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Open / Reactive system

inputs from F outputs to £ N

Open system S

-

Model for the open system

» Transitions system A = (Q, X, qo, 9)

> @: finite or infinite set of states,
> §: deterministic or non deterministic transition function.

» ¥ =3%.WX%,. Controllable / Uncontrollable events.
» ¥ =13%,43,, Observable / Unobservable events.



Example: Elevator

Transition system

States:

position of the cabin

flag is_open for each door
flag is_called for each level
number of persons in the cabin

Events:
EO Z'LLO
DI call level ¢ enter/exit cabin
D open/close door i
move 1 level up/down

We get easily a finite and deterministic transition system.



Specification

Linear time: LTL, FO, MSO, regular, ...

» Safety: G(level # i — is_closed;)

> Liveness: G(is_called; — F(level =i A is_open,))

Branching time: CTL, CTL", p-calculus, ...

> AG(call;)T (call, is uncontrollable)
» AGEF(1level = 0 A is_open,)



Control problem

inputs from F outputs to E

e G & Specn?ocatlon

J




Control problem

4 inputs from F outputs to E N

Controller C Open system S Specnlcatnon
- /

Two problem
» Control: Given a system S and a specification ¢, decide whether there exists
a controller C' such that S ® C = ¢.
» Synthesis: Given a system S and a specification ¢, builda controller C' (if one
exists) such that S ® C' = ¢.

enables/disables actions

observation




Controller

Under full state-event observation
» Controller: f: Q(XQ)* — 2% with X, C f(=) for all z € Q(XQ)*.

» Controlled behavior: qo,a1,q1,as2,q2, ... with (¢;—1,a;,q;) € 6 and
a; € f(qulql .. 'gi—l) for all 7 > 0.




Controller

» Controller: f: Q(XQ)* — 2% with ¥, C f(z) for all z € Q(XQ)*.

» Controlled behavior: qo,a1,q1,as2,q2, ... with (¢;—1,a;,q;) € 6 and
RE f(qulql 000 Qi—l) for all i > 0.

» Controlled execution tree: t : D* — ¥ x @ with

> t(e) = (a,qo) (a € X fixed arbitrarily)
> forall z =dy---dn € D* with t(d1---d;) = (ai, ), we have
t(sons(z)) = {(a,q) | a € f(goaiq1 - angn) and (¢n,a,q) € d}.
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Remark: same as full state-event observation if the system is deterministic.




Controller

Under full state-event observation

» Controller: f: Q(XQ)* — 2% with X, C f(=) for all z € Q(XQ)*.

» Controlled behavior: qo,a1,q1,as2,q2, ... with (¢;—1,a;,q;) € 6 and
RE f(qulql 000 Qi—l) for all i > 0.
» Controlled execution tree: t : D* — ¥ x @ with

> t(e) = (a,qo) (a € X fixed arbitrarily)
> forall z =dy---dn € D* with t(d1---d;) = (ai, ), we have
t(sons(z)) = {(a,q) | a € f(goaiq1 - angn) and (¢n,a,q) € d}.

Under full event observation

» Controller: f:¥* — 2% with ¥, C f(z) for all x € B*.
Remark: same as full state-event observation if the system is deterministic.

Under partial event observation
» Controller: f: %% — 2% with ¥, C f(z) for all x € B*.

» Controlled behavior: qo, a1, q1,as2,q2, ... with (¢;—1,a;,q;) € 6 and
a; € f ngD(al .- -ai_l) for all 7 > 0.



Control versus Game

Correspondance

Transition system
Controllable events
Uncontrollable events
Behavior

Controller
Specification

Finding a controller

Game arena (graph).

Actions of player 1 (controller).

Action of player 0 (opponent, environment).
Play.

Strategy.

Winning condition.

finding a winning strategy.



Control versus Game

Correspondance

Transition system = Game arena (graph).

Controllable events

Actions of player 1 (controller).
Uncontrollable events

Action of player 0 (opponent, environment).

Behavior = Play.
Controller = Strategy.
Specification = Winning condition.

Finding a controller

finding a winning strategy.

Control problem

Given a system S and a specification ¢, does there exist a controller C' such that
LIC®S)C L(p)?

Theorem

If the system is finite state and the specification is regular then the control problem
is decidable.
Moreover, when (.S, ¢) is controllable, we can synthesize a finite state controller.



