Refinements and Abstractions of Signal-Event (Timed) Languages

Paul Gastin

LSV

ENS de Cachan & CNRS Paul.Gastin@lsv.ens-cachan.fr

Joint work with Béatrice Bérard and Antoine Petit

FORMATS, Sept. 26th, 2006

< □ > < □ > < 三 > < 三 > < 三 > ○ Q (1/30

Outline

1 Introduction

Signal-Event (Timed) Words and Automata

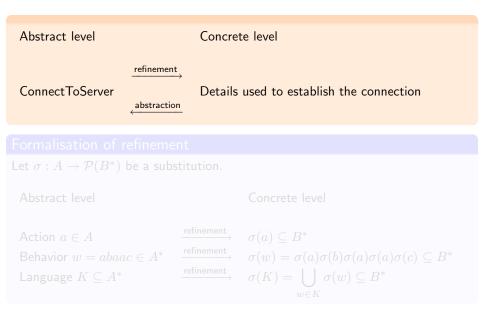
Signal-Event (Timed) Substitutions

Recognizable substitutions

Conclusion

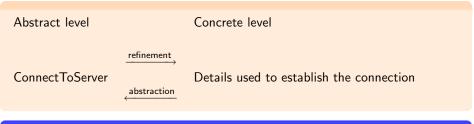
<ロト < 回 > < 三 > < 三 > < 三 > < 三 > の へ () 2/30

Refinements and Abstractions



< □ > < □ > < 三 > < 三 > < 三 > < 三 > のへで 3/30

Refinements and Abstractions



Formalisation of refinement

Let $\sigma: A \to \mathcal{P}(B^*)$ be a substitution.

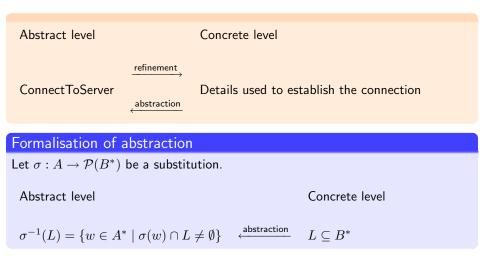
Abstract level

Concrete level

Action $a \in A$ Behavior $w = abaac \in A^*$ Language $K \subseteq A^*$

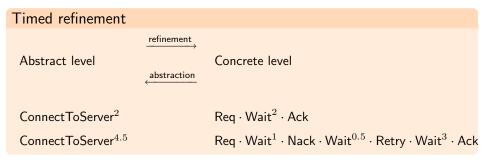
$$\begin{split} &\sigma(a)\subseteq B^*\\ &\sigma(w)=\sigma(a)\sigma(b)\sigma(a)\sigma(a)\sigma(c)\subseteq B^*\\ &\sigma(K)=\bigcup_{w\in K}\sigma(w)\subseteq B^* \end{split}$$

Refinements and Abstractions



< □ > < □ > < □ > < 三 > < 三 > 三 の < ⊙ 4/30

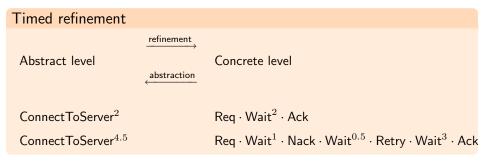
Adding time to the picture



An abstract action a with duration d should be replaced by a concrete execution (word) w with the same duration ||w|| = d.

< □ > < □ > < 三 > < 三 > < 三 > < 三 > のへで 5/30

Adding time to the picture



An abstract action a with duration d should be replaced by a concrete execution (word) w with the same duration ||w|| = d.

