
1 / 65

Distributed synthesis: synchronous and

asynchronous semantics

Paul Gastin

LSV

ENS de Cachan & CNRS

Paul.Gastin@lsv.ens-cachan.fr

EPIT, May 31st, 2006

2 / 65

Outline

1 Control for sequential systems

Control for distributed systems

Synchronous semantics

Asynchronous semantics

3 / 65

Open / Reactive system

inputs from E outputs to E

Open system S

Model for the open system
◮ Transitions system A = (Q, Σ, q0, δ)

◮ Q: finite or infinite set of states,
◮ δ: deterministic or non deterministic transition function.

◮ Σ = Σc ⊎ Σuc Controllable / Uncontrollable events.

◮ Σ = Σo ⊎ Σuo Observable / Unobservable events.

4 / 65

Example: Elevator

Transition system

◮ States:

◮ position of the cabin
◮ flag is open for each door
◮ flag is called for each level
◮ number of persons in the cabin

◮ Events:

Σo Σuo

Σuc call level i enter/exit cabin
Σc open/close door i

move 1 level up/down

◮ We get easily a finite and deterministic transition system.

5 / 65

Specification

Linear time: LTL, FO, MSO, regular, . . .
◮ Safety: G(level 6= i −→ is closedi)

◮ Liveness: G(is calledi −→ F(level = i ∧ is openi))

Branching time: CTL, CTL∗, µ-calculus, . . .
◮ AG〈calli〉⊤ (calli is uncontrollable)

◮ AGEF(level = 0 ∧ is open0)

6 / 65

Control problem

inputs from E outputs to E

Open system S
Specification

ϕ

Two problem
◮ Control: Given a system S and a specification ϕ, decide whether there exists

a controller C such that S ⊗ C |= ϕ.

◮ Synthesis: Given a system S and a specification ϕ, builda controller C (if one
exists) such that S ⊗ C |= ϕ.

6 / 65

Control problem

inputs from E outputs to E

Open system S
Specification

ϕ
Controller C

enables/disables actions

observation

Two problem
◮ Control: Given a system S and a specification ϕ, decide whether there exists

a controller C such that S ⊗ C |= ϕ.

◮ Synthesis: Given a system S and a specification ϕ, builda controller C (if one
exists) such that S ⊗ C |= ϕ.

7 / 65

Controller
Under full state-event observation

◮ Controller: f : Q(ΣQ)∗ → 2Σ with Σuc ⊆ f(x) for all x ∈ Q(ΣQ)∗.

◮ Controlled behavior: q0, a1, q1, a2, q2, . . . with (qi−1, ai, qi) ∈ δ and
ai ∈ f(q0a1q1 · · · qi−1) for all i > 0.

◮ Controlled execution tree: t : D∗ → Σ×Q with
◮ t(ε) = (a, q0) (a ∈ Σ fixed arbitrarily)
◮ for all x = d1 · · · dn ∈ D∗ with t(d1 · · · di) = (ai, qi), we have

t(sons(x)) = {(a, q) | a ∈ f(q0a1q1 · · · anqn) and (qn, a, q) ∈ δ}.

Under full event observation
◮ Controller: f : Σ∗ → 2Σ with Σuc ⊆ f(x) for all x ∈ Σ∗.

Remark: same as full state-event observation if the system is deterministic.

Under partial event observation

◮ Controller: f : Σ∗o → 2Σ with Σuc ⊆ f(x) for all x ∈ Σ∗.

◮ Controlled behavior: q0, a1, q1, a2, q2, . . . with (qi−1, ai, qi) ∈ δ and
ai ∈ f ◦ΠΣo

(a1 · · · ai−1) for all i > 0.

7 / 65

Controller
Under full state-event observation

◮ Controller: f : Q(ΣQ)∗ → 2Σ with Σuc ⊆ f(x) for all x ∈ Q(ΣQ)∗.

◮ Controlled behavior: q0, a1, q1, a2, q2, . . . with (qi−1, ai, qi) ∈ δ and
ai ∈ f(q0a1q1 · · · qi−1) for all i > 0.

◮ Controlled execution tree: t : D∗ → Σ×Q with
◮ t(ε) = (a, q0) (a ∈ Σ fixed arbitrarily)
◮ for all x = d1 · · · dn ∈ D∗ with t(d1 · · · di) = (ai, qi), we have

t(sons(x)) = {(a, q) | a ∈ f(q0a1q1 · · · anqn) and (qn, a, q) ∈ δ}.