Ramadge - Wonham 87—

Control problem (Exact)

Given a system S (with accepting states) and a specification K C X*, does there
exist a controller C' such that L(C' ® S) = K?
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Control problem (Exact)

Given a system S (with accepting states) and a specification K C X*, does there
exist a controller C' such that L(C' ® S) = K?

> (S, Pref(K)) is controllable iff Pref(K) - 3, N Pref(£(S)) C Pref(K).
» (S, K) is controllable without deadlock iff
> Pref(K) - Xyu. NPref(L(S)) C Pref(K)
» Pref(K)NL(S) = K.
» If S is finite state and K regular then the control problem is decidable.
When (S, K) is controllable, we can synthesize a finite state controller.




Ramadge - Wonham 87—

Control problem (Exact)

Given a system S (with accepting states) and a specification K C X*, does there
exist a controller C' such that L(C' ® S) = K?

Theorem
> (S, Pref(K)) is controllable iff Pref(K) - ¥, N Pref(L£(S)) C Pref(K).
> (S, K) is controllable without deadlock iff

> Pref(K) - Xyu. NPref(L(S)) C Pref(K)
» Pref(K)NL(S) = K.

» If S is finite state and K regular then the control problem is decidable.
When (S, K) is controllable, we can synthesize a finite state controller.

Other results
control under partial observation
maximal controllable sub-specification
generalization to infinite behaviors (Thistle - Wonham)



Synthesis of reactive programs

Pnueli-Rosner 89

T Y
— AN

> (Q,: domain for input variable x
> @y domain for output variable y
Program: f: Qf — Q,

Input: 122 - € Q%.

v

v

v

Behavior: (z1,y1)(x2,y2)(x3,y3) - - with y, = fi(x1 - xy,) for all n > 0.
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Pnueli-Rosner 89

>

>

>
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Synthesis of reactive programs

T Y
— AN

@.: domain for input variable z

@y domain for output variable y

Program: f: Qf — Q,

Input: 122 - € Q%.

Behavior: (z1,y1)(x2,y2)(x3,y3) - - with y, = fi(x1 - xy,) for all n > 0.

Implementability problem

Given a linear time specification ¢ over the alphabet ¥ = @, X Qy,
Does there exist a program f such that all f-behaviors satisfy ¢?

Given a branching time specification ¢ over the alphabet ¥ = Q, X Qy,
Does there exist a program f such that its run-tree satisfies ?



Synthesis of reactive programs

Implementability problem

Given a linear time specification ¢ over the alphabet ¥ = Q, X Qy,
Does there exist a program f such that all f-behaviors satisfy ¢?

Implementability # Satisfiability

» Q. ={0,1} and p =F(z = 1)
» ¢ is satisfiable: (1,0)¥ = ¢
» ( is not implementable since the input is not controllable.




Synthesis of reactive programs

Implementability problem

Given a linear time specification ¢ over the alphabet ¥ = Q, X Qy,
Does there exist a program f such that all f-behaviors satisfy ¢?

Implementability # Satisfiability
» Qy={0,1} and ¢ = F(z = 1)
» ¢ is satisfiable: (1,0)¥ = ¢
» ( is not implementable since the input is not controllable.

Implementability # Validity of V' 35 ¢
s Qz:Qy:{Ovl} andp=(y=1)«—Fz=1)
- Vi 37 ¢ is valid.

» ( is not implementable by a reactive program.
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Synthesis of reactive programs

Implementability problem

Given a linear time specification ¢ over the alphabet ¥ = Q, X Qy,
Does there exist a program f such that all f-behaviors satisfy ¢?

Implementability # Satisfiability
» Qy={0,1} and ¢ = F(z = 1)
» ¢ is satisfiable: (1,0)¥ = ¢
» ( is not implementable since the input is not controllable.

Implementability # Validity of V' 35 ¢
s Qz:Qy:{Ovl} andp=(y=1)«—Fz=1)
- Vi 37 ¢ is valid.

» ( is not implementable by a reactive program.

For non-reactive terminating programs, Implementability = Validity of VZ 35 ¢



Synthesis of reactive programs

Implementability problem

Given a linear time specification ¢ over the alphabet ¥ = Q, X Qy,
Does there exist a program f such that all f-behaviors satisfy ¢?

Theorem (Pnueli-Rosner 89)
» The specification ¢ € LTL is implementable iff the formula

Agp N AG( /\ EX(z = a))

aEQx
is satisfiable.

> When ¢ is implementable, we can construct a finite state implementation
(program) in time doubly exponential in .