< □ > < □ > < 三 > < 三 > < 三 > < 三 > のへで 5/30

Outline

Introduction

2 Signal-Event (Timed) Words and Automata

Signal-Event (Timed) Substitutions

Recognizable substitutions

Conclusion

Asarin - Caspi - Maler 2002

- Σ_e finite set of (instantaneous) events
- Σ_s finite set of signals
- \mathbb{T} time domain, $\overline{\mathbb{T}} = \mathbb{T} \cup \{\infty\}$
- $\blacktriangleright \Sigma = \Sigma_e \cup (\Sigma_s \times \mathbb{T})$
- Notation: a^d for $(a,d) \in \Sigma_s \times \overline{\mathbb{T}}$
- ► Σ^{∞} set of signal-event (timed) words Example: $a^3 f f g b^{1.5} a^2 f$
- Signal stuttering: $a^2a^3 \approx a^5$, $a^{\infty} = a^2a^2a^2\cdots$

<ロ>< 団> < 団> < 三> < 三> < 三> 三 のへで 7/30

<ロ>< 団> < 団> < 三> < 三> < 三> 三 のへで 7/30

Asarin - Caspi - Maler 2002

- Σ_e finite set of (instantaneous) events
- Σ_s finite set of signals
- \mathbb{T} time domain, $\overline{\mathbb{T}} = \mathbb{T} \cup \{\infty\}$
- $\Sigma = \Sigma_e \cup (\Sigma_s \times \mathbb{T})$
- Notation: a^d for $(a,d) \in \Sigma_s \times \overline{\mathbb{T}}$
- ► Σ^{∞} set of signal-event (timed) words Example: $a^3 f f g b^{1.5} a^2 f$
- Signal stuttering: $a^2a^3 \approx a^5$, $a^{\infty} = a^2a^2a^2\cdots$

<ロ>< 団> < 団> < 三> < 三> < 三> 三 のへで 7/30

Asarin - Caspi - Maler 2002

- Σ_e finite set of (instantaneous) events
- Σ_s finite set of signals
- \mathbb{T} time domain, $\overline{\mathbb{T}} = \mathbb{T} \cup \{\infty\}$
- $\Sigma = \Sigma_e \cup (\Sigma_s \times \mathbb{T})$
- Notation: a^d for $(a,d) \in \Sigma_s \times \overline{\mathbb{T}}$
- ► Σ^{∞} set of signal-event (timed) words Example: $a^3 f f g b^{1.5} a^2 f$
- Signal stuttering: $a^2a^3 \approx a^5$, $a^{\infty} = a^2a^2a^2\cdots$

Unobservable signal τ

Useful to hide signals:

Signal-event word

hiding signals

Classical timed words

 $a^3fb^1gfa^2f$

$\tau^3 f \tau^1 g f \tau^2 f = (f,3)(g,4)(f,4)(f,6)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• $\tau^0 \approx \varepsilon$: an hidden signal with zero duration is not observable. $a^0 \not\approx \varepsilon$: a signal, even of zero duration, is observable. $\tau^2 \not\approx \varepsilon$: we still observe a time delay but the actual signal has been hidden Example: $a^2 \tau^0 a^1 f \tau^0 g \tau^1 f b^2 b^2 b^2 \cdots \approx a^3 f g \tau^1 f b^\infty$

• Signal-event words $SE(\Sigma) = \Sigma^{\infty} / \approx$

Unobservable signal τ

Useful to hide signals:

Signal-event word

hiding signals

Classical timed words

 $a^3fb^1gfa^2f$

$$\tau^3 f \tau^1 g f \tau^2 f = (f,3)(g,4)(f,4)(f,6)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• $\tau^0 \approx \varepsilon$: an hidden signal with zero duration is not observable. $a^0 \not\approx \varepsilon$: a signal, even of zero duration, is observable. $\tau^2 \not\approx \varepsilon$: we still observe a time delay but the actual signal has been hidden. Example: $a^2 \tau^0 a^1 f \tau^0 g \tau^1 f b^2 b^2 b^2 \cdots \approx a^3 f g \tau^1 f b^\infty$

Signal-event words $SE(\Sigma) = \Sigma^{\infty} / pprox$

Unobservable signal au

Useful to hide signals:

