in \Sigma_e$

$$L_f \subseteq \Sigma'_e((\Sigma'_s \times \{0\})\Sigma'_e)^*$$

i.e., each word in L_f must start and end with an instantaneous event.

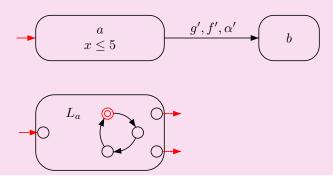


Theorem

The class SEL is closed under SEL-substitutions satisfying for each $f \in \Sigma_e$

$$L_f \subseteq \Sigma'_e((\Sigma'_s \times \{0\})\Sigma'_e)^*$$

i.e., each word in L_f must start and end with an instantaneous event.

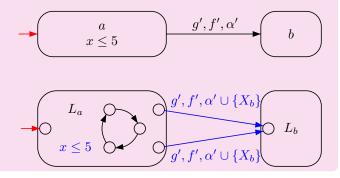


Theorem

The class SEL is closed under SEL-substitutions satisfying for each $f \in \Sigma_e$

$$L_f \subseteq \Sigma'_e((\Sigma'_s \times \{0\})\Sigma'_e)^*$$

i.e., each word in L_f must start and end with an instantaneous event.

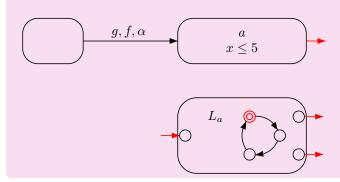


Theorem

The class SEL is closed under SEL-substitutions satisfying for each $f \in \Sigma_e$

$$L_f \subseteq \Sigma'_e((\Sigma'_s \times \{0\})\Sigma'_e)^*$$

i.e., each word in L_f must start and end with an instantaneous event.

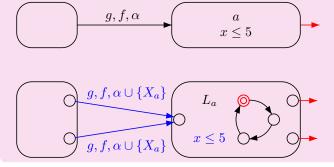


Theorem

The class SEL is closed under SEL-substitutions satisfying for each $f \in \Sigma_e$

$$L_f \subseteq \Sigma'_e((\Sigma'_s \times \{0\})\Sigma'_e)^*$$

i.e., each word in L_f must start and end with an instantaneous event.

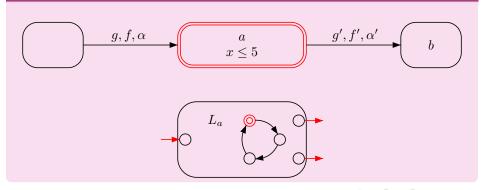


Theorem

The class SEL is closed under SEL-substitutions satisfying for each $f \in \Sigma_e$

$$L_f \subseteq \Sigma'_e((\Sigma'_s \times \{0\})\Sigma'_e)^*$$

i.e., each word in L_f must start and end with an instantaneous event.

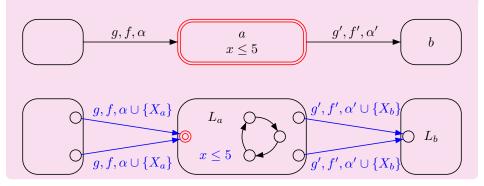


Theorem

The class SEL is closed under SEL-substitutions satisfying for each $f \in \Sigma_e$

$$L_f \subseteq \Sigma'_e((\Sigma'_s \times \{0\})\Sigma'_e)^*$$

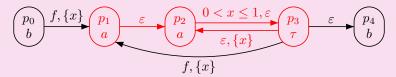
i.e., each word in L_f must start and end with an instantaneous event.



Closure under SEL_{ε} -substitutions

Handling signals for SEL_{ε} -substitutions is harder.

Remember that substitutions are applied to SE-words in normal form.



