Refinements and Abstractions of Signal-Event (Timed) Languages

Paul Gastin

LSV
ENS de Cachan & CNRS
Paul.Gastin@lsv.ens-cachan.fr

Joint work with Béatrice Bérard and Antoine Petit

FORMATS, Sept. 26th, 2006

Outline

Signal-Event (Timed) Words and Automata

Signal-Event (Timed) Substitutions

Recognizable substitutions

Conclusion

Refinements and Abstractions

Abstract level Concrete level

refinement

 ${\sf ConnectToServer} \qquad \qquad {\sf Details} \ {\sf used} \ {\sf to} \ {\sf establish} \ {\sf the} \ {\sf connection}$

Formalisation of refinement

Let $\sigma: A \to \mathcal{P}(B^*)$ be a substitution.

Abstract level Concrete level

Action $a \in A$ $\xrightarrow{\text{refinement}} \sigma(a) \subseteq B^*$

 $\text{Behavior } w = abaac \in A^* \quad \xrightarrow{\text{refinement}} \quad \sigma(w) = \sigma(a)\sigma(b)\sigma(a)\sigma(a)\sigma(c) \subseteq B^*$

<□ > <**□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** > <

Refinements and Abstractions

Abstract level Concrete level

refinement

 ${\sf ConnectToServer} \qquad \qquad {\sf Details} \ {\sf used} \ {\sf to} \ {\sf establish} \ {\sf the} \ {\sf connection}$

Formalisation of abstraction

Let $\sigma:A\to \mathcal{P}(B^*)$ be a substitution.

Abstract level

Concrete level

 $\sigma^{-1}(L) = \{w \in A^* \mid \sigma(w) \cap L \neq \emptyset\} \quad \xleftarrow{\text{abstraction}} \quad L \subseteq B^*$

(ロ > ← 罰 > ← ≣ > ← ≣ > → ■ ・ 9 Q (~ 4/30)

Adding time to the picture

Timed refinement

refinement

Abstract level

Concrete level

abstraction

ConnectToServer²

 $\mathsf{Reg} \cdot \mathsf{Wait}^2 \cdot \mathsf{Ack}$

 ${\sf ConnectToServer}^{4.5}$

 $\mathsf{Req} \cdot \mathsf{Wait}^1 \cdot \mathsf{Nack} \cdot \mathsf{Wait}^{0.5} \cdot \mathsf{Retry} \cdot \mathsf{Wait}^3 \cdot \mathsf{Ack}$

An abstract action a with duration d should be replaced by a concrete execution (word) w with the same duration $\|w\|=d$.

Signal-Event (Timed) Words

Asarin - Caspi - Maler 2002

- Σ_e finite set of (instantaneous) events
- Σ_s finite set of signals
- ${\mathbb T}$ time domain, $\overline{{\mathbb T}}={\mathbb T}\cup\{\infty\}$
- $\Sigma = \Sigma_e \cup (\Sigma_s \times \mathbb{T})$
- Notation: a^d for $(a,d) \in \Sigma_s \times \overline{\mathbb{T}}$
- Σ^{∞} set of signal-event (timed) words

Example: $a^3 f f g b^{1.5} a^2 f$

Signal stuttering: $a^2a^3\approx a^5$, $a^\infty=a^2a^2a^2\cdots$

Outline

Introduction

Signal-Event (Timed) Substitutions

Recognizable substitutions

Conclusion

Signal-Event (Timed) Words

Unobservable signal au

- Useful to hide signals:
 - Signal-event word Classical timed words

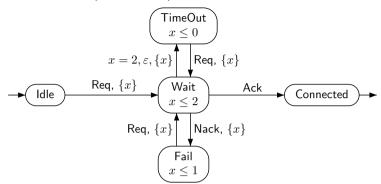
$$a^3fb^1gfa^2f$$

$$\tau^3 f \tau^1 g f \tau^2 f = (f,3)(g,4)(f,4)(f,6)$$

- $au^0 pprox arepsilon$: an hidden signal with zero duration is not observable.
- $a^0\not\approx\varepsilon$: a signal, even of zero duration, is observable.
- $\tau^2 \not\approx \varepsilon$: we still observe a time delay but the actual signal has been hidden.
- Example : $a^2\tau^0a^1f\tau^0g\tau^1fb^2b^2b^2\cdots \approx a^3fg\tau^1fb^\infty$
- Signal-event words $SE(\Sigma) = \Sigma^{\infty}/\approx$