Program synthesis versus System control

Equivalence

The implementability problem for




Outline

Control for sequential systems

© Control for distributed systems

Synchronous semantics

Asynchronous semantics
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Distributed control

inputs from F outputs to

N/

Open distributed system S

................
...................

Specification
¥

J




Distributed control

4 inputs from F outputs to )
Controlled open distributed system S
C [T I . C
Specification
2
...................
- J

Two problems, again

Decide whether there exists a distributed controller st.
(S1®@C1) |-+ | (Sn®Cr) | E E .
Synthesis: If so, compute such a distributed controller.

Peterson-Reif 1979, Pnueli-Rosner 1990

In general, the problems are undecidable.




Architectures with shared variables

Architecture A = (P,V, R, W)

» P finite set of processes/agents.
» Y finite set of Variables.
» RCPxV: (a,x) € Riff a reads x.

> R(a) variables read by process a € P,
» R !(x) processes reading variable z € V.

» WCPxV: (a,x) € W iff a writes to z.

> W (a) variables written by process a € P,
> W'(x) processes writing to variable z € V.

Example




Distributed systems with shared variables

Distributed system/plant/arena
» A= (P,V,R,W) architecture.
> Q. (finite) domain for each variable z € V.

> 04 € QR(a) X Qw(a) legal actions/moves for process/player a € P.
» ¢ € Qy initial state

where Q7 =[], c; Qs for I C V.



Distributed Synthesis

Problem

Given a distributed system and a specification

Problem existence/synthesis of programs/strategies for the processes/players
such that the system satisfies the specification
(whatever the environment/opponent does).
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Problem existence/synthesis of programs/strategies for the processes/players
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Distributed Synthesis

Given a distributed system and a specification

Problem existence/synthesis of programs/strategies for the processes/players
such that the system satisfies the specification
(whatever the environment/opponent does).

Main parameters

» Which subclass of architectures?

» Which semantics?
synchronous (with our without delay), asynchronous

» What kind of specification?
LTL, CLT*, u-calculus
Rational, Recognizable
word /tree

» What kind of memory for the programs?
memoryless, local memory, causal memory
finite or infinite memory



Outline

Control for sequential systems

Control for distributed systems

© Synchronous semantics

Asynchronous semantics

19 / 65



Pnueli-Rosner (FOCS’90)

Pipeline

» Unique writer: [W~!(z)| =1 for all x € ¥

» Unique reader: |R~!(z)| =1 forall z € V

» Acyclic graph (0-delay)

> No restrictions on moves: d, = Qr(a) X Qw (a) for all a € P.

» Synchronous behaviors: ¢°q'q?--- where ¢" € )y, are global states.
» program with local memory: f, : Q’fz(a) — Qw(a) forall a € P.

Specification: LTL over input and output variables only.

> Input variables: In = W (environment)
> output variables: Out = R(environment)

v



0-delay synchronous semantics

Example

Programs: f, : Q. — Qg and f- : (Qr X Q)" — Q.
> Input: ( Zl w2ty ) € (Qu X Qy)~.

1 V2 U3

Uy U2 U3
U1 V2 U3
r1 X9 I3
z1 zZ9 zZ3

O

o o) oo (o)) o L 0=

» Behavior:



Undecidability

Architecture Ay

Theorem (Pnueli-Rosner FOCS'90)

The synthesis problem for architecture Ay and LTL (or CTL) specifications is unde-
cidable.

Proof
Reduction from the halting problem on the empty tape.




Undecidability proof 1

SPEC;: processes a and b must output configurations

@ o 07170--- : n(v) =p
la| [b]

(x)  (¥) #PC#“ : where C € T*QI'*



Undecidability proof 1

SPEC;: processes a and b must output configurations
@ o 071P0--- : n(v) =p

(x)  (¥) #PC#“ : where C € T*QI'*

(sz/\yz#)W(vz1/\(v=1/\y=#)W(v=0/\y€I‘*QI‘+#“’))

where

y € T*QUT#¥ = yelU (yEQ/\X(yEFU(yEF/\XGy:#)))



Undecidability proof 2

SPEC,: processes a and b must start with the first configuration

@ 0 0710--- : n(v) =
la] [
@ @ #q-i—lcl#u



Undecidability proof 2

SPEC,: processes a and b must start with the first configuration

@ 0 0710--- : n(v) =
o] [b]
@ @ HITLC 4

szW(vzl/\X(UZO—WJGCI#w))



