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Refinements and Abstractions

Abstract level Concrete level

refinement
−−−−−−→

ConnectToServer Details used to establish the connection
abstraction
←−−−−−−

Formalisation of refinement
Let σ : A → P(B∗) be a substitution.

Abstract level Concrete level

Action a ∈ A
refinement
−−−−−−→ σ(a) ⊆ B∗

Behavior w = abaac ∈ A∗ refinement
−−−−−−→ σ(w) = σ(a)σ(b)σ(a)σ(a)σ(c) ⊆ B∗

Language K ⊆ A∗ refinement
−−−−−−→ σ(K) =

⋃

w∈K

σ(w) ⊆ B∗
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Refinements and Abstractions

Abstract level Concrete level

refinement
−−−−−−→

ConnectToServer Details used to establish the connection
abstraction
←−−−−−−

Formalisation of abstraction
Let σ : A → P(B∗) be a substitution.

Abstract level Concrete level

σ−1(L) = {w ∈ A∗ | σ(w) ∩ L &= ∅}
abstraction
←−−−−−− L ⊆ B∗



5/38

Adding time to the picture

Timed refinement
refinement
−−−−−−→

Abstract level Concrete level
abstraction
←−−−−−−

ConnectToServer2 Req · Wait2 · Ack

ConnectToServer4.5 Req · Wait1 · Nack · Wait0.5 · Retry · Wait3 · Ack

An abstract action a with duration d should be replaced by a concrete execution
(word) w with the same duration ‖w‖ = d.
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Signal-Event (Timed) Words

Asarin - Caspi - Maler 2002
! Σe finite set of (instantaneous) events

! Σs finite set of signals

! T time domain, T = T ∪ {∞}

! Σ = Σe ∪ (Σs × T)

! Notation: ad for (a, d) ∈ Σs × T

! Σ∞ set of signal-event (timed) words
Example: a3ffgb1.5a2f

! Signal stuttering: a2a3 ≈ a5, a∞ = a2a2a2 · · · ,
a1 = a

1

2 + a
1

4 + a
1

8 + . . .
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Signal-Event (Timed) Words

Unobservable signal τ

! Useful to hide signals:

Signal-event word
hiding signals
−−−−−−−→ Classical time-event words

a3fb1gfa2f τ3fτ1gfτ2f = (f, 3)(g, 4)(f, 4)(f, 6)

! τ0 ≈ ε : an hidden signal with zero duration is not observable.
a0 &≈ ε : a signal, even of zero duration, is observable.
τ2 &≈ ε : we still observe a time delay but the actual signal has been hidden.
Example : a2τ0a1fτ0gτ1fb2b2b2 · · · ≈ a3fgτ1fb∞

! Signal-event words SE (Σ) = Σ∞/ ≈
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Signal-Event (Timed) automata
! States emit signals

! Transitions emit (instantaneous) events

Idle
Wait
x ≤ 2

Fail
x ≤ 1

TimeOut
x ≤ 0

Connected
Req, {x} Ack

Nack, {x}

x = 2, ε, {x}

Req, {x}

Req, {x}

! Run : Idle3 · Req · Wait2 · TimeOut0 · Req · Wait1 · Ack · Connected8

! SEL : languages accepted by SE -automata without ε-transitions.

! SELε : languages accepted by SE -automata with ε-transitions.
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Signal-Event (Timed) Substitutions

Definition

! Abstract alphabet : Σe and Σs

! Concrete alphabet : Σ′
e and Σ′

s

! Substitution σ from SE (Σ) to SE (Σ′) defined by:

a ∈ Σe : La ⊆ (Σ′
e ∪ Σ′

s × {0})∗

σ(a) = La

a ∈ Σs \ {τ} : La ⊆ SE (Σ′) not containing Zeno words.

σ(ad) = {w ∈ La | ‖w‖ = d}

a = τ : Lτ = {τ}× T

σ(τd) = {τd}

Remark
If we allow Zeno words in La then we may get transfinite words as refinements.
Example: if b1fb1/2fb1/4f · · · ∈ La and Lg = {g} then σ(a2g) is transfinite.
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Signal-Event (Timed) Substitutions

Remark

In general, SE-substitutions are not morphisms

Example: if La = {b2} then σ(a1) = ∅ and σ(a2) &= σ(a1)σ(a1)

Substitutions are applied to SE-words in normal form:

σ(a2τ0a1fτ0gτ1fb2b2b2 · · · ) = σ(a3)σ(f)σ(g)τ1σ(f)σ(b∞)

Proposition

Let σ be a timed substitution, given by a family (La)a∈Σe∪Σs
.