Signal-Event (Timed) automata

- States emit signals
- ► Transitions emit (instantaneous) events



- $ightharpoonup \operatorname{\mathsf{Run}}: \operatorname{\mathsf{Idle}}^3 \cdot \operatorname{\mathsf{Req}} \cdot \operatorname{\mathsf{Wait}}^2 \cdot \operatorname{\mathsf{TimeOut}}^0 \cdot \operatorname{\mathsf{Req}} \cdot \operatorname{\mathsf{Wait}}^1 \cdot \operatorname{\mathsf{Ack}} \cdot \operatorname{\mathsf{Connected}}^8$
- SEL : languages accepted by SE-automata without ε -transitions.
- SEL_{ε} : languages accepted by SE-automata with ε -transitions.

Signal-Event (Timed) Substitutions

Definition

- Abstract alphabet : Σ_e and Σ_s
- Concrete alphabet : Σ_e' and Σ_s'
- Substitution σ from $SE(\Sigma)$ to $SE(\Sigma')$ defined by:

$$a \in \Sigma_e : L_a \subseteq (\Sigma'_e \cup \Sigma'_s \times \{0\})^*$$

$$\sigma(a) = L_a$$

 $a \in \Sigma_s \setminus \{\tau\}$: $L_a \subseteq SE(\Sigma')$ not containing Zeno words.

$$\sigma(a^d) = \{ w \in L_a \mid ||w|| = d \}$$

$$a = \tau : L_{\tau} = \{\tau\} \times \overline{\mathbb{T}}$$

$$\sigma(\tau^d) = \{\tau^d\}$$

Remark

If we allow Zeno words in L_a then we may get transfinite words as refinements. Example: if $b^1 f b^{1/2} f b^{1/4} f \cdots \in L_a$ and $L_a = \{q\}$ then $\sigma(a^2 q)$ is transfinite.

Outline

Introduction

Signal-Event (Timed) Words and Automata

3 Signal-Event (Timed) Substitutions

Recognizable substitutions

Conclusion

Signal-Event (Timed) Substitutions

Remark

In general, SE-substitutions are not morphisms

Example: if $L_a = \{b^2\}$ then $\sigma(a^1) = \emptyset$ and $\sigma(a^2) \neq \sigma(a^1)\sigma(a^1)$

Substitutions are applied to SE-words in normal form:

 $\sigma(a^2\tau^0a^1f\tau^0g\tau^1fb^2b^2b^2\cdots) = \sigma(a^3)\sigma(f)\sigma(g)\tau^1\sigma(f)\sigma(b^\infty)$

Proposition

Let σ be a timed substitution, given by a family $(L_a)_{a\in\Sigma_e\cup\Sigma_s}$. Then, σ is a morphism if and only if for each signal $a\in\Sigma_s$ we have

- $\begin{array}{ll} 1. \ L_a \ \mbox{is closed under concatenation:} \\ \mbox{for all } u,v \in L_a \ \mbox{with } \|u\| < \infty \mbox{, we have } uv \in L_a \mbox{,} \end{array}$
- 2. L_a is closed under decomposition: for each $v \in L_a$ with $\|v\| = d$, for all $d_1 \in \mathbb{T}$, $d_2 \in \overline{\mathbb{T}}$ such that $d = d_1 + d_2$, there exist $v_i \in L_a$ with $\|v_i\| = d_i$ such that $v = v_1 v_2$.

Outline

Introduction

Signal-Event (Timed) Words and Automata

Signal-Event (Timed) Substitutions

4 Recognizable substitutions

Conclusion

Closure under SEL-substitutions

SEL is not closed under SEL-substitutions

$$L_a = \{b\} imes \overline{\mathbb{T}} ext{ is recognized by } \longrightarrow b$$

$$L_f = \{c^0g\} \text{ is recognized by } \longrightarrow \begin{array}{c} g & \xrightarrow{\tau} \\ x \leq 0 \end{array}$$

 $\sigma(L)=\{b^0c^0g\}$ cannot be accepted without $\varepsilon\text{-transitions}.$

Theorem

The class SEL is closed under SEL-substitutions satisfying for each $f \in \Sigma_e$

$$L_f \subseteq \Sigma'_e((\Sigma'_s \times \{0\})\Sigma'_e)^*$$

i.e., each word in L_f must start and end with an instantaneous event.