A possible run gives : $fa^{0.3}a^{0.6}\tau^0a^{0.5}\tau^1a^{0.6}\tau^0a^{0.5}\tau^0b^3 \approx fa^{1.4}\tau^1a^{1.1}b^3$

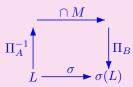
We cannot simply replace each a-labelled state by a copy of A_a .

Proof technique inspired from the word case

- ▶ Let $\sigma: A \to \mathcal{P}(B^*)$ be a rational substitution
- ▶ Let $\Pi_A : (A \uplus B)^* \to A^*$ and $\Pi_B : (A \uplus B)^* \to B^*$ be the projections

▶ Let
$$M = \left(\bigcup_{a \in A} a\sigma(a)\right)^* \subseteq (A \uplus B)^*$$
 is rational.

▶ Then, $\sigma(L) = \Pi_B(\Pi_A^{-1}(L) \cap M)$.

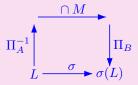


► This proof technique also applies to inverse substitutions: $\sigma^{-1}(L) = \Pi_A(\Pi_P^{-1}(L) \cap M)$.

Closure under substitutions

Proof technique inspired from the word case

- ▶ Let $\sigma: A \to \mathcal{P}(B^*)$ be a rational substitution
- ▶ Let $\Pi_A : (A \uplus B)^* \to A^*$ and $\Pi_B : (A \uplus B)^* \to B^*$ be the projections
- ▶ Let $M = \left(\bigcup_{a \in A} a\sigma(a)\right)^* \subseteq (A \uplus B)^*$ is rational.
- ▶ Then, $\sigma(L) = \Pi_B(\Pi_A^{-1}(L) \cap M)$.



► This proof technique also applies to inverse substitutions: $\sigma^{-1}(L) = \Pi_A(\Pi_B^{-1}(L) \cap M)$.

Theorem

The class SEL_{ε} is closed under SEL_{ε} -substitutions and inverse SEL_{ε} -substitutions.

Proof: Signal-event words

- ▶ Let $\hat{\Sigma}_e = \Sigma_e \uplus \Sigma'_e$ and $\hat{\Sigma}_s = \Sigma_s \times \Sigma'_s$.
- ▶ Let $\pi_1: SE(\hat{\Sigma}) \to SE(\Sigma)$ and $\pi_2: SE(\hat{\Sigma}) \to SE(\Sigma')$ be the natural projections defined by

$$\begin{split} &\pi_1(f) = f \text{ and } \pi_2(f) = \varepsilon \text{ if } f \in \Sigma_e, \\ &\pi_1(f) = \varepsilon \text{ and } \pi_2(f) = f \text{ if } f \in \Sigma_e', \\ &\pi_1((a,b)^d) = a^d \text{ and } \pi_2((a,b)^d) = b^d \text{ if } (a,b)^d \in \Sigma_s \times \Sigma_s' \times \overline{\mathbb{T}}. \end{split}$$

• We will show that for a suitable SEL_{ε} -language M we have

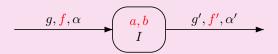
$$\sigma(L) = \pi_2(\pi_1^{-1}(L) \cap M)$$

$$\sigma^{-1}(L) = \pi_1(\pi_2^{-1}(L) \cap M)$$

▶ The class SEL_{ε} is closed under projection, inverse projection and intersection.

Lemma

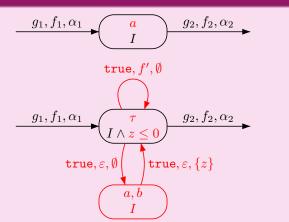
If L is in the class SEL_{ε} , then so is $\pi_1(L)$.



$$\begin{array}{c|c}
g, f, \alpha \\
\hline
 & I
\end{array}
\qquad g', \varepsilon, \alpha'$$

Lemma

If L is in the class SEL_{ε} , then so is $\pi_1^{-1}(L)$.