Signal-event word

hiding signals

Classical timed words

 $a^3fb^1gfa^2f$

$$\tau^3 f \tau^1 g f \tau^2 f = (f,3)(g,4)(f,4)(f,6)$$

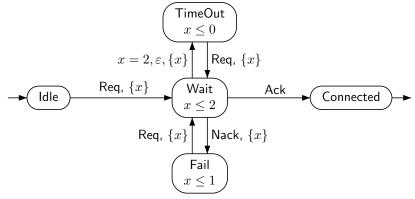
< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• $\tau^0 \approx \varepsilon$: an hidden signal with zero duration is not observable. $a^0 \not\approx \varepsilon$: a signal, even of zero duration, is observable. $\tau^2 \not\approx \varepsilon$: we still observe a time delay but the actual signal has been hidden. Example: $a^2 \tau^0 a^1 f \tau^0 g \tau^1 f b^2 b^2 b^2 \cdots \approx a^3 f g \tau^1 f b^\infty$

• Signal-event words $SE(\Sigma) = \Sigma^{\infty} / \approx$

Signal-Event (Timed) automata

- States emit signals
- Transitions emit (instantaneous) events



- $\blacktriangleright \ \mathsf{Run} : \ \mathsf{Idle}^3 \cdot \mathsf{Req} \cdot \mathsf{Wait}^2 \cdot \mathsf{TimeOut}^0 \cdot \mathsf{Req} \cdot \mathsf{Wait}^1 \cdot \mathsf{Ack} \cdot \mathsf{Connected}^8$
- ▶ SEL : languages accepted by SE-automata without ε -transitions.
- ▶ SEL_{ε} : languages accepted by SE-automata with ε -transitions.

Outline

Introduction

Signal-Event (Timed) Words and Automata

Signal-Event (Timed) Substitutions

Recognizable substitutions

Conclusion

Definition

- Abstract alphabet : Σ_e and Σ_s
- Concrete alphabet : Σ'_e and Σ'_s
- Substitution σ from $SE(\Sigma)$ to $SE(\Sigma')$ defined by:

$$a \in \Sigma_e : L_a \subseteq (\Sigma'_e \cup \Sigma'_s \times \{0\})^*$$

$$\sigma(a) = L_a$$

$$\tau \in \Sigma_s \setminus \{\tau\} : L_a \subseteq SE(\Sigma') \text{ not containing Zeno words}$$

$$\sigma(a^d) = \{w \in L_a \mid ||w|| = d\}$$

$$a = \tau : L_\tau = \{\tau\} \times \overline{\mathbb{T}}$$

$$\sigma(\tau^d) = \{\tau^d\}$$

Remark

If we allow Zeno words in L_a then we may get transfinite words as refinements. Example: if $b^1 f b^{1/2} f b^{1/4} f \cdots \in L_a$ and $L_g = \{g\}$ then $\sigma(a^2g)$ is transfinite.

Definition

- Abstract alphabet : Σ_e and Σ_s
- Concrete alphabet : Σ'_e and Σ'_s
- Substitution σ from $SE(\Sigma)$ to $SE(\Sigma')$ defined by:

$$a \in \Sigma_e : L_a \subseteq (\Sigma'_e \cup \Sigma'_s \times \{0\})^*$$

$$\sigma(a) = L_a$$

$$e \in \Sigma_s \setminus \{\tau\} : L_a \subseteq SE(\Sigma') \text{ not containing Zeno words}$$

$$\sigma(a^d) = \{w \in L_a \mid ||w|| = d\}$$

$$a = \tau : L_\tau = \{\tau\} \times \overline{\mathbb{T}}$$

$$\sigma(\tau^d) = \{\tau^d\}$$

Remark

If we allow Zeno words in L_a then we may get transfinite words as refinements. Example: if $b^1 f b^{1/2} f b^{1/4} f \cdots \in L_a$ and $L_g = \{g\}$ then $\sigma(a^2g)$ is transfinite.