Undecidability proof 3

SPEC;: if n(u) = n(v) are synchronized then z =y

09170--- (w) (v) 01°0--.
o] [o]

HITPOHw @ @ HtP O



Undecidability proof 3

SPEC;: if n(u) = n(v) are synchronized then z =y

09170--- (w) (v) 01°0--.
o] [o]

HITPOHw @ @ HtP O

n(u) = n(v) — Gz = y)



Undecidability proof 4
SPEC,: if n(u) = n(v) + 1 are synchronized then C, - C,

091P*+1Q. .. @ o 09tiirQ. ..
o] [o]

HatPHLC e e 0 Hatptl O #v



Undecidability proof 4
SPEC,: if n(u) = n(v) + 1 are synchronized then C, - C,

091P*+1Q. .. @ o 09tiirQ. ..
o] [o]

HatPHLC e e 0 Hatptl O #v

n(u)=nlv)+1 — zxz=yU (Trans(y,x) AX3Gr = y)
where Trans(y, ) is defined by

\/(y:cpa/\ac:qcb) \Y% \/(y:pac/\ac:ch)
(p,a,q,b,<)ET,c€T (p,a,q,b,—)ET,c€L
v \ (y=pa# Az =bgD)

(p;a,q,b,—)€T



Undecidability proof 5

Lemma: winning strategies must simulate the Turing machine

For each p > 1, if n(u) = p then Cy, = C, is the p-th configuration of the Turing
machine starting from the empty tape.

Proof
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Lemma: winning strategies must simulate the Turing machine

For each p > 1, if n(u) = p then Cy, = C, is the p-th configuration of the Turing
machine starting from the empty tape.

Proof

0910 - - - @ 0
SPEC; |a| |[b]
#icige () (Y



Undecidability proof 5

Lemma: winning strategies must simulate the Turing machine

For each p > 1, if n(u) = p then Cy, = C, is the p-th configuration of the Turing
machine starting from the empty tape.

Proof

0atlirQ. .. @ 0
Induction n n
#q+p+1 Cp#“’ e 0



Undecidability proof 5

Lemma: winning strategies must simulate the Turing machine

For each p > 1, if n(u) = p then Cy, = C, is the p-th configuration of the Turing
machine starting from the empty tape.

Proof
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Undecidability proof 5

Lemma: winning strategies must simulate the Turing machine

For each p > 1, if n(u) = p then Cy, = C, is the p-th configuration of the Turing
machine starting from the empty tape.

Proof

021rt1Q. .. @ 0 0atiirQ. ..
SPEC, la| [b|  SPECs

#q+p+1cp+1#w e 0 #q+p+1cp#w



Undecidability proof 5

Lemma: winning strategies must simulate the Turing machine

For each p > 1, if n(u) = p then Cy, = C, is the p-th configuration of the Turing
machine starting from the empty tape.

Proof

0217 +1Q. .. @ 0 0atiirQ. ..
SPEC, la| [b|  SPECs

#q+p+lcp+l#w e 0 #q+p+lcp#w

Corollary

Specifications 1-4 and 5: Gz # stop are implementable iff the Turing machine does
not halt starting from the empty tape.



Communication allows to cheat
Architecture with communication

» Strategy for a:

> copy u to z
#PTICL 49 if p =1 (for SPEC,)
#HPTICL,#Y  othewise (for SPECy).

» Strategy for b: if z = 0717'0--- and v = 09170 - - - then

> if u=021P0--- then:c:{

#7904 if p=1 (for SPECy)
y = #PTIC,#Y ifp=p' >1and g =q (for SPEC;)
#PHIC1 4~  othewise (for SPEC,).



More undecidable architectures

Exercices

1. Show that the architecture below is undecidable.

2. Show that the undecidability results also hold for CTL specifications



Uncomparable information

Definition
For an output variable y, View(y) is the set of input variables  such that there is
a path from z to y.

Definition
An architecture has uncomparable information if there exist y;,y2 output variables
such that View(yz) \ View(y1) # 0 and View(y;) \ View(yz2) # 0.

? 9
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Uncomparable information

Definition

For an output variable y, View(y) is the set of input variables  such that there is
a path from z to y.

Definition

An architecture has uncomparable information if there exist y;,y2 output variables
such that View(yz) \ View(y1) # 0 and View(y;) \ View(ya) # 0.
Otherwise it is said to have preordered information.