Lemma

Words: $M = \left(\bigcup_{a \in A} a\sigma(a)\right)^*$

If $M \subseteq SE(\hat{\Sigma})$ satisfies

- 1. $\pi_2(w) \in \sigma(\pi_1(w))$ for each $w \in M$,
- 2. $\forall u \in SE(\Sigma), \forall v \in \sigma(u), \exists w \in M \text{ such that } u = \pi_1(w) \text{ and } v = \pi_2(w).$

Then,

- for $L \subseteq SE(\Sigma)$, we have $\sigma(L) = \pi_2(\pi_1^{-1}(L) \cap M)$,
- for $L \subseteq SE(\Sigma')$, we have $\sigma^{-1}(L) = \pi_1(\pi_2^{-1}(L) \cap M)$.

- $\sigma(L) \subseteq \pi_2(\pi_1^{-1}(L) \cap M)$
 - Let $v \in \sigma(L)$ and let $u \in L$ with $v \in \sigma(u)$.
 - From 2, $\exists w \in M$ with $\pi_1(w) = u$ and $\pi_2(w) = v$.
 - Then, $w \in \pi_1^{-1}(L) \cap M$ and $v \in \pi_2(\pi_1^{-1}(L) \cap M)$.
- $\pi_2(\pi_1^{-1}(L) \cap M) \subseteq \sigma(L):$
 - Let $v \in \pi_2(\pi_1^{-1}(L) \cap M)$ and let $w \in \pi_1^{-1}(L) \cap M$ with $\pi_2(w) = v$.
 - We have $u = \pi_1(w) \in L$ and from 1 we get $v \in \sigma(u) \subseteq \sigma(L)$

Lemma

Words: $M = \left(\bigcup_{a \in A} a\sigma(a)\right)^*$

If $M \subseteq SE(\hat{\Sigma})$ satisfies

- 1. $\pi_2(w) \in \sigma(\pi_1(w))$ for each $w \in M$,
- 2. $\forall u \in SE(\Sigma), \forall v \in \sigma(u), \exists w \in M \text{ such that } u = \pi_1(w) \text{ and } v = \pi_2(w).$

Then,

- for $L \subseteq SE(\Sigma)$, we have $\sigma(L) = \pi_2(\pi_1^{-1}(L) \cap M)$,
- for $L \subseteq SE(\Sigma')$, we have $\sigma^{-1}(L) = \pi_1(\pi_2^{-1}(L) \cap M)$.

- $\sigma(L) \subseteq \pi_2(\pi_1^{-1}(L) \cap M):$ Let $v \in \sigma(L)$ and let $u \in L$ w
 - Let $v \in \sigma(L)$ and let $u \in L$ with $v \in \sigma(u)$.
 - From 2, $\exists w \in M$ with $\pi_1(w) = u$ and $\pi_2(w) = v$.
 - Then, $w \in \pi_1^{-1}(L) \cap M$ and $v \in \pi_2(\pi_1^{-1}(L) \cap M)$.
- $\pi_2(\pi_1^{-1}(L) \cap M) \subseteq \sigma(L):$
 - Let $v \in \pi_2(\pi_1^{-1}(L) \cap M)$ and let $w \in \pi_1^{-1}(L) \cap M$ with $\pi_2(w) = v$.
 - We have $u = \pi_1(w) \in L$ and from 1 we get $v \in \sigma(u) \subseteq \sigma(L)$.

Definition of M

Words: $M = \left(\bigcup_{a \in A} a \sigma(a)\right)^*$

For $f \in \Sigma_e$ and $a \in \Sigma_s \setminus \{\tau\}$, we define

$$\begin{array}{rcl} M_f & = & \{w \in SE(\hat{\Sigma}) \mid w = (\tau,b_0)^0 f_1(\tau,b_1)^0 f_2 \cdots (\tau,b_n)^0 \\ & & \text{with } b_0^0 f_1 b_1^0 f_2 \cdots b_n^0 \in \sigma(f)\} \cdot f \\ M_a & = & \{w \in SE(\hat{\Sigma}) \mid w = (a,b_0)^{d_0} f_1(a,b_1)^{d_1} f_2 \cdots \\ & & \text{with } b_0^{d_0} f_1 b_1^{d_1} f_2 \cdots \in \sigma(a^{d_0+d_1+\cdots})\} \\ M_\tau & = & \{(\tau,\tau)^d \mid d \in \overline{\mathbb{T}} \setminus \{0\}\} \end{array}$$