Remark

In general, SE-substitutions are not morphisms

Example: if $L_a = \{b^2\}$ then $\sigma(a^1) = \emptyset$ and $\sigma(a^2) \neq \sigma(a^1)\sigma(a^1)$ Substitutions are applied to SE-words in normal form: $\sigma(a^2\tau^0a^1f\tau^0g\tau^1fb^2b^2b^2\cdots) = \sigma(a^3)\sigma(f)\sigma(g)\tau^1\sigma(f)\sigma(b^{\infty})$

Proposition

Let σ be a timed substitution, given by a family $(L_a)_{a \in \Sigma_e \cup \Sigma_s}$. Then, σ is a morphism if and only if for each signal $a \in \Sigma_s$ we have

- 1. L_a is closed under concatenation: for all $u, v \in L_a$ with $||u|| < \infty$, we have $uv \in L_a$
- 2. L_a is closed under decomposition: for each $v \in L_a$ with ||v|| = d, for all $d_1 \in \mathbb{T}$, $d_2 \in \overline{\mathbb{T}}$ such that $d = d_1 + d_2$, there exist $v_i \in L_a$ with $||v_i|| = d_i$ such that $v = v_1 v_2$.

Remark

In general, SE-substitutions are not morphisms

Example: if $L_a = \{b^2\}$ then $\sigma(a^1) = \emptyset$ and $\sigma(a^2) \neq \sigma(a^1)\sigma(a^1)$ Substitutions are applied to SE-words in normal form: $\sigma(a^2\tau^0a^1f\tau^0q\tau^1fb^2b^2b^2\cdots) = \sigma(a^3)\sigma(f)\sigma(q)\tau^1\sigma(f)\sigma(b^\infty)$

Proposition

Let σ be a timed substitution, given by a family $(L_a)_{a \in \Sigma_e \cup \Sigma_s}$. Then, σ is a morphism if and only if for each signal $a \in \Sigma_s$ we have

- 1. L_a is closed under concatenation: for all $u, v \in L_a$ with $||u|| < \infty$, we have $uv \in L_a$,
- 2. L_a is closed under decomposition: for each $v \in L_a$ with ||v|| = d, for all $d_1 \in \mathbb{T}$, $d_2 \in \overline{\mathbb{T}}$ such that $d = d_1 + d_2$, there exist $v_i \in L_a$ with $||v_i|| = d_i$ such that $v = v_1v_2$.

Outline

<□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ = りへで 13/30

Introduction

Signal-Event (Timed) Words and Automata

Signal-Event (Timed) Substitutions

4 Recognizable substitutions

Conclusion

Recognizable substitutions

Definition

Let σ be a substitution defined by $(L_a)_{a \in \Sigma_e \cup \Sigma_s}$. Then,

- σ is a *SEL*-substitution if each L_a is in *SEL*
- σ is a SEL_{ε} -substitution if each L_a is in SEL_{ε}

SEL is not closed under SEL-substitutions

•
$$L = \{a^0 f\}$$
 is recognized by
• $L_a = \{b\} \times \overline{\mathbb{T}}$ is recognized by
• $L_f = \{c^0 g\}$ is recognized by
• $\sigma(L) = \{b^0 c^0 g\}$ cannot be accepted without ε -transitions.

Theorem

The class SEL is closed under SEL-substitutions satisfying for each $f\in\Sigma_e$

$$L_f \subseteq \Sigma'_e((\Sigma'_s \times \{0\})\Sigma'_e)^*$$

i.e., each word in L_f must start and end with an instantaneous event.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

SEL is not closed under SEL-substitutions

•
$$L = \{a^0 f\}$$
 is recognized by
• $L_a = \{b\} \times \overline{\mathbb{T}}$ is recognized by
• $L_f = \{c^0 g\}$ is recognized by
• $\sigma(L) = \{b^0 c^0 g\}$ cannot be accepted without ε -transitions.

Theorem

The class SEL is closed under SEL-substitutions satisfying for each $f \in \Sigma_e$

$$L_f \subseteq \Sigma'_e((\Sigma'_s \times \{0\})\Sigma'_e)^*$$

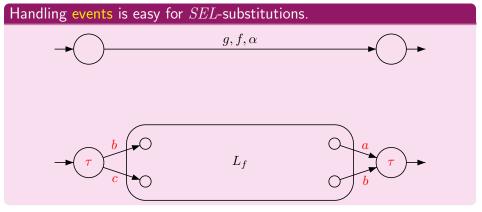
i.e., each word in L_f must start and end with an instantaneous event.