PYTY
=
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Uncomparable information yields
undecidability

Architectures with uncomparable information are undecidable for LTL or CTL input-
output specifications.
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Uncomparable information yields
undecidability

Architectures with uncomparable information are undecidable for LTL or CTL input-
output specifications.
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Decidability

Pipeline

Pnueli-Rosner (FOCS'90)

The synthesis problem for pipeline architectures and LTL specifications is non ele-
mentary decidable.




Decidability proof 1

Pipeline

@—>

a&b

b




Decidability proof 1

Pipeline

@—ja kb

—®
—0

From distributed to global

If fy: QFf — Qy and f. : Q} — Q. are local (distributed) strategies then we can
define an equivalent global strategy h = f, ® f. : QF — Q, X Q. by

h(z1-xn) = Yn, f2(y1- - yn))  where gy, = fylzr, -, z).



Decidability proof 1

Pipeline
@O—>akb ::

From distributed to global

If fy: QFf — Qy and f. : Q} — Q. are local (distributed) strategies then we can
define an equivalent global strategy h = f, ® f. : QF — Q, X Q. by

h(xlxn) :(ynafz(yl"'yn)) where yi:fy(xla"‘ 7xi)-

From global to distributed

z should only depend on y.
We cannot transmit = to y if |Qy] < |Qz].
We have to check whether there exists a global strategy that can be distributed.



Decidability proof 2

Pipeline

@—»a&b_’@:

1. We first solve the global game: We obtain an ND tree-automaton A accepting
the global strategies h : QF — Q, % Q. that implement the specification.
Easily obtained from a ND tree automaton for the specification.




Decidability proof 2

Pipeline

@—»a&b_’@:

1. We first solve the global game: We obtain an ND tree-automaton A accepting

the global strategies h : QF — Q, % Q. that implement the specification.
Easily obtained from a ND tree automaton for the specification.

2. We build from A an alternating tree automaton A’ accepting a local strategy
[ Qf — Q. iff there exists a local strategy f, : QF — @, such that
h=f,®f :QF — Qy x Q. is accepted by A



Tree automata
non deterministic transitions

/N

a1 ag
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Tree automata

non deterministic transitions

Alternating transitions

a
Y\
aq a9



Tree automata

non deterministic transitions

Alternating transitions

Pa
Y\
aq a9

P1 p2Aps



Tree automata

non deterministic transitions

Pa
A
aq ag
p1 b2
Alternating transitions
Pa Pa
aq a9 aq a9 as

P1 p2 Aps or b1 P2 p3



Decidability proof 3

@O a ::

1. We first solve the global game: We obtain an ND tree-automaton A accepting
the global strategies h : QF — Q, % Q. that implement the specification.
Easily obtained from a ND tree automaton for the specification.

2. We build from A an alternating tree automaton A’ accepting a local strategy
Iz 8 Q;r — Q) iff there exists a local strategy f, : @ — @, such that
h=f,®f :QFf — Qy x Q. is accepted by A



Decidability proof 3
Proof

@O a ::

1. We first solve the global game: We obtain an ND tree-automaton A accepting
the global strategies h : QF — Q, % Q. that implement the specification.
Easily obtained from a ND tree automaton for the specification.

2. We build from A an alternating tree automaton A’ accepting a local strategy
Iz 8 Q;r — Q) iff there exists a local strategy f, : @ — @, such that
h=f,®f :QFf — Qy x Q. is accepted by A

A /[

P (y,2)

yl,Zl y2,22 yz,Zz
b1 P2 p3



Decidability proof 3
Proof

@O a ::

1. We first solve the global game: We obtain an ND tree-automaton A accepting
the global strategies h : QF — Q, % Q. that implement the specification.
Easily obtained from a ND tree automaton for the specification.

2. We build from A an alternating tree automaton A’ accepting a local strategy
Iz 8 Q;r — Q) iff there exists a local strategy f, : @ — @, such that
h=f,®f :QFf — Qy x Q. is accepted by A

/e : y
Y e Y ) /

U1 Ys Y2

yl, Zl y2, 22 y2, 22 <1 ) 22
p1 P2 P3 (x1,p1)  (z2,p2) (x3,p3)



Decidability proof 4
Proof

A’ alternating

1. We first solve the global game: We obtain an ND tree-automaton A accepting
the global strategies h : QF — Q, X Q. that implement the specification.
Easily obtained from a ND tree automaton for the specification.