Note that each set M_f and M_a satisfies properties 1 and 2.

$$M = \{w_1 w_2 \cdots \mid \exists a_1, a_2, \ldots \in \Sigma_e \cup \Sigma_s \text{ with } w_i \in M_{a_i} \text{ and } a_i \in \Sigma_s \Rightarrow a_{i+1} \neq a_i\}.$$

Lemma

- 1. $\pi_2(w) \in \sigma(\pi_1(w))$ for each $w \in M$,
- 2. $\forall u \in SE(\Sigma), \forall v \in \sigma(u), \exists w \in M \text{ such that } u = \pi_1(w) \text{ and } v = \pi_2(w),$
- 3. the language M is in the class SEL_{ε} .

Closure under inverse SEL-substitutions

The class SEL is not closed under arbitrary inverse SEL-substitutions

- Let $\Sigma_s = \Sigma_s' = \{a, b\}$ and $\Sigma_e = \Sigma_e' = \{f\}$.
- Let σ be the *SEL*-substitution defined by $L_a = \{a^1 f\}$, $L_b = \{b^0\}$ and $L_f = \{f\}$.
- $L = \{a^1 f b^0\} \text{ is a } SEL.$
- $\sigma^{-1}(L) = \{a^1b^0\} \text{ is not a } SEL.$

Theorem

The class SEL is closed under inverse SEL-substitution acting only on events: $L_a = \{a\} \times \overline{\mathbb{T}}$ for all $a \in \Sigma_s$.

Closure under inverse *SEL*-substitutions

The class SEL is not closed under arbitrary inverse SEL-substitutions

- Let $\Sigma_s = \Sigma_s' = \{a, b\}$ and $\Sigma_e = \Sigma_e' = \{f\}$.
- Let σ be the *SEL*-substitution defined by $L_a = \{a^1 f\}$, $L_b = \{b^0\}$ and $L_f = \{f\}$.
- $L = \{a^1 f b^0\}$ is a *SEL*.
- $\quad \sigma^{-1}(L) = \{a^1b^0\} \text{ is not a } SEL.$

Theorem

The class SEL is closed under inverse SEL-substitution acting only on events: $L_a = \{a\} \times \overline{\mathbb{T}}$ for all $a \in \Sigma_s$.

Outline

Introduction

Signal-Event (Timed) Words and Automata

Signal-Event (Timed) Substitutions

Recognizable substitutions

Intersection

Conclusion

Theorem

Classes SEL and SEL_{ε} are closed under intersection

- Easy for the class SEL (no arepsilon-transitions) or for time-event languagess
- More difficult with signals and ε -transitions due to signal stuttering and unobservability of τ^0
- In LICS'97, Asarin, Caspi and Maler do not handle signal stuttering and consider finite runs only
- In JACM'02, Asarin, Caspi and Maler deal with the intersection of time-event automata only.
- In STACS'00, Dima gives a construction to remove stuttering for automata with a single clock.
- In IPL'04 Durand-Lose gives a construction for intersection taking stuttering into account but restricted to finite runs and without zero-duration signals. His approach does not extend to infinite runs since it would introduce Zeno runs leading to transfinite problems.