Recognizable substitutions

Definition

Let σ be a substitution defined by $(L_a)_{a \in \Sigma_e \cup \Sigma_s}$. Then,

- σ is a *SEL*-substitution if each L_a is in *SEL*
- σ is a SEL_{ε} -substitution if each L_a is in SEL_{ε}

Closure under SEL-substitutions

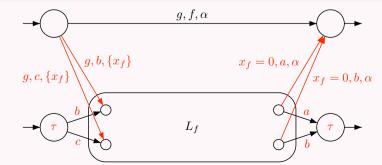
Theorem

The class SEL is closed under SEL-substitutions satisfying for each $f \in \Sigma_e$

$$L_f \subseteq \Sigma'_e((\Sigma'_s \times \{0\})\Sigma'_e)^*$$

i.e., each word in L_f must start and end with an instantaneous event.

Handling events is easy for SEL-substitutions.



Closure under SEL-substitutions

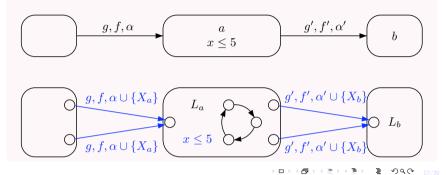
Theorem

The class SEL is closed under SEL-substitutions satisfying for each $f \in \Sigma_e$

$$L_f \subseteq \Sigma'_e((\Sigma'_s \times \{0\})\Sigma'_e)^*$$

i.e., each word in L_f must start and end with an instantaneous event.

Handling signals is easy for *SEL*-substitutions.



Closure under *SEL*-substitutions

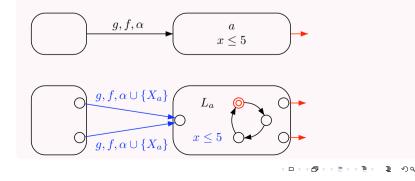
Theorem

The class $S\!E\!L$ is closed under $S\!E\!L$ -substitutions satisfying for each $f \in \Sigma_e$

$$L_f \subseteq \Sigma'_e((\Sigma'_s \times \{0\})\Sigma'_e)^*$$

i.e., each word in L_f must start and end with an instantaneous event.

Handling signals is easy for *SEL*-substitutions.



Closure under SEL-substitutions

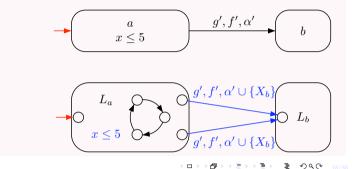
Theorem

The class SEL is closed under SEL-substitutions satisfying for each $f \in \Sigma_e$

$$L_f \subseteq \Sigma'_e((\Sigma'_s \times \{0\})\Sigma'_e)^*$$

i.e., each word in L_f must start and end with an instantaneous event.

Handling signals is easy for *SEL*-substitutions.



Closure under SEL-substitutions

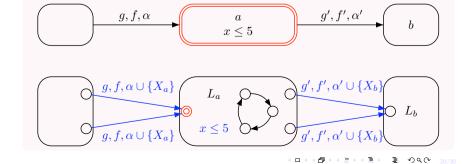
Theorem

The class SEL is closed under SEL-substitutions satisfying for each $f \in \Sigma_e$

$$L_f \subseteq \Sigma'_e((\Sigma'_s \times \{0\})\Sigma'_e)^*$$

i.e., each word in L_f must start and end with an instantaneous event.

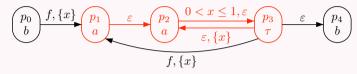
Handling signals is easy for *SEL*-substitutions.



Closure under SEL_{ε} -substitutions

Handling signals for SEL_{ε} -substitutions is harder.

Remember that substitutions are applied to SE-words in normal form.