Theorem

The class $S\!E\!L$ is closed under $S\!E\!L$ -substitutions satisfying for each $f\in \Sigma_e$

 $L_f \subseteq \Sigma'_e((\Sigma'_s \times \{0\})\Sigma'_e)^*$

i.e., each word in L_f must start and end with an instantaneous event.

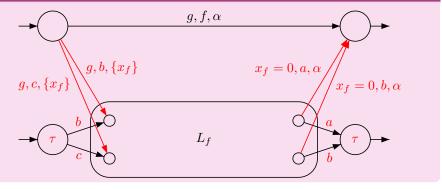


Theorem

The class SEL is closed under SEL-substitutions satisfying for each $f \in \Sigma_e$

 $L_f \subseteq \Sigma'_e((\Sigma'_s \times \{0\})\Sigma'_e)^*$

i.e., each word in L_f must start and end with an instantaneous event.



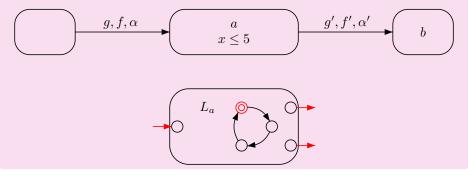
Theorem

The class SEL is closed under SEL-substitutions satisfying for each $f \in \Sigma_e$

 $L_f \subseteq \Sigma'_e((\Sigma'_s \times \{0\})\Sigma'_e)^*$

i.e., each word in L_f must start and end with an instantaneous event.

Handling signals is easy for *SEL*-substitutions.



<ロ><日><日><日><日><日><日><日><日><日><10</td>

Theorem

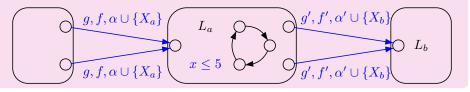
The class SEL is closed under SEL-substitutions satisfying for each $f \in \Sigma_e$

 $L_f \subseteq \Sigma'_e((\Sigma'_s \times \{0\})\Sigma'_e)^*$

i.e., each word in L_f must start and end with an instantaneous event.

Handling signals is easy for *SEL*-substitutions.

$$\begin{array}{c|c} g,f,\alpha \\ \hline \\ g,f,\alpha \\ \hline \\ x \leq 5 \\ \hline \\ \end{array} \begin{array}{c} g',f',\alpha' \\ b \\ \hline \\ b \\ \end{array} \end{array}$$



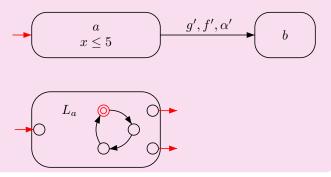
<ロ><日><日><日><日><日><日><日><日><10</th>

Theorem

The class $S\!E\!L$ is closed under $S\!E\!L$ -substitutions satisfying for each $f\in \Sigma_e$

 $L_f \subseteq \Sigma'_e((\Sigma'_s \times \{0\})\Sigma'_e)^*$

i.e., each word in L_f must start and end with an instantaneous event.

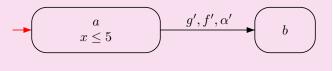


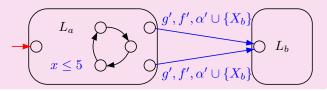
Theorem

The class SEL is closed under SEL-substitutions satisfying for each $f \in \Sigma_e$

 $L_f \subseteq \Sigma'_e((\Sigma'_s \times \{0\})\Sigma'_e)^*$

i.e., each word in L_f must start and end with an instantaneous event.



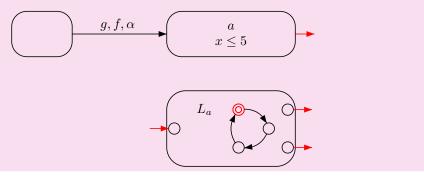


Theorem

The class SEL is closed under SEL-substitutions satisfying for each $f \in \Sigma_e$

 $L_f \subseteq \Sigma'_e((\Sigma'_s \times \{0\})\Sigma'_e)^*$

i.e., each word in L_f must start and end with an instantaneous event.