Theorem

Classes SEL and SEL_{ε} are closed under intersection

- Easy for the class SEL (no ε -transitions) or for time-event languages.
- More difficult with signals and ε -transitions due to signal stuttering and unobservability of τ^0 .
- In LICS'97, Asarin, Caspi and Maler do not handle signal stuttering and consider finite runs only.
 In JACM'02, Asarin, Caspi and Maler deal with the intersection of time-even automata only.
- In STACS'00, Dima gives a construction to remove stuttering for automata with a single clock.
- ► In IPL'04 Durand-Lose gives a construction for intersection taking stuttering into account but restricted to finite runs and without zero-duration signals. His approach does not extend to infinite runs since it would introduce Zeno runs leading to transfinite problems.

Theorem

Classes SEL and SEL_{ε} are closed under intersection

- Easy for the class SEL (no ε -transitions) or for time-event languages.
- More difficult with signals and ε -transitions due to signal stuttering and unobservability of τ^0 .
- In LICS'97, Asarin, Caspi and Maler do not handle signal stuttering and consider finite runs only.
 In JACM'02, Asarin, Caspi and Maler deal with the intersection of time-even automata only.
- ▶ In STACS'00, Dima gives a construction to remove stuttering for automata with a single clock.
- ► In IPL'04 Durand-Lose gives a construction for intersection taking stuttering into account but restricted to finite runs and without zero-duration signals. His approach does not extend to infinite runs since it would introduce Zeno runs leading to transfinite problems.

Theorem

Classes SEL and SEL_{ε} are closed under intersection

- Easy for the class SEL (no ε -transitions) or for time-event languages.
- More difficult with signals and ε -transitions due to signal stuttering and unobservability of τ^0 .
- ► In LICS'97, Asarin, Caspi and Maler do not handle signal stuttering and consider finite runs only.
 In JACM'02, Asarin, Caspi and Maler deal with the intersection of time-event automata only.
- In STACS'00, Dima gives a construction to remove stuttering for automata with a single clock.
- ► In IPL'04 Durand-Lose gives a construction for intersection taking stuttering into account but restricted to finite runs and without zero-duration signals. His approach does not extend to infinite runs since it would introduce Zeno runs leading to transfinite problems.

Theorem

Classes SEL and SEL_{ε} are closed under intersection

- Easy for the class SEL (no ε -transitions) or for time-event languages.
- More difficult with signals and ε -transitions due to signal stuttering and unobservability of τ^0 .
- ► In LICS'97, Asarin, Caspi and Maler do not handle signal stuttering and consider finite runs only.
 In JACM'02, Asarin, Caspi and Maler deal with the intersection of time-event automata only.
- ▶ In STACS'00, Dima gives a construction to remove stuttering for automata with a single clock.
- ► In IPL'04 Durand-Lose gives a construction for intersection taking stuttering into account but restricted to finite runs and without zero-duration signals. His approach does not extend to infinite runs since it would introduce Zeno runs leading to transfinite problems.

Theorem

Classes SEL and SEL_{ε} are closed under intersection

- Easy for the class SEL (no ε -transitions) or for time-event languages.
- More difficult with signals and ε -transitions due to signal stuttering and unobservability of τ^0 .
- ► In LICS'97, Asarin, Caspi and Maler do not handle signal stuttering and consider finite runs only.
 In JACM'02, Asarin, Caspi and Maler deal with the intersection of time-event automata only.
- ▶ In STACS'00, Dima gives a construction to remove stuttering for automata with a single clock.
- ▶ In IPL'04 Durand-Lose gives a construction for intersection taking stuttering into account but restricted to finite runs and without zero-duration signals. His approach does not extend to infinite runs since it would introduce Zeno runs leading to transfinite problems.