Under full event observation
◮ Controller: f : Σ∗ → 2Σ with Σuc ⊆ f(x) for all x ∈ Σ∗.

Remark: same as full state-event observation if the system is deterministic.

Under partial event observation

◮ Controller: f : Σ∗o → 2Σ with Σuc ⊆ f(x) for all x ∈ Σ∗.

◮ Controlled behavior: q0, a1, q1, a2, q2, . . . with (qi−1, ai, qi) ∈ δ and
ai ∈ f ◦ΠΣo

(a1 · · · ai−1) for all i > 0.

7 / 65

Controller
Under full state-event observation

◮ Controller: f : Q(ΣQ)∗ → 2Σ with Σuc ⊆ f(x) for all x ∈ Q(ΣQ)∗.

◮ Controlled behavior: q0, a1, q1, a2, q2, . . . with (qi−1, ai, qi) ∈ δ and
ai ∈ f(q0a1q1 · · · qi−1) for all i > 0.

◮ Controlled execution tree: t : D∗ → Σ×Q with
◮ t(ε) = (a, q0) (a ∈ Σ fixed arbitrarily)
◮ for all x = d1 · · · dn ∈ D∗ with t(d1 · · · di) = (ai, qi), we have

t(sons(x)) = {(a, q) | a ∈ f(q0a1q1 · · · anqn) and (qn, a, q) ∈ δ}.

Under full event observation
◮ Controller: f : Σ∗ → 2Σ with Σuc ⊆ f(x) for all x ∈ Σ∗.

Remark: same as full state-event observation if the system is deterministic.

Under partial event observation

◮ Controller: f : Σ∗o → 2Σ with Σuc ⊆ f(x) for all x ∈ Σ∗.

◮ Controlled behavior: q0, a1, q1, a2, q2, . . . with (qi−1, ai, qi) ∈ δ and
ai ∈ f ◦ΠΣo

(a1 · · · ai−1) for all i > 0.

7 / 65

Controller
Under full state-event observation

◮ Controller: f : Q(ΣQ)∗ → 2Σ with Σuc ⊆ f(x) for all x ∈ Q(ΣQ)∗.

◮ Controlled behavior: q0, a1, q1, a2, q2, . . . with (qi−1, ai, qi) ∈ δ and
ai ∈ f(q0a1q1 · · · qi−1) for all i > 0.

◮ Controlled execution tree: t : D∗ → Σ×Q with
◮ t(ε) = (a, q0) (a ∈ Σ fixed arbitrarily)
◮ for all x = d1 · · · dn ∈ D∗ with t(d1 · · · di) = (ai, qi), we have

t(sons(x)) = {(a, q) | a ∈ f(q0a1q1 · · · anqn) and (qn, a, q) ∈ δ}.

Under full event observation
◮ Controller: f : Σ∗ → 2Σ with Σuc ⊆ f(x) for all x ∈ Σ∗.

Remark: same as full state-event observation if the system is deterministic.

Under partial event observation

◮ Controller: f : Σ∗o → 2Σ with Σuc ⊆ f(x) for all x ∈ Σ∗.

◮ Controlled behavior: q0, a1, q1, a2, q2, . . . with (qi−1, ai, qi) ∈ δ and
ai ∈ f ◦ΠΣo

(a1 · · · ai−1) for all i > 0.

8 / 65

Control versus Game
Correspondance

Transition system = Game arena (graph).

Controllable events = Actions of player 1 (controller).

Uncontrollable events = Action of player 0 (opponent, environment).

Behavior = Play.

Controller = Strategy.

Specification = Winning condition.

Finding a controller = finding a winning strategy.

Control problem

Given a system S and a specification ϕ, does there exist a controller C such that
L(C ⊗ S) ⊆ L(ϕ)?

Theorem
If the system is finite state and the specification is regular then the control problem
is decidable.
Moreover, when (S, ϕ) is controllable, we can synthesize a finite state controller.

8 / 65

Control versus Game
Correspondance

Transition system = Game arena (graph).

Controllable events = Actions of player 1 (controller).

Uncontrollable events = Action of player 0 (opponent, environment).

Behavior = Play.

Controller = Strategy.

Specification = Winning condition.