2. We build from A an alternating tree automaton A’ accepting a local strategy
f2: Q) — Q. iff there exists a local strategy f, : Q@ — @, such that
h=f,®f.:QF — Qy x Q. is accepted by A



Decidability proof 4
Proof

A’ alternating
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Decidability

Pipeline

Pnueli-Rosner (FOCS'90)

The synthesis problem for pipeline architectures and LTL specifications is non ele-
mentary decidable.

Peterson-Reif (FOCS'79)

multi-person games with incomplete information.
= non-elementary lower bound for the synthesis problem.
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Kupferman-Vardi (LICS'01)

The synthesis problem is non elementary decidable for

» one-way chain, one-way ring, two-way chain and two-way ring,

» CTL* specifications (or tree-automata specifications) on all variables,
» synchronous, 1-delay semantics,

» local strategies.

two-way chain




1-delay synchronous semantics

Example

Programs: f, : Q% — Qu and f. : (Q X Q)" — Q-.
- (“1 up ug ) € (Qu x Qu)*.

V1 V2 U3

Uy U2 U3
U1 V2 U3
r1 X9 I3
z1 zZ9 zZ3

» Behavior:

o Tn+1 = fx(ul o un)
with { S = ol ) (i ) for all n > 0.
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Decidability

Adequately connected sub-architecture Q. =Qforallz eV

@— —®

®— —®

Pnueli-Rosner (FOCS'90)

» An adequately connected architecture is equivalent to a singleton architecture.

» The synthesis problem is decidable for LTL specifications and pipelines of
adequately connected architectures.



Information fork criterion
(Finkbeiner—Schewe LICS ’05)
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Uniformly well connected architectures

Definition

An architecture is uniformly well connected if there is a uniform way to route variables
in View(v) to v for each output variable v.

» If the capacity of internal variables is big enough then the architecture is
uniformly well-connected.

» If the architecture is uniformly well-connected then we can use causal
strategies instead of local ones.

Proposition

Checking whether a given architecture is uniformly well connected is NP-complete.

Proof

Reduction to the multicast problem in Network Information Flow.
The multicast problem is NP-complete (Rasala Lehman-Lehman 2004).




Uniformly well connected architectures

Theorem (PG, Nathalie Sznajder, Marc Zeitoun)

Uniformly well connected architectures with preordered information are decidable for
CTL* external specifications.

Proof.
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Theorem (PG, Nathalie Sznajder, Marc Zeitoun)

Uniformly well connected architectures with preordered information are decidable for
CTL* external specifications.
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Uniformly well connected architectures

Theorem (PG, Nathalie Sznajder, Marc Zeitoun)

Uniformly well connected architectures with preordered information are decidable for
CTL* external specifications.

T99Y
\ =T
OO o o

Theorem: Kupferman-Vardi (LICS'01)

The synthesis problem is decidable for pipeline architectures and CTL* specifications
on all variables.
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Robust specifications

Definition

A specification ¢ is robust if it can be written o = \/ A\
only on View(z) U {z}.
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Robust specifications

Definition

A specification ¢ is robust if it can be written o = \/ A\
only on View(z) U {z}.

~cOut Pz Where . depends

Theorem

The synthesis problem for uniformly well-connected architectures and external and
robust CTL* specifications is decidable.

Proof.
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Robust specifications

Definition

A specification ¢ is robust if it can be written ¢ = \/ \_ .o, ¥~ Where ¢ depends
only on View(z) U {z}.

Theorem

The synthesis problem for uniformly well-connected architectures and external and
robust CTL* specifications is decidable.

Proof.

N




Open problem

» Decidability of the distributed control/synthesis problem for robust and
external specifications.




Outline

Control for sequential systems

Control for distributed systems

Synchronous semantics

© Asynchronous semantics
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An example: Romeo and Juliet

Romeo and Juliet against the environment

Want to communicate through the same communication line.

At any time, one line is broken.

Environment looks where R&J are connected, and then, atomically, changes
(possibly) the broken line.

Romeo/Juliet looks status of lines and, atomically, chooses where to connect.



Romeo and Juliet (continued)

Architecture
Variables:

z1: Romeo’s current line. Q=11

x2: broken line Q2=1{1,2,3,4}

x3: Juliet’s current line. Qs =A{1
Agents: Romeo, Juliet and Environment.