Then, σ is a morphism if and only if for each signal a ∈ Σs we have

1. La is closed under concatenation:
for all u, v ∈ La with ‖u‖ < ∞, we have uv ∈ La,

2. La is closed under decomposition:
for each v ∈ La with ‖v‖ = d, for all d1 ∈ T, d2 ∈ T such that d = d1 + d2,
there exist vi ∈ La with ‖vi‖ = di such that v = v1v2.
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Recognizable substitutions

Definition
Let σ be a substitution defined by (La)a∈Σe∪Σs

. Then,

! σ is a SEL-substitution if each La is in SEL

! σ is a SELε-substitution if each La is in SELε
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Closure under SEL-substitutions
SEL is not closed under SEL-substitutions

! L = {a0f} is recognized by a
τ

x ≤ 0
f

! La = {b}× T is recognized by b

! Lf = {c0g} is recognized by c
τ

x ≤ 0
g

! σ(L) = {b0c0g} cannot be accepted without ε-transitions.

Theorem
The class SEL is closed under SEL-substitutions satisfying for each f ∈ Σe

Lf ⊆ Σ′

e((Σ
′

s × {0})Σ′

e)
∗

i.e., each word in Lf must start and end with an instantaneous event.
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Closure under SEL-substitutions
Theorem
The class SEL is closed under SEL-substitutions satisfying for each f ∈ Σe

Lf ⊆ Σ′

e((Σ
′

s × {0})Σ′

e)
∗

i.e., each word in Lf must start and end with an instantaneous event.

Handling events is easy for SEL-substitutions.

g, f, α

τ τ
b

c

a

b

Lf

g, b, {xf}
g, c, {xf}

xf = 0, a, α
xf = 0, b, α
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Closure under SEL-substitutions
Theorem
The class SEL is closed under SEL-substitutions satisfying for each f ∈ Σe

Lf ⊆ Σ′

e((Σ
′

s × {0})Σ′

e)
∗

i.e., each word in Lf must start and end with an instantaneous event.

Handling signals is easy for SEL-substitutions.

a
x ≤ 5

g, f, α
b

g′, f ′, α′

La

x ≤ 5

g, f, α ∪ {Xa}

g, f, α ∪ {Xa}

Lb

g′, f ′, α′ ∪ {Xb}

g′, f ′, α′ ∪ {Xb}
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Closure under SEL-substitutions
Theorem
The class SEL is closed under SEL-substitutions satisfying for each f ∈ Σe

Lf ⊆ Σ′

e((Σ
′

s × {0})Σ′

e)
∗

i.e., each word in Lf must start and end with an instantaneous event.

Handling signals is easy for SEL-substitutions.

a
x ≤ 5 b

g′, f ′, α′

La

x ≤ 5

Lb

g′, f ′, α′ ∪ {Xb}

g′, f ′, α′ ∪ {Xb}
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Closure under SEL-substitutions
Theorem
The class SEL is closed under SEL-substitutions satisfying for each f ∈ Σe

Lf ⊆ Σ′

e((Σ
′

s × {0})Σ′

e)
∗

i.e., each word in Lf must start and end with an instantaneous event.

Handling signals is easy for SEL-substitutions.

a
x ≤ 5

g, f, α

La

x ≤ 5

g, f, α ∪ {Xa}

g, f, α ∪ {Xa}
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Closure under SEL-substitutions
Theorem
The class SEL is closed under SEL-substitutions satisfying for each f ∈ Σe

Lf ⊆ Σ′

e((Σ
′

s × {0})Σ′

e)
∗

i.e., each word in Lf must start and end with an instantaneous event.

Handling signals is easy for SEL-substitutions.

a
x ≤ 5

g, f, α
b

g′, f ′, α′

La

x ≤ 5

g, f, α ∪ {Xa}

g, f, α ∪ {Xa}

Lb

g′, f ′, α′ ∪ {Xb}

g′, f ′, α′ ∪ {Xb}
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Closure under SELε-substitutions

Handling signals for SELε-substitutions is harder.
Remember that substitutions are applied to SE-words in normal form.

p0

b
p1

a
p2

a
p3

τ
p4

b

f, {x} ε 0 < x ≤ 1, ε

ε, {x}

ε

f, {x}

A possible run gives : fa0.3a0.6τ0a0.5τ1a0.6τ0a0.5τ0b3 ≈ fa1.4τ1a1.1b3

We cannot simply replace each a-labelled state by a copy of Aa.
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Closure under substitutions

Proof technique inspired from the word case
! Let σ : A → P(B∗) be a rational substitution

! Let ΠA : (A / B)∗ → A∗ and ΠB : (A / B)∗ → B∗ be the projections

! Let M =

(

⋃

a∈A

aσ(a)

)∗

⊆ (A / B)∗ is rational.