Theorem

 SEL_{ε} is closed under intersection

Problem 1 : stuttering with unobservability of au^0

$$\mathcal{B}_1$$
: $\begin{array}{c|c} p_1 & \varepsilon & p_2 & \varepsilon \\ \hline a & \varepsilon & \tau \\ \hline \end{array}$

$$\mathcal{B}_2: \qquad \begin{array}{c|c} & \varepsilon & q_2 \\ \hline \tau & \varepsilon & a \\ \end{array} \qquad \begin{array}{c|c} & q_3 \\ \hline b \\ \end{array} \qquad \begin{array}{c|c} & \bullet \\ \hline \end{array}$$

$$p_1 \xrightarrow{1} p_1 \xrightarrow{\varepsilon} p_2 \xrightarrow{2} p_2 \xrightarrow{\varepsilon} p_3 \xrightarrow{0} p_3 \xrightarrow{\varepsilon} p_2 \xrightarrow{1} p_2 \xrightarrow{\varepsilon} p_3 \xrightarrow{0} p_3 \xrightarrow{\varepsilon} p_4$$

$$q_1 \xrightarrow{0} q_1 \xrightarrow{\varepsilon} q_2 \xrightarrow{2} q_2 \xrightarrow{\varepsilon} q_1 \xrightarrow{0} q_1 \xrightarrow{\varepsilon} q_2 \xrightarrow{2} q_2 \xrightarrow{\varepsilon} q_3$$

Theorem

 SEL_{ε} is closed under intersection

Problem 1 : stuttering with unobservability of au^0

$$\mathcal{B}_1$$
: $\begin{array}{c|c} & & \varepsilon & p_2 & \varepsilon \\ \hline a & & \varepsilon & \tau \\ \hline \end{array}$

$$\mathcal{B}_2: \qquad \begin{array}{c|c} & & \varepsilon & q_2 \\ \hline \tau & & \varepsilon & a \\ \end{array} \qquad \begin{array}{c|c} & & & & & \\ \hline q_3 & & & & \\ \hline b & & & & \\ \end{array}$$

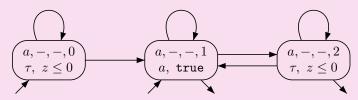
$$p_1 \xrightarrow{1} p_1 \xrightarrow{\varepsilon} p_2 \xrightarrow{2} p_2 \xrightarrow{\varepsilon} p_3 \xrightarrow{0} p_3 \xrightarrow{\varepsilon} p_2 \xrightarrow{1} p_2 \xrightarrow{\varepsilon} p_3 \xrightarrow{0} p_3 \xrightarrow{\varepsilon} p_4$$

$$q_1 \xrightarrow{0} q_1 \xrightarrow{\varepsilon} q_2 \xrightarrow{2} q_2 \xrightarrow{\varepsilon} q_1 \xrightarrow{0} q_1 \xrightarrow{\varepsilon} q_2 \xrightarrow{2} q_2 \xrightarrow{\varepsilon} q_3$$

Stuttering with unobservability of au^0

Building maximal a-blocks

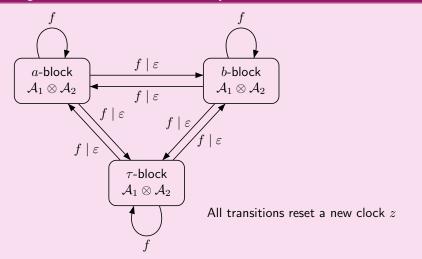
States : (a, p, q, i), where i is the synchronization mode.



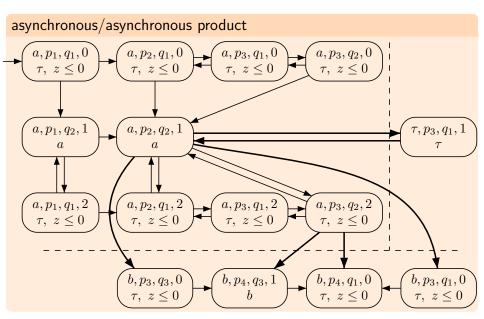
with $a \neq \tau$ and asynchronous ε -transitions that reset clock z.

