Refinements and Abstractions of Signal-Event (Timed) Languages

Paul Gastin

LSV ENS de Cachan & CNRS Paul.Gastin@lsv.ens-cachan.fr

Joint work with Béatrice Bérard and Antoine Petit

FSTTCS Workshop, Dec. 12th, 2006

< □ > < 酉 > < 壹 > < 亘 > < 亘 > Э ♀ ♀ 1/38

Refinements and Abstractions

Abstract level Concrete level refinement Connect To Server Details used to establish the connection abstraction Formalisation of refinement Let $\sigma : A \to \mathcal{P}(B^*)$ be a substitution. Abstract level Concrete level refinement Action $a \in A$ $\sigma(a) \subset B^*$ refinement $\sigma(w) = \sigma(a)\sigma(b)\sigma(a)\sigma(a)\sigma(c) \subseteq B^*$ Behavior $w = abaac \in A^*$ refinement $\sigma(K) = \bigcup \ \sigma(w) \subseteq B^*$ Language $K \subseteq A^*$ $w \in K$

Outline

1 Introduction

Signal-Event (Timed) Words and Automata

Signal-Event (Timed) Substitutions

Recognizable substitutions

Intersection

Conclusion

<□><酉><酉><酉><≡><≡><≡> = 少へで 2/38

Refinements and Abstractions

Adding time to the picture

Timed refinement	refinement	
Abstract level	abstraction	Concrete level
$ConnectToServer^2$		$Req\cdotWait^2\cdotAck$
${\sf ConnectToServer}^{4.5}$		$Req \cdot Wait^1 \cdot Nack \cdot Wait^{0.5} \cdot Retry \cdot Wait^3 \cdot Ack$
An abstract action a with duration d should be replaced by a concrete execution (word) w with the same duration $ w = d$.		

Signal-Event (Timed) Words

Asarin - Caspi - Maler 2002		
Σ_e finite set of (instantaneous) events		
Σ_s finite set of signals		
\mathbb{T} time domain, $\overline{\mathbb{T}}=\mathbb{T}\cup\{\infty\}$		
$\Sigma = \Sigma_e \cup (\Sigma_s \times \mathbb{T})$		
Notation: a^d for $(a,d) \in \Sigma_s imes \overline{\mathbb{T}}$		
Σ^{∞} set of signal-event (timed) words Example: $a^3 ffg b^{1.5} a^2 f$		
Signal stuttering: $a^2a^3 \approx a^5$, $a^\infty = a^2a^2a^2\cdots$, $a^1 = a^{\frac{1}{2}} + a^{\frac{1}{4}} + a^{\frac{1}{8}} + \dots$		

Outline Introduction Signal-Event (Timed) Words and Automata Signal-Event (Timed) Substitutions **Recognizable substitutions** Intersection Conclusion □→ < □→ < □→ < □→ < □→ < □→ < □ </p> Signal-Event (Timed) Words Unobservable signal auUseful to hide signals: hiding signals Signal-event word Classical time-event words $a^3 f b^1 g f a^2 f$ $\tau^3 f \tau^1 g f \tau^2 f = (f,3)(g,4)(f,4)(f,6)$ $\tau^0\approx\varepsilon$: an hidden signal with zero duration is not observable. $a^0 \not\approx \varepsilon$: a signal, even of zero duration, is observable. $\tau^2 \not\approx \varepsilon$: we still observe a time delay but the actual signal has been hidden. Example : $a^2 \tau^0 a^1 f \tau^0 q \tau^1 f b^2 b^2 b^2 \cdots \approx a^3 f q \tau^1 f b^\infty$ Signal-event words $SE(\Sigma) = \Sigma^{\infty} / \approx$

Signal-Event (Timed) automata

- States emit signals
- Transitions emit (instantaneous) events

- $\blacktriangleright \ \mathsf{Run} : \ \mathsf{Idle}^3 \cdot \mathsf{Req} \cdot \mathsf{Wait}^2 \cdot \mathsf{TimeOut}^0 \cdot \mathsf{Req} \cdot \mathsf{Wait}^1 \cdot \mathsf{Ack} \cdot \mathsf{Connected}^8$
- ▶ SEL : languages accepted by SE-automata without ε -transitions.
- ▶ SEL_{ε} : languages accepted by SE-automata with ε -transitions.