! Then, σ(L) = ΠB(Π−1
A (L) ∩ M).

L σ(L)

Π−1
A

∩ M

ΠB

σ

! This proof technique also applies to inverse substitutions:
σ−1(L) = ΠA(Π−1

B (L) ∩ M).
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Closure under SELε-substitutions

Theorem
The class SELε is closed under SELε-substitutions and inverse SELε-substitutions.

Proof: Signal-event words

! Let Σ̂e = Σe / Σ′
e and Σ̂s = Σs × Σ′

s.

! Let π1 : SE (Σ̂) → SE (Σ) and π2 : SE (Σ̂) → SE (Σ′) be the natural
projections defined by

π1(f) = f and π2(f) = ε if f ∈ Σe,

π1(f) = ε and π2(f) = f if f ∈ Σ′

e,

π1((a, b)d) = ad and π2((a, b)d) = bd if (a, b)d
∈ Σs × Σ′

s × T.

! We will show that for a suitable SELε-language M we have

σ(L) = π2(π
−1
1 (L) ∩ M)

σ−1(L) = π1(π
−1
2 (L) ∩ M)

! The class SELε is closed under projection, inverse projection and intersection.
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Closure under SELε-substitutions

Lemma
If L is in the class SELε, then so is π1(L).

Proof

a, b
I

g, f , α g′, f ′, α′

a
I

g, f , α g′, ε, α′
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Closure under SELε-substitutions

Lemma

If L is in the class SELε, then so is π−1
1 (L).

Proof

a
I

g1, f1, α1 g2, f2, α2

τ
I ∧ z ≤ 0

g1, f1, α1 g2, f2, α2

true, f ′, ∅

a, b
I

true, ε, ∅ true, ε, {z}
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Closure under SELε-substitutions

Lemma Words: M =
(
⋃

a∈A
aσ(a)

)

∗

If M ⊆ SE (Σ̂) satisfies

1. π2(w) ∈ σ(π1(w)) for each w ∈ M ,

2. ∀u ∈ SE (Σ), ∀v ∈ σ(u), ∃w ∈ M such that u = π1(w) and v = π2(w).

Then,

! for L ⊆ SE (Σ), we have σ(L) = π2(π
−1
1 (L) ∩ M),

! for L ⊆ SE (Σ′), we have σ−1(L) = π1(π
−1
2 (L) ∩ M).

Proof
! σ(L) ⊆ π2(π

−1
1 (L) ∩ M):

Let v ∈ σ(L) and let u ∈ L with v ∈ σ(u).
From 2, ∃w ∈ M with π1(w) = u and π2(w) = v.
Then, w ∈ π−1

1 (L) ∩ M and v ∈ π2(π
−1
1 (L) ∩ M).

! π2(π
−1
1 (L) ∩ M) ⊆ σ(L):

Let v ∈ π2(π
−1
1 (L) ∩ M) and let w ∈ π−1

1 (L) ∩ M with π2(w) = v.
We have u = π1(w) ∈ L and from 1 we get v ∈ σ(u) ⊆ σ(L).
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Closure under SELε-substitutions

Definition of M Words: M =
(
⋃

a∈A
aσ(a)

)∗

For f ∈ Σe and a ∈ Σs \ {τ}, we define

Mf = {w ∈ SE (Σ̂) | w = (τ, b0)
0f1(τ, b1)

0f2 · · · (τ, bn)0

with b0
0f1b

0
1f2 · · · b

0
n ∈ σ(f)} · f

Ma = {w ∈ SE (Σ̂) | w = (a, b0)
d0f1(a, b1)

d1f2 · · ·

with bd0

0 f1b
d1

1 f2 · · · ∈ σ(ad0+d1+···)}

Mτ = {(τ, τ)d | d ∈ T \ {0}}

Note that each set Mf and Ma satisfies properties 1 and 2.

M = {w1w2 · · · | ∃a1, a2, . . . ∈ Σe∪Σs with wi ∈ Mai
and ai ∈ Σs ⇒ ai+1 &= ai}.

Lemma
1. π2(w) ∈ σ(π1(w)) for each w ∈ M ,

2. ∀u ∈ SE (Σ), ∀v ∈ σ(u), ∃w ∈ M such that u = π1(w) and v = π2(w),

3. the language M is in the class SELε.
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Closure under inverse SEL-substitutions

The class SEL is not closed under arbitrary inverse SEL-substitutions
! Let Σs = Σ′

s = {a, b} and Σe = Σ′
e = {f}.