Read/Write table

Romeo Juliet Environment
Read {331,.232} {332,33‘3} {331,3;‘2,33‘3}
Write | {1} {z3} {z2}
1 «—»R [ JETTT T o SRR
IR O read-write ability

E IJ O read-only ability



Romeo and Juliet (continued)

Legal moves: d, C Qr) X Qw(a)
r1:3 xlzljg—»m:S
To 1 To 4 To i1

{E3Z4



Romeo and Juliet (continued)
Legal moves: 9, C QR(a) X Qw(a)
Ty :3 xlzlja—»xlz?)
To 1 To 4 To i1
xIs . 4

A distributed play of the asynchronous system, R & J against E

I @
1 R 3 R 4
To #
- Il Jlo Jl4 E E' J1
1 R R
. #/2\E/1\E
3 4
1 \J J/ \J



Distributed Behaviors

A play is a Mazurkiewicz (real) trace

1 R R
.. /2\ 1A
» A finite play: 1 # E E

» Move: extension of the current Mazurkiewicz trace following the rules.

v

The game is not “position based”, nor “turn based".

> Winning condition: set of finite or infinite Mazurkiewicz traces /v C R(X, D).
Team 0 wins plays of )V and loses plays of R(X, D) \ V.

Romeo and Juliet
W imposes fairness conditions to the environment.
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Memory for strategies

» Each player only has a partial view of the global history.

» Memoryless: move can depend only on the current state.
» Local memory: a player can remember its read history.

1 2 1 77

Causal memory (intuitively, maximal history a player can observe)

> Players gather and forward as much information as possible.

» but no global view, the choice for an action cannot depend on a concurrent
event.



Winning strategies
Tuple (fa)aep, Where f, tells player a € Py how to play.

Memoryless fa 1 Qr(a) = Qw(a) U Stop

Local memory fa 1 (Qr(a))"QR(a) = Qw(a) U Stop
Causal memory  f, : MI(3, D) X Qr(a) — Qw(a) U Stop
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Tuple (fa)aep, Where f, tells player a € Py how to play.

Memoryless fa 1 Qr(a) = Qw(a) U Stop
Local memory fa 1 (Qr(a))"QR(a) = Qw(a) U Stop
Causal memory  f, : MI(3, D) X Qr(a) — Qw(a) U Stop

/\/\/w
WV

f-maximal f-plays

Given a strategy f = (fa)acp,, one looks at plays ¢ which are

» consistent with f: all a-moves played according to f, (f-play).
» maximal: f predicts to Stop for all a-moves enabled at ¢ with a € Py.

Winning strategies
A strategy f is winning in G if all f-maximal f-plays in G are in W.



Finite abstraction of the causal memory

Distributed memory

A distributed memory is a mapping p : M(X, D) — M satisfying the following
equivalent properties:

1. u=Y(m) is recognizable for each m € M,

2. p is an abstraction of an asynchronous mapping (cf. Zielonka),

3. p can be computed in a distributed way
(allowing additional contents inside existing communications (piggy-backing),
but no extra communications).

Strategy with memory p

fa: M X Qpr(a) — Qw(a) U Stop
the associated strategy is defined by
fE@a) = fa(p(t),q)

If M is finite then f* is a distributed strategy with finite memory.
If |M| =1 then f* is memoryless.



Embedding causal memory inside games

Proposition: PG-Lerman-Zeitoun (LATIN'04)

For a distributed game G and a distributed memory p, one can build a game G*
such that

team 0 has a WDS in G with memory p
iff

team 0 has a memoryless WDS in G*.

GH=Gxpu




From distributed to sequential games
Theorem: PG-Lerman-Zeitoun (LATIN'04)

Given a finite distributed game (G,), we can effectively build a finite sequential
2-players game (G W) st. the following are equivalent:

> There exists a memoryless distributed WS for team 0 in (G, W).

» There exists a memoryless WS for player 0 in (é, W)
» There exists a WS for player 0 in (G, VNV)

Moreover, if W is recognizable then so is W
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From distributed to sequential games

Theorem: PG-Lerman-Zeitoun (LATIN'04)

Given a finite distributed game (G,), we can effectively build a finite sequential
2-players game (G W) st. the following are equivalent:

> There exists a memoryless distributed WS for team 0 in (G, W).

» There exists a memoryless WS for player 0 in (é, W)
» There exists a WS for player 0 in (G, VNV)

Moreover, if W is recognizable then so is )7\7

Naive idea Consider the game on the global transition system.

Main problem The controller has more information than its causal memory.
Solution

» The opponent controls the linearization to be played.
» Using reset moves, he can replay different linearizations for the same play.

» The winning condition W makes sure that the strategy followed by the
controller is indeed distributed.