<**□ > < 酉 > < ≣ > < ≣ >** ● ■ ● ● ● ● ● ● ● ● ● ● ● ● ● /38

Signal-Event (Timed) Substitutions

Definition

Abstract alphabet : Σ_e and Σ_s Concrete alphabet : Σ'_e and Σ'_s Substitution σ from $SE(\Sigma)$ to $SE(\Sigma')$ defined by: $a \in \Sigma_e$: $L_a \subseteq (\Sigma'_e \cup \Sigma'_s \times \{0\})^*$ $\sigma(a) = L_a$ $a \in \Sigma_s \setminus \{\tau\}$: $L_a \subseteq SE(\Sigma')$ not containing Zeno words. $\sigma(a^d) = \{w \in L_a \mid ||w|| = d\}$ $a = \tau$: $L_\tau = \{\tau\} \times \overline{\mathbb{T}}$ $\sigma(\tau^d) = \{\tau^d\}$

Remark

If we allow Zeno words in L_a then we may get transfinite words as refinements. Example: if $b^1 f b^{1/2} f b^{1/4} f \cdots \in L_a$ and $L_g = \{g\}$ then $\sigma(a^2g)$ is transfinite.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Outline

Introduction

Signal-Event (Timed) Words and Automata

3 Signal-Event (Timed) Substitutions

Recognizable substitutions

Intersection

Conclusion

Signal-Event (Timed) Substitutions

Remark

In general, SE-substitutions are not morphisms Example: if $L_a = \{b^2\}$ then $\sigma(a^1) = \emptyset$ and $\sigma(a^2) \neq \sigma(a^1)\sigma(a^1)$ Substitutions are applied to SE-words in normal form: $\sigma(a^2\tau^0a^1f\tau^0g\tau^1fb^2b^2b^2\cdots) = \sigma(a^3)\sigma(f)\sigma(g)\tau^1\sigma(f)\sigma(b^{\infty})$

Proposition

Let σ be a timed substitution, given by a family $(L_a)_{a \in \Sigma_e \cup \Sigma_s}$. Then, σ is a morphism if and only if for each signal $a \in \Sigma_s$ we have

1. L_a is closed under concatenation: for all $u, v \in L_a$ with $||u|| < \infty$, we have $uv \in L_a$,

2. L_a is closed under decomposition: for each $v \in L_a$ with ||v|| = d, for all $d_1 \in \mathbb{T}$, $d_2 \in \overline{\mathbb{T}}$ such that $d = d_1 + d_2$, there exist $v_i \in L_a$ with $||v_i|| = d_i$ such that $v = v_1 v_2$.

Outline **Recognizable substitutions** Introduction Signal-Event (Timed) Words and Automata Definition Signal-Event (Timed) Substitutions Let σ be a substitution defined by $(L_a)_{a \in \Sigma_e \cup \Sigma_s}$. Then, σ is a *SEL*-substitution if each L_a is in *SEL* σ is a SEL_{ε} -substitution if each L_a is in SEL_{ε} A Recognizable substitutions Intersection Conclusion □ > < @ > < E > < E > E - 9 Q @ 13/38 < ≣ > < ≣ > ≣ • ସ< € 14/38 **Closure under** *SEL*-substitutions **Closure under** *SEL*-substitutions SEL is not closed under SEL-substitutions Theorem The class *SEL* is closed under *SEL*-substitutions satisfying for each $f \in \Sigma_e$ $L = \{a^0 f\}$ is recognized by $\rightarrow a$ $L_f \subseteq \Sigma'_e((\Sigma'_e \times \{0\})\Sigma'_e)^*$ i.e., each word in L_f must start and end with an instantaneous event. $L_a = \{b\} \times \overline{\mathbb{T}} \text{ is recognized by } \longrightarrow b$ Handling events is easy for *SEL*-substitutions. $L_f = \{c^0g\}$ is recognized by \rightarrow g, f, α $\sigma(L) = \{b^0 c^0 g\}$ cannot be accepted without ε -transitions. $x_f = 0, a, \alpha$ $g, b, \{x_f\}$ $q, c, \{x_f\}$ Theorem $t = 0, b, \alpha$ The class *SEL* is closed under *SEL*-substitutions satisfying for each $f \in \Sigma_e$ $L_f \subseteq \Sigma'_e((\Sigma'_e \times \{0\})\Sigma'_e)^*$ L_f i.e., each word in L_f must start and end with an instantaneous event.