Theorem

The class SEL is closed under SEL-substitutions satisfying for each $f \in \Sigma_e$

 $L_f \subseteq \Sigma'_e((\Sigma'_s \times \{0\})\Sigma'_e)^*$

i.e., each word in L_f must start and end with an instantaneous event.

$$\begin{array}{c|c} g, f, \alpha & & \\ g, f, \alpha & & \\ & x \leq 5 \end{array} \right) \bullet$$

$$g, f, \alpha \cup \{X_a\}$$

$$L_a$$

$$g, f, \alpha \cup \{X_a\}$$

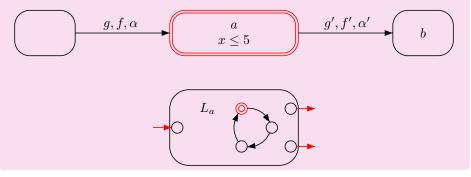
$$x \le 5$$

Theorem

The class SEL is closed under SEL-substitutions satisfying for each $f \in \Sigma_e$

 $L_f \subseteq \Sigma'_e((\Sigma'_s \times \{0\})\Sigma'_e)^*$

i.e., each word in L_f must start and end with an instantaneous event.

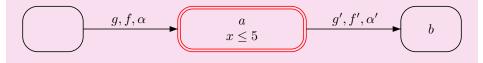


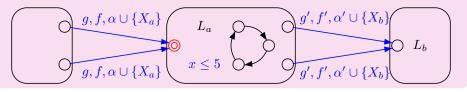
Theorem

The class SEL is closed under SEL-substitutions satisfying for each $f \in \Sigma_e$

 $L_f \subseteq \Sigma'_e((\Sigma'_s \times \{0\})\Sigma'_e)^*$

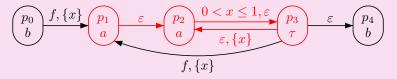
i.e., each word in L_f must start and end with an instantaneous event.





Handling signals for *SEL*_e-substitutions is harder.

Remember that substitutions are applied to SE-words in normal form.



A possible run gives : $fa^{0.3}a^{0.6}\tau^0a^{0.5}\tau^1a^{0.6}\tau^0a^{0.5}\tau^0b^3 \approx fa^{1.4}\tau^1a^{1.1}b^3$

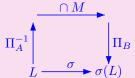
We cannot simply replace each a-labelled state by a copy of A_a .

Proof technique inspired from the word case

- Let $\sigma: A \to \mathcal{P}(B^*)$ be a rational substitution
- Let $\Pi_A : (A \uplus B)^* \to A^*$ and $\Pi_B : (A \uplus B)^* \to B^*$ be the projections

• Let
$$M = \left(\bigcup_{a \in A} a\sigma(a)\right) \subseteq (A \uplus B)^*$$
 is rational.

• Then, $\sigma(L) = \prod_B (\prod_A^{-1}(L) \cap M)$.



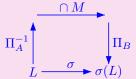
• This proof technique also applies to inverse substitutions: $\sigma^{-1}(L) = \prod_A (\prod_B^{-1}(L) \cap M).$

Proof technique inspired from the word case

- Let $\sigma: A \to \mathcal{P}(B^*)$ be a rational substitution
- Let $\Pi_A : (A \uplus B)^* \to A^*$ and $\Pi_B : (A \uplus B)^* \to B^*$ be the projections

• Let
$$M = \left(\bigcup_{a \in A} a\sigma(a)\right)^* \subseteq (A \uplus B)^*$$
 is rational.

• Then,
$$\sigma(L) = \prod_B (\prod_A^{-1}(L) \cap M)$$
.



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

► This proof technique also applies to inverse substitutions: $\sigma^{-1}(L) = \prod_A (\prod_B^{-1}(L) \cap M).$

Theorem

The class SEL_{ε} is closed under SEL_{ε} -substitutions and inverse SEL_{ε} -substitutions.

Proof: Signal-event words

• Let
$$\hat{\Sigma}_e = \Sigma_e \uplus \Sigma'_e$$
 and $\hat{\Sigma}_s = \Sigma_s \times \Sigma'_s$.