A possible run gives : $fa^{0.3}a^{0.6}\tau^0a^{0.5}\tau^1a^{0.6}\tau^0a^{0.5}\tau^0b^3 \approx fa^{1.4}\tau^1a^{1.1}b^3$

We cannot simply replace each a-labelled state by a copy of \mathcal{A}_a .

Closure under SEL_{ε} -substitutions

Theorem

The class SEL_{ε} is closed under SEL_{ε} -substitutions and inverse SEL_{ε} -substitutions.

Proof: Signal-event words

Let $\hat{\Sigma}_e = \Sigma_e \uplus \Sigma'_e$ and $\hat{\Sigma}_s = \Sigma_s \times \Sigma'_s$.

Let $\Pi_1:SE(\hat{\Sigma})\to SE(\Sigma)$ and $\Pi_2:SE(\hat{\Sigma})\to SE(\Sigma')$ be the natural projections defined by

$$\begin{split} &\Pi_1(f) = f \text{ and } \Pi_2(f) = \varepsilon \text{ if } f \in \Sigma_e, \\ &\Pi_1(f) = \varepsilon \text{ and } \Pi_2(f) = f \text{ if } f \in \Sigma_e', \\ &\Pi_1((a,b)^d) = a^d \text{ and } \Pi_2((a,b)^d) = b^d \text{ if } (a,b)^d \in \Sigma_s \times \Sigma_s' \times \overline{\mathbb{T}}. \end{split}$$

We will show that for a suitable $SEL_{arepsilon}$ -language M we have

$$\sigma(L) = \Pi_2(\Pi_1^{-1}(L) \cap M)$$

$$\sigma^{-1}(L) = \Pi_1(\Pi_2^{-1}(L) \cap M)$$

The class $SEL_{arepsilon}$ is closed under projection, inverse projection and intersection.

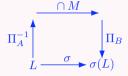
Closure under substitutions

Proof technique inspired from the word case

- Let $\sigma:A\to \mathcal{P}(B^*)$ be a rational substitution
- Let $\Pi_A: (A \uplus B)^* \to A^*$ and $\Pi_B: (A \uplus B)^* \to B^*$ be the projections

Let
$$M = \left(\bigcup_{a \in A} a\sigma(a)\right)^* \subseteq (A \uplus B)^*$$
 is rational.

Then,
$$\sigma(L)=\Pi_B(\Pi_A^{-1}(L)\cap M).$$
 Π_A^{-1}



This proof technique also applies to inverse substitutions: $\sigma^{-1}(L) = \prod_A (\prod_B^{-1}(L) \cap M)$.

Closure under SEL_{ε} -substitutions

Lemma

If L is in the class SEL_{ε} , then so is $\Pi_1(L)$.

Proof

$$\begin{array}{c}
g, f, \alpha \\
I
\end{array}$$

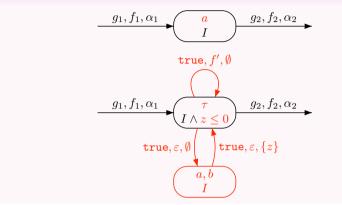
$$\begin{array}{c} g, f, \alpha \\ \hline \\ I \end{array}$$

Closure under SEL_{ε} -substitutions

Lemma

If L is in the class SEL_{ε} , then so is $\Pi_1^{-1}(L)$.

Proof



Closure under SEL_{ε} -substitutions

Definition of M

Words:
$$M = \left(\bigcup_{a \in A} a\sigma(a)\right)^*$$

For $f \in \Sigma_e$ and $a \in \Sigma_s \setminus \{\tau\}$, we define

$$\begin{array}{rcl} M_f & = & \{w \in SE(\hat{\Sigma}) \mid w = (\tau,b_0)^0 f_1(\tau,b_1)^0 f_2 \cdot \cdot \cdot (\tau,b_n)^0 \\ & & \quad \text{with } b_0^0 f_1 b_1^0 f_2 \cdot \cdot \cdot \cdot b_n^0 \in \sigma(f)\} \cdot f \\ M_a & = & \{w \in SE(\hat{\Sigma}) \mid w = (a,b_0)^{d_0} f_1(a,b_1)^{d_1} f_2 \cdot \cdot \cdot \\ & \quad \quad \text{with } b_0^{d_0} f_1 b_1^{d_1} f_2 \cdot \cdot \cdot \in \sigma(a^{d_0 + d_1 + \cdot \cdot \cdot})\} \\ M_\tau & = & \{(\tau,\tau)^d \mid d \in \overline{\mathbb{T}} \setminus \{0\}\} \end{array}$$

Note that each set M_f and M_a satisfies properties 1 and 2.