(ロ) (聞) (言) (言) 言 のへで 15/38

□ > < @ > < 言 > < 言 > うくで 16/38

Closure under *SEL*-substitutions

Theorem

The class $S\!E\!L$ is closed under $S\!E\!L$ -substitutions satisfying for each $f\in \Sigma_e$

 $L_f \subseteq \Sigma'_e((\Sigma'_s \times \{0\})\Sigma'_e)^*$

i.e., each word in L_f must start and end with an instantaneous event.

Handling signals is easy for *SEL*-substitutions.

Closure under *SEL*-substitutions

Theorem

The class $S\!E\!L$ is closed under $S\!E\!L$ -substitutions satisfying for each $f\in \Sigma_e$

 $L_f \subseteq \Sigma'_e((\Sigma'_s \times \{0\})\Sigma'_e)^*$

i.e., each word in L_f must start and end with an instantaneous event.

Handling signals is easy for *SEL*-substitutions.

□ > < @ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 >

Closure under *SEL*-substitutions

Theorem

The class $S\!E\!L$ is closed under $S\!E\!L$ -substitutions satisfying for each $f\in \Sigma_e$

 $L_f \subseteq \Sigma'_e((\Sigma'_s \times \{0\})\Sigma'_e)^*$

i.e., each word in ${\cal L}_f$ must start and end with an instantaneous event.

Handling signals is easy for *SEL*-substitutions.

◆□ > ◆舂 > ∢ 壹 > ∢ 亘 > 「亘 の � @ 18/38

Closure under *SEL*-substitutions

Theorem

The class $S\!E\!L$ is closed under $S\!E\!L$ -substitutions satisfying for each $f\in \Sigma_e$

 $L_f \subseteq \Sigma'_e((\Sigma'_s \times \{0\})\Sigma'_e)^*$

i.e., each word in L_f must start and end with an instantaneous event.

Handling signals is easy for *SEL*-substitutions.

Closure under SEL_{ε} -substitutions

Handling signals for SEL_{ε} -substitutions is harder. Remember that substitutions are applied to SE-words in normal form.

$$\begin{array}{c} p_{0} \\ b \\ \end{array} \begin{array}{c} f, \{x\} \\ a \\ \end{array} \begin{array}{c} p_{1} \\ e \\ \end{array} \begin{array}{c} \varepsilon \\ p_{2} \\ a \\ \end{array} \begin{array}{c} 0 < x \leq 1, \varepsilon \\ p_{3} \\ \varepsilon \\ t, \{x\} \end{array} \begin{array}{c} \rho_{4} \\ b \\ \end{array} \begin{array}{c} \rho_{4} \\ b \\ \end{array} \begin{array}{c} \rho_{4} \\ b \\ \end{array} \end{array}$$

A possible run gives : $fa^{0.3}a^{0.6}\tau^0a^{0.5}\tau^1a^{0.6}\tau^0a^{0.5}\tau^0b^3 \approx fa^{1.4}\tau^1a^{1.1}b^3$ We cannot simply replace each *a*-labelled state by a copy of \mathcal{A}_a .

Closure under substitutions

Theorem

The class SEL_{ε} is closed under SEL_{ε} -substitutions and inverse SEL_{ε} -substitutions.