▶ Let $\Pi_1 : SE(\hat{\Sigma}) \to SE(\Sigma)$ and $\Pi_2 : SE(\hat{\Sigma}) \to SE(\Sigma')$ be the natural projections defined by

$$\begin{split} \Pi_1(f) &= f \text{ and } \Pi_2(f) = \varepsilon \text{ if } f \in \Sigma_e, \\ \Pi_1(f) &= \varepsilon \text{ and } \Pi_2(f) = f \text{ if } f \in \Sigma'_e, \\ \Pi_1((a,b)^d) &= a^d \text{ and } \Pi_2((a,b)^d) = b^d \text{ if } (a,b)^d \in \Sigma_s \times \Sigma'_s \times \overline{\mathbb{T}}. \end{split}$$

• We will show that for a suitable SEL_{ε} -language M we have

$$\sigma(L) = \Pi_2(\Pi_1^{-1}(L) \cap M)$$

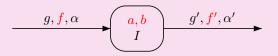
$$\sigma^{-1}(L) = \Pi_1(\Pi_2^{-1}(L) \cap M)$$

• The class SEL_{ε} is closed under projection, inverse projection and intersection.

Lemma

If L is in the class SEL_{ε} , then so is $\Pi_1(L)$.

Proof



$$g, f, \alpha$$

 g', ε, α'

▲□▶▲罰▶▲≣▶▲≣▶ ≣ ∽��? 24/30

Lemma

If L is in the class SEL_{ε} , then so is $\Pi_1^{-1}(L)$.

Proof g_1, f_1, α_1 g_2, f_2, α_2 atrue, f', \emptyset g_1, f_1, α_1 g_2, f_2, α_2 $I \wedge z \leq 0$ true, ε , $\{z\}$ **true**, ε , \emptyset a, b

Lemma

Words: $M = \left(\bigcup_{a \in A} a\sigma(a)\right)^*$

If $M \subseteq SE(\hat{\Sigma})$ satisfies

1. $\pi_2(w) \in \sigma(\pi_1(w))$ for each $w \in M$,

2. $\forall u \in SE(\Sigma), \forall v \in \sigma(u), \exists w \in M \text{ such that } u = \pi_1(w) \text{ and } v = \pi_2(w).$

Then,

- for $L \subseteq SE(\Sigma)$, we have $\sigma(L) = \pi_2(\pi_1^{-1}(L) \cap M)$,
- for $L \subseteq SE(\Sigma')$, we have $\sigma^{-1}(L) = \pi_1(\pi_2^{-1}(L) \cap M)$.

Proof

- ► $\sigma(L) \subseteq \pi_2(\pi_1^{-1}(L) \cap M)$: Let $v \in \sigma(L)$ and let $u \in L$ with $v \in \sigma(u)$. From 2, $\exists w \in M$ with $\pi_1(w) = u$ and $\pi_2(w) = v$. Then, $w \in \pi_1^{-1}(L) \cap M$ and $v \in \pi_2(\pi_1^{-1}(L) \cap M)$.
- ▶ $\pi_2(\pi_1^{-1}(L) \cap M) \subseteq \sigma(L)$: Let $v \in \pi_2(\pi_1^{-1}(L) \cap M)$ and let $w \in \pi_1^{-1}(L) \cap M$ with $\pi_2(w) = v$. We have $u = \pi_1(w) \in L$ and from 1 we get $v \in \sigma(u) \subseteq \sigma(L)$.

Lemma

Words:
$$M = \left(\bigcup_{a \in A} a\sigma(a)\right)^*$$

If $M \subseteq SE(\hat{\Sigma})$ satisfies

1. $\pi_2(w) \in \sigma(\pi_1(w))$ for each $w \in M$,

2. $\forall u \in SE(\Sigma), \forall v \in \sigma(u), \exists w \in M \text{ such that } u = \pi_1(w) \text{ and } v = \pi_2(w).$

Then,

- for $L \subseteq SE(\Sigma)$, we have $\sigma(L) = \pi_2(\pi_1^{-1}(L) \cap M)$,
- for $L \subseteq SE(\Sigma')$, we have $\sigma^{-1}(L) = \pi_1(\pi_2^{-1}(L) \cap M)$.