 $M = \{w_1w_2 \cdots \mid \exists a_1, a_2, \ldots \in \Sigma_e \cup \Sigma_s \text{ with } w_i \in M_{a_i} \text{ and } a_i \in \Sigma_s \Rightarrow a_{i+1} \neq a_i\}.$

Lemma

The language M is in the class $SEL_{arepsilon}$ and satisfies

- 1. $\pi_2(w) \in \sigma(\pi_1(w))$ for each $w \in M$,
- 2. $\forall u \in SE(\Sigma), \forall v \in \sigma(u), \exists w \in M \text{ such that } u = \pi_1(w) \text{ and } v = \pi_2(w).$

(ロ) (個) (置) (置) (置) (型) 9Qで 27/30

Closure under SEL_{ε} -substitutions

Lemma

Words:
$$M = \left(\bigcup_{a \in A} a\sigma(a)\right)^*$$

If $M \subseteq SE(\hat{\Sigma})$ satisfies

- 1. $\pi_2(w) \in \sigma(\pi_1(w))$ for each $w \in M$,
- 2. $\forall u \in SE(\Sigma), \forall v \in \sigma(u), \exists w \in M \text{ such that } u = \pi_1(w) \text{ and } v = \pi_2(w).$

Then.

- for $L \subseteq SE(\Sigma)$, we have $\sigma(L) = \pi_2(\pi_1^{-1}(L) \cap M)$,
- for $L \subseteq SE(\Sigma')$, we have $\sigma^{-1}(L) = \pi_1(\pi_2^{-1}(L) \cap M)$.

Proof

 $\sigma(L) \subseteq \pi_2(\pi_1^{-1}(L) \cap M):$

Let $v \in \sigma(L)$ and let $u \in L$ with $v \in \sigma(u)$.

From 2, $\exists w \in M$ with $\pi_1(w) = u$ and $\pi_2(w) = v$.

Then, $w \in \pi_1^{-1}(L) \cap M$ and $v \in \pi_2(\pi_1^{-1}(L) \cap M)$.

 $\pi_2(\pi_1^{-1}(L) \cap M) \subseteq \sigma(L)$:

Let $v \in \pi_2(\pi_1^{-1}(L) \cap M)$ and let $w \in \pi_1^{-1}(L) \cap M$ with $\pi_2(w) = v$.

We have $u = \pi_1(w) \in L$ and from 1 we get $v \in \sigma(u) \subseteq \sigma(L)$.

□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ₽ < □ ≥ </p>

Closure under inverse SEL-substitutions

The class SEL is not closed under arbitrary inverse SEL-substitutions

Let $\Sigma_s = \Sigma_s' = \{a, b\}$ and $\Sigma_e = \Sigma_e' = \{f\}$.

Let σ be the SEL-substitution defined by

 $L_a = \{a^1 f\}, L_b = \{b^0\} \text{ and } L_f = \{f\}.$

 $L = \{a^1 f b^0\}$ is a SEL.

 $\sigma^{-1}(L) = \{a^1b^0\}$ is not a SEL.

Theorem

The class SEL is closed under inverse SEL-substitution acting only on events: $L_a = \{a\} \times \overline{\mathbb{T}}$ for all $a \in \Sigma_s$.

Outline

Introduction

Signal-Event (Timed) Words and Automata

Signal-Event (Timed) Substitutions

Recognizable substitutions

5 Conclusion

Conclusion

- ► Signal-event words are the natural objects for studying refinements, abstractions and other problems.
- Extending classical results to SE-automata is not always easy due to ε -transitions, signal stuttering, unobservability of τ^0 , Zeno runs, ...
- ► We have proved closure properties (refinement, abstraction) for the general case of SE-automata.