Closure under SEL_{ε} -substitutions

Proof: Signal-event words

- Let $\hat{\Sigma}_e = \Sigma_e \uplus \Sigma'_e$ and $\hat{\Sigma}_s = \Sigma_s \times \Sigma'_s$.
- Let $\pi_1: SE(\hat{\Sigma}) \to SE(\Sigma)$ and $\pi_2: SE(\hat{\Sigma}) \to SE(\Sigma')$ be the natural projections defined by

$$\begin{aligned} \pi_1(f) &= f \text{ and } \pi_2(f) = \varepsilon \text{ if } f \in \Sigma_e, \\ \pi_1(f) &= \varepsilon \text{ and } \pi_2(f) = f \text{ if } f \in \Sigma'_e, \\ \pi_1((a,b)^d) &= a^d \text{ and } \pi_2((a,b)^d) = b^d \text{ if } (a,b)^d \in \Sigma_s \times \Sigma'_s \times \overline{\mathbb{T}}. \end{aligned}$$

We will show that for a suitable SEL_{ε} -language M we have

$$\sigma(L) = \pi_2(\pi_1^{-1}(L) \cap M)$$

$$\sigma^{-1}(L) = \pi_1(\pi_2^{-1}(L) \cap M)$$

The class SEL_{ε} is closed under projection, inverse projection and intersection.

Closure under SEL_{ε} -substitutions

Lemma

If L is in the class SEL_{ε} , then so is $\pi_1(L)$.

Proof

$$g, f, \alpha$$

 a, b g', f', α'

$$g, f, \alpha$$
 a g', ε, α' I

Closure under SEL_{ε} -substitutions

l emma

If L is in the class SEL_{ε} , then so is $\pi_1^{-1}(L)$.

Proof

□ ▶ < @ ▶ < 글 ▶ < 글 ▶ 글 り � @ >5/38

Closure under SEL_{ε} -substitutions

Definition of M

Words: $M = \left(\bigcup_{a \in A} a\sigma(a)\right)^*$

For $f \in \Sigma_e$ and $a \in \Sigma_s \setminus \{\tau\}$, we define

Note that each set M_f and M_a satisfies properties 1 and 2.

 $M = \{ w_1 w_2 \cdots \mid \exists a_1, a_2, \ldots \in \Sigma_e \cup \Sigma_s \text{ with } w_i \in M_{a_i} \text{ and } a_i \in \Sigma_s \Rightarrow a_{i+1} \neq a_i \}.$

Lemma

1. $\pi_2(w) \in \sigma(\pi_1(w))$ for each $w \in M$,

```
2. \forall u \in SE(\Sigma), \forall v \in \sigma(u), \exists w \in M \text{ such that } u = \pi_1(w) \text{ and } v = \pi_2(w),
```

3. the language M is in the class SEL_{ε} .

(ロト (月) (三) (三) 三 りへで 27/38

Closure under SEL_{ε} -substitutions

l emma

Words: $M = \left(\bigcup_{a \in A} a\sigma(a)\right)^*$

If $M \subseteq SE(\hat{\Sigma})$ satisfies

1. $\pi_2(w) \in \sigma(\pi_1(w))$ for each $w \in M$,

2. $\forall u \in SE(\Sigma), \forall v \in \sigma(u), \exists w \in M \text{ such that } u = \pi_1(w) \text{ and } v = \pi_2(w).$

Then.

for $L \subseteq SE(\Sigma)$, we have $\sigma(L) = \pi_2(\pi_1^{-1}(L) \cap M)$, for $L \subseteq SE(\Sigma')$, we have $\sigma^{-1}(L) = \pi_1(\pi_2^{-1}(L) \cap M)$.

Proof

$\sigma(L) \subseteq \pi_2(\pi_1^{-1}(L) \cap M):$

Let $v \in \sigma(L)$ and let $u \in L$ with $v \in \sigma(u)$. From 2, $\exists w \in M$ with $\pi_1(w) = u$ and $\pi_2(w) = v$. Then, $w \in \pi_1^{-1}(L) \cap M$ and $v \in \pi_2(\pi_1^{-1}(L) \cap M)$.

 $\begin{array}{l} \pi_2(\pi_1^{-1}(L)\cap M)\subseteq \sigma(L) \colon\\ \text{Let }v\in\pi_2(\pi_1^{-1}(L)\cap M) \text{ and let }w\in\pi_1^{-1}(L)\cap M \text{ with } \pi_2(w)=v. \end{array}$ We have $u = \pi_1(w) \in L$ and from 1 we get $v \in \sigma(u) \subseteq \sigma(L)$.