Proof

- $\sigma(L) \subseteq \pi_2(\pi_1^{-1}(L) \cap M)$: Let $v \in \sigma(L)$ and let $u \in L$ with $v \in \sigma(u)$. From 2, $\exists w \in M$ with $\pi_1(w) = u$ and $\pi_2(w) = v$. Then, $w \in \pi_1^{-1}(L) \cap M$ and $v \in \pi_2(\pi_1^{-1}(L) \cap M)$.
- ► $\pi_2(\pi_1^{-1}(L) \cap M) \subseteq \sigma(L)$: Let $v \in \pi_2(\pi_1^{-1}(L) \cap M)$ and let $w \in \pi_1^{-1}(L) \cap M$ with $\pi_2(w) = v$. We have $u = \pi_1(w) \in L$ and from 1 we get $v \in \sigma(u) \subseteq \sigma(L)$.

Definition of M

Words:
$$M = \left(\bigcup_{a \in A} a\sigma(a)\right)^*$$

For $f \in \Sigma_e$ and $a \in \Sigma_s \setminus \{\tau\}$, we define

Note that each set M_f and M_a satisfies properties 1 and 2.

 $M = \{ w_1 w_2 \cdots \mid \exists a_1, a_2, \ldots \in \Sigma_e \cup \Sigma_s \text{ with } w_i \in M_{a_i} \text{ and } a_i \in \Sigma_s \Rightarrow a_{i+1} \neq a_i \}.$

Lemma

The language M is in the class SEL_{ε} and satisfies

- 1. $\pi_2(w) \in \sigma(\pi_1(w))$ for each $w \in M$,
- 2. $\forall u \in SE(\Sigma), \forall v \in \sigma(u), \exists w \in M \text{ such that } u = \pi_1(w) \text{ and } v = \pi_2(w).$

Closure under inverse *SEL*-substitutions

The class *SEL* is not closed under arbitrary inverse *SEL*-substitutions

Let $\Sigma_s = \Sigma'_s = \{a, b\}$ and $\Sigma_e = \Sigma'_e = \{f\}.$

Let σ be the *SEL*-substitution defined by

$$L_a = \{a^1 f\}, L_b = \{b^0\} \text{ and } L_f = \{f\}.$$

•
$$L = \{a^1 f b^0\}$$
 is a *SEL*.

•
$$\sigma^{-1}(L) = \{a^1b^0\}$$
 is not a *SEL*.

Theorem

The class *SEL* is closed under inverse *SEL*-substitution acting only on events: $L_a = \{a\} \times \overline{\mathbb{T}}$ for all $a \in \Sigma_s$.

Closure under inverse *SEL*-substitutions

The class *SEL* is not closed under arbitrary inverse *SEL*-substitutions

Let $\Sigma_s = \Sigma'_s = \{a, b\}$ and $\Sigma_e = \Sigma'_e = \{f\}.$

Let σ be the *SEL*-substitution defined by

$$L_a = \{a^{\perp}f\}, L_b = \{b^0\} \text{ and } L_f = \{f\}.$$

$$L = \{a^1 f b^0\} \text{ is a } SEL.$$

$$\sigma^{-1}(L) = \{a^1b^0\}$$
 is not a *SEL*.

Theorem

The class *SEL* is closed under inverse *SEL*-substitution acting only on events: $L_a = \{a\} \times \overline{\mathbb{T}}$ for all $a \in \Sigma_s$.

Outline

Introduction

Signal-Event (Timed) Words and Automata

Signal-Event (Timed) Substitutions

Recognizable substitutions

Conclusion

- Signal-event words are the natural objects for studying refinements, abstractions and other problems.
- Extending classical results to SE-automata is not always easy due to ε -transitions, signal stuttering, unobservability of τ^0 , Zeno runs, ...
- We have proved closure properties (refinement, abstraction) for the general case of SE-automata.