! Let σ be the SEL-substitution defined by
La = {a1f}, Lb = {b0} and Lf = {f}.

! L = {a1fb0} is a SEL.

! σ−1(L) = {a1b0} is not a SEL.

Theorem
The class SEL is closed under inverse SEL-substitution acting only on events:
La = {a}× T for all a ∈ Σs.
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Closure under intersection
Theorem
Classes SEL and SELε are closed under intersection

Remarks
! Easy for the class SEL (no ε-transitions) or for time-event languages.

! More difficult with signals and ε-transitions due to signal stuttering and
unobservability of τ0.

! In LICS’97, Asarin, Caspi and Maler do not handle signal stuttering and
consider finite runs only.
In JACM’02, Asarin, Caspi and Maler deal with the intersection of time-event
automata only.

! In STACS’00, Dima gives a construction to remove stuttering for automata
with a single clock.

! In IPL’04 Durand-Lose gives a construction for intersection taking stuttering
into account but restricted to finite runs and without zero-duration signals.
His approach does not extend to infinite runs since it would introduce Zeno
runs leading to transfinite problems.
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Closure under intersection

Theorem
SELε is closed under intersection

Problem 1 : stuttering with unobservability of τ 0

B1: p1

a
p2

a
p3

τ
p4

b
ε

ε

ε

ε

B2: q1

τ
q2

a
q3

b

ε

ε

ε

p1
1
−→ p1

ε
−→ p2

2
−→ p2

ε
−→ p3

0
−→ p3

ε
−→ p2

1
−→ p2

ε
−→ p3

0
−→ p3

ε
−→ p4

q1
0
−→ q1

ε
−→ q2

2
−→ q2

ε
−→ q1

0
−→ q1

ε
−→ q2

2
−→ q2

ε
−→ q3
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Stuttering with unobservability of τ 0

Building maximal a-blocks

States : (a, p, q, i), where i is the synchronization mode.

a,−,−, 1
a, true

a,−,−, 0
τ, z ≤ 0

a,−,−, 2
τ, z ≤ 0

with a &= τ and asynchronous ε-transitions that reset clock z.
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Stuttering with unobservability of τ 0

Connecting modules for a-blocks with synchronous transitions

a-block
A1 ⊗A2

b-block
A1 ⊗A2

τ -block
A1 ⊗A2

f f

f

f | ε

f | ε
f | ε

f | ε
f | ε

f | ε

All transitions reset a new clock z
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Solution to problem 1

asynchronous/asynchronous product

a, p1, q1, 0
τ, z ≤ 0

a, p2, q1, 0
τ, z ≤ 0

a, p3, q1, 0
τ, z ≤ 0

a, p3, q2, 0
τ, z ≤ 0

a, p1, q2, 1
a

a, p2, q2, 1
a

a, p1, q1, 2
τ, z ≤ 0

a, p2, q1, 2
τ, z ≤ 0

a, p3, q1, 2
τ, z ≤ 0

a, p3, q2, 2
τ, z ≤ 0

b, p3, q3, 0
τ, z ≤ 0

b, p4, q3, 1
b

b, p4, q1, 0
τ, z ≤ 0

b, p3, q1, 0
τ, z ≤ 0

τ, p3, q1, 1
τ
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Closure under intersection

Theorem
SELε is closed under intersection

Problem 2 : finite and infinite runs

A1 : a a
x ≥ 1, ε

A2 :
a

y < 1
ε

L(A1) ∩ L(A2) = {a1} a1 ≈ a
1

2 a
1

4 a
1

8 . . .
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Finite and infinite runs

Theorem : a normal form for SE-automata
Let A be a SE-automaton. We can effectively construct an equivalent SE-automaton
A′ such that:

1. no infinite run of A′ accepts a finite word with finite duration, and

2. no finite run of A′ accepts a word with infinite duration.

Remarks
! The construction removes Zeno runs accepting finite runs with finite duration:

replacing for instance an infinite ε-loop producing a
1

2 , a
1

4 , a
1

8 . . . by a finite
run producing a1.

! Easy if Zeno runs or ε-transitions are forbidden.

! The result is interesting in itself to obtain a more realistic implementation of
an arbitrary SE-automaton.
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Conclusion

! Signal-event words are the natural objects for studying refinements,
abstractions and other problems.

! Extending classical results to SE-automata is not always easy due to
ε-transitions, signal stuttering, unobservability of τ0, Zeno runs, . . .

! We have proved closure properties (refinement, abstraction) for the general
case of SE-automata.

! We have proved closure under intersection for the general case of languages
accepted by SE-automata.