Stuttering with unobservability of au^0

Connecting modules for a-blocks with synchronous transitions



Solution to problem 1



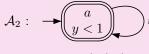
Theorem

 SEL_{ε} is closed under intersection

Problem 2: finite and infinite runs

$$\mathcal{A}_1: - \underbrace{a} \underbrace{x \geq 1, \ \varepsilon} \underbrace{a} \underbrace{a}$$

$$\mathcal{L}(\mathcal{A}_1) \cap \mathcal{L}(\mathcal{A}_2) = \{a^1\}$$



Theorem: a normal form for SE-automata

Let $\mathcal A$ be a SE-automaton. We can effectively construct an equivalent SE-automaton $\mathcal A'$ such that:

- 1. no infinite run of \mathcal{A}' accepts a finite word with finite duration, and
- 2. no finite run of \mathcal{A}' accepts a word with infinite duration.

- The construction removes Zeno runs accepting finite runs with finite duration: replacing for instance an infinite ε -loop producing $a^{\frac{1}{2}}$, $a^{\frac{1}{4}}$, $a^{\frac{1}{8}}$... by a finite run producing a^1 .
- **Easy** if Zeno runs or ε -transitions are forbidden.
- ► The result is interesting in itself to obtain a more realistic implementation of an arbitrary SE-automaton.

Theorem: a normal form for SE-automata

Let $\mathcal A$ be a SE-automaton. We can effectively construct an equivalent SE-automaton $\mathcal A'$ such that:

- 1. no infinite run of \mathcal{A}' accepts a finite word with finite duration, and
- 2. no finite run of \mathcal{A}' accepts a word with infinite duration.

- The construction removes Zeno runs accepting finite runs with finite duration: replacing for instance an infinite ε -loop producing $a^{\frac{1}{2}}$, $a^{\frac{1}{4}}$, $a^{\frac{1}{8}}$... by a finite run producing a^1 .
- **Easy** if Zeno runs or ε -transitions are forbidden.
- ► The result is interesting in itself to obtain a more realistic implementation of an arbitrary SE-automaton.

Theorem: a normal form for SE-automata

Let $\mathcal A$ be a SE-automaton. We can effectively construct an equivalent SE-automaton $\mathcal A'$ such that:

- 1. no infinite run of \mathcal{A}' accepts a finite word with finite duration, and
- 2. no finite run of \mathcal{A}' accepts a word with infinite duration.

- The construction removes Zeno runs accepting finite runs with finite duration: replacing for instance an infinite ε -loop producing $a^{\frac{1}{2}}$, $a^{\frac{1}{4}}$, $a^{\frac{1}{8}}$... by a finite run producing a^1 .
- Easy if Zeno runs or ε -transitions are forbidden.
- ► The result is interesting in itself to obtain a more realistic implementation of an arbitrary SE-automaton.

Theorem: a normal form for SE-automata

Let $\mathcal A$ be a SE-automaton. We can effectively construct an equivalent SE-automaton $\mathcal A'$ such that:

- 1. no infinite run of \mathcal{A}' accepts a finite word with finite duration, and
- 2. no finite run of \mathcal{A}' accepts a word with infinite duration.

- The construction removes Zeno runs accepting finite runs with finite duration: replacing for instance an infinite ε -loop producing $a^{\frac{1}{2}}$, $a^{\frac{1}{4}}$, $a^{\frac{1}{8}}$... by a finite run producing a^1 .
- Easy if Zeno runs or ε -transitions are forbidden.
- ► The result is interesting in itself to obtain a more realistic implementation of an arbitrary SE-automaton.

Outline

Introduction

Signal-Event (Timed) Words and Automata

Signal-Event (Timed) Substitutions

Recognizable substitutions

Intersection

6 Conclusion

Conclusion

- ► Signal-event words are the natural objects for studying refinements, abstractions and other problems.
- Extending classical results to SE-automata is not always easy due to ε -transitions, signal stuttering, unobservability of τ^0 , Zeno runs, ...
- We have proved closure properties (refinement, abstraction) for the general case of SE-automata.
- ► We have proved closure under intersection for the general case of languages accepted by SE-automata.