□ > < 問 > < Ξ > < Ξ > Ξ - ᠑�� 06/38

Closure under inverse *SEL*-substitutions

The class *SEL* is not closed under arbitrary inverse *SEL*-substitutions Let $\Sigma_s = \Sigma'_s = \{a, b\}$ and $\Sigma_e = \Sigma'_e = \{f\}.$ Let σ be the *SEL*-substitution defined by

 $L_a = \{a^1 f\}, L_b = \{b^0\} \text{ and } L_f = \{f\}.$ $L = \{a^1 f b^0\}$ is a *SEL*. $\sigma^{-1}(L) = \{a^1 b^0\}$ is not a *SEL*.

Theorem

The class *SEL* is closed under inverse *SEL*-substitution acting only on events: $L_a = \{a\} \times \overline{\mathbb{T}}$ for all $a \in \Sigma_s$.

(ロ) (週) (三) (三) 三 のへで 28/38

Outline **Closure under intersection** Theorem Introduction Classes SEL and SEL_{ε} are closed under intersection Remarks Signal-Event (Timed) Words and Automata Easy for the class *SEL* (no ε -transitions) or for time-event languages. More difficult with signals and ε -transitions due to signal stuttering and Signal-Event (Timed) Substitutions unobservability of τ^0 . In LICS'97, Asarin, Caspi and Maler do not handle signal stuttering and consider finite runs only. **Recognizable substitutions** In JACM'02, Asarin, Caspi and Maler deal with the intersection of time-event automata only. In STACS'00, Dima gives a construction to remove stuttering for automata **5** Intersection with a single clock. In IPL'04 Durand-Lose gives a construction for intersection taking stuttering Conclusion into account but restricted to finite runs and without zero-duration signals. His approach does not extend to infinite runs since it would introduce Zeno runs leading to transfinite problems. □ > < (□) > < (□) > < (□) > < (□) > < (□) > < (□) > < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□ > < □ > < Ξ > < Ξ > < Ξ > Ξ - ዏ�� - 30/38 **Closure under intersection** Stuttering with unobservability of au^0

Theorem

 SEL_{ε} is closed under intersection

Problem 1 : stuttering with unobservability of τ^0

Building maximal *a*-blocks

States : (a, p, q, i), where i is the synchronization mode.

with $a \neq \tau$ and asynchronous ε -transitions that reset clock z.

<ロ> < 昂> < 言> < 言> 、 言 の Q で 31/38

<ロ><日><日><日><日><日><日><日><日><日><日><日><日><10</td>

Stuttering with unobservability of au^0

Connecting modules for *a*-blocks with synchronous transitions

Closure under intersection

Solution to problem 1

asynchronous/asynchronous product

Finite and infinite runs

Theorem : a normal form for SE-automata

Let $\mathcal A$ be a SE-automaton. We can effectively construct an equivalent SE-automaton $\mathcal A'$ such that:

- 1. no infinite run of \mathcal{A}' accepts a finite word with finite duration, and
- 2. no finite run of \mathcal{A}' accepts a word with infinite duration.

Remarks

The construction removes Zeno runs accepting finite runs with finite duration: replacing for instance an infinite ε -loop producing $a^{\frac{1}{2}}$, $a^{\frac{1}{4}}$, $a^{\frac{1}{8}}$... by a finite run producing a^1 .

Easy if Zeno runs or ε -transitions are forbidden.

The result is interesting in itself to obtain a more realistic implementation of an arbitrary SE-automaton.

Outline	Conclusion
Introduction	
Signal-Event (Timed) Words and Automata	 Signal-event words are the natural objects for studying refinements, abstractions and other problems.
Signal-Event (Timed) Substitutions	• Extending classical results to SE-automata is not always easy due to ε -transitions, signal stuttering, unobservability of τ^0 , Zeno runs,
Recognizable substitutions	 We have proved closure properties (refinement, abstraction) for the general case of SE-automata.
Intersection	 We have proved closure under intersection for the general case of languages accepted by SE-automata.
6 Conclusion	
< ロト < 聞ト < 直ト - 差 - 約々(や - 37/38	<ロト (聞) < 言) < 言) - 差、の文(や: 38/38