(Un)deciding games

Proposition: (Folklore)

Deciding whether team 0 has a distributed WS with causal memory is undecidable
for rational winning conditions.

Proof. Simple reduction of the universality problem for rational trace languages.



(Un)deciding games

Proposition: (Folklore)

Deciding whether team 0 has a distributed WS with causal memory is undecidable
for rational winning conditions.

Proof. Simple reduction of the universality problem for rational trace languages.

Peterson-Reif Madhusudan—Thiagarajan Bernet—Janin—Walukiewicz

Deciding whether team 0 has a distributed WS with local memory is undecidable
even:

» for reachability or safety winning conditions.

» with 3 players against the environment.



Series-parallel architectures

Theorem: PG-Lerman-Zeitoun (FSTTCS'04)

Distributed games with recognizable winning conditions are decidable for series-
parallel systems and causal memory strategies.




Series-parallel architectures

Theorem: PG-Lerman-Zeitoun (FSTTCS'04)

Distributed games with recognizable winning conditions are decidable for series-
parallel systems and causal memory strategies.

Definition : let A = (P,V, R, W) be some architecture.

» Ais a parallel product if
P =AW B with R(a) N W (b) = 0 for all (a,b) € A x B.

v

A is a serial product if
P =AW B with R(a) "W (b) # 0 for all (a,b) € A x B.

» A is series-parallel if it can be obtained from singletons (|P| = 1) using serial
and parallel compositions.

v

A is series-parallel iff the associated dependence relation does not contain a
Py: a—b— c—d as induced subgraph.

v

Behaviors of series parallel architectures are series-parallel posets.



Proof outline

Team 0 has a WDS = it has a WDS with a “small” distributed memory.
Induction on ..

Difficult case: serial product.

A B A

1. AWS on AW B induces WS on the restrictions of the game to A and B.
2. Replace the WS on A, B by WS with small memory (induction).
3. Finally, glue together these WS on A and B to obtain a WS on AU B using

small memory.
Main problem

Team 0 must know on which small game it is playing.

Team 0 has to compute this information in a distributed way.



Madhusudan and Thiagarajan (Concur’02)

Setting
> Architecture: A= (P,V,R,W) with R(a) = W (a) for all a € P.
> Moves: §, are built from local moves for variables 6, C Qg X Q:

= I[ b

zER(a)

» Strategies with local memory: associated with variables and not with agents,
and only predict the next actions and not the next state:

fa: : Q; s 2R71(w)
action a is enabled by (f;)zey at some finite play ¢ if

Vz € R(a), a € fz(rq, (1)

» The environment decides which a-transition should be taken among the
actions a enabled by the strategies.



Madhusudan and Thiagarajan (Concur’02)

Restricted control synthesis problem
Given a distributed system and a recognizable specification,

Question existence of a clocked and com-rigid non-blocking winning
distributed strategy with local memory.

» clocked: f,(w) only depends on |w].
» com-rigid: a,b € f,(w) implies R(a) = R(b).



Madhusudan and Thiagarajan (Concur’02)

Restricted control synthesis problem

Given a distributed system and a recognizable specification,

Question existence of a clocked and com-rigid non-blocking winning
distributed strategy with local memory.

» clocked: f,(w) only depends on |w].
» com-rigid: a,b € f,(w) implies R(a) = R(b).

1. The restricted control synthesis problem is decidable.

2. It becomes undecidable if one of the red condition is dropped.



Mohalik and Walukiewicz (FSTTCS'03)

> Controllable actions: R(a) = W (a) is a singleton for all a € Py.
» Environment actions: R(e) = W(e) =V and P; = {e}.
» Moves: §. C Qy X Qy.

» Strategies: local memory with stuttering reduction so that a player a € Py
cannot see how long it has been idle.

» Previous settings with local memory can be encoded.

> two constructions to solve the distributed control problem subsuming
previously known decidable cases with local memory.



Open problems

» Generalization to arbitrary symmetric architectures.

» Generalization to non-symmetric architectures.

» Reasonable upper bounds for synthesis?



Symmetric architecture

Architecture A = (P,V, R, W)

... [ NYaeP 0#W(a)C R(a)
> Restrictions: { Va,be P R(a) NW(b) £ 0 < R(b) N W(a) % 0

» Dependence: a D b <= R(a) NW(b) # 0 < R(b) "W (a) # 0

Legal and forbidden architectures

BCRE B e
R R S
ED St Iv

o

OK OK Forbidden (not symmetric)
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