Finding a controller = finding a winning strategy.

Control problem

Given a system S and a specification ϕ, does there exist a controller C such that
L(C ⊗ S) ⊆ L(ϕ)?

Theorem
If the system is finite state and the specification is regular then the control problem
is decidable.
Moreover, when (S, ϕ) is controllable, we can synthesize a finite state controller.

9 / 65

Ramadge - Wonham 87→

Control problem (Exact)

Given a system S (with accepting states) and a specification K ⊆ Σ∗, does there
exist a controller C such that L(C ⊗ S) = K?

Theorem
◮ (S, Pref(K)) is controllable iff Pref(K) · Σuc ∩ Pref(L(S)) ⊆ Pref(K).

◮ (S, K) is controllable without deadlock iff
◮ Pref(K) · Σuc ∩ Pref(L(S)) ⊆ Pref(K)
◮ Pref(K) ∩ L(S) = K.

◮ If S is finite state and K regular then the control problem is decidable.
When (S, K) is controllable, we can synthesize a finite state controller.

Other results
◮ control under partial observation

◮ maximal controllable sub-specification

◮ generalization to infinite behaviors (Thistle - Wonham)

◮ . . .

9 / 65

Ramadge - Wonham 87→

Control problem (Exact)

Given a system S (with accepting states) and a specification K ⊆ Σ∗, does there
exist a controller C such that L(C ⊗ S) = K?

Theorem
◮ (S, Pref(K)) is controllable iff Pref(K) · Σuc ∩ Pref(L(S)) ⊆ Pref(K).

◮ (S, K) is controllable without deadlock iff
◮ Pref(K) · Σuc ∩ Pref(L(S)) ⊆ Pref(K)
◮ Pref(K) ∩ L(S) = K.

◮ If S is finite state and K regular then the control problem is decidable.
When (S, K) is controllable, we can synthesize a finite state controller.

Other results
◮ control under partial observation

◮ maximal controllable sub-specification

◮ generalization to infinite behaviors (Thistle - Wonham)

◮ . . .

9 / 65

Ramadge - Wonham 87→

Control problem (Exact)

Given a system S (with accepting states) and a specification K ⊆ Σ∗, does there
exist a controller C such that L(C ⊗ S) = K?

Theorem
◮ (S, Pref(K)) is controllable iff Pref(K) · Σuc ∩ Pref(L(S)) ⊆ Pref(K).

◮ (S, K) is controllable without deadlock iff
◮ Pref(K) · Σuc ∩ Pref(L(S)) ⊆ Pref(K)
◮ Pref(K) ∩ L(S) = K.

◮ If S is finite state and K regular then the control problem is decidable.
When (S, K) is controllable, we can synthesize a finite state controller.

Other results
◮ control under partial observation

◮ maximal controllable sub-specification

◮ generalization to infinite behaviors (Thistle - Wonham)

◮ . . .

10 / 65

Synthesis of reactive programs

Pnueli-Rosner 89

x y

◮ Qx: domain for input variable x

◮ Qy: domain for output variable y

◮ Program: f : Q+
x → Qy

◮ Input: x1x2 · · · ∈ Qω
x .

◮ Behavior: (x1, y1)(x2, y2)(x3, y3) · · · with yn = f1(x1 · · ·xn) for all n > 0.

Implementability problem
◮ Given a linear time specification ϕ over the alphabet Σ = Qx ×Qy,

Does there exist a program f such that all f -behaviors satisfy ϕ?

◮ Given a branching time specification ϕ over the alphabet Σ = Qx ×Qy,
Does there exist a program f such that its run-tree satisfies ϕ?

10 / 65

Synthesis of reactive programs

Pnueli-Rosner 89

x y

◮ Qx: domain for input variable x

◮ Qy: domain for output variable y

◮ Program: f : Q+
x → Qy

◮ Input: x1x2 · · · ∈ Qω
x .

◮ Behavior: (x1, y1)(x2, y2)(x3, y3) · · · with yn = f1(x1 · · ·xn) for all n > 0.

Implementability problem
◮ Given a linear time specification ϕ over the alphabet Σ = Qx ×Qy,

Does there exist a program f such that all f -behaviors satisfy ϕ?

◮ Given a branching time specification ϕ over the alphabet Σ = Qx ×Qy,
Does there exist a program f such that its run-tree satisfies ϕ?

10 / 65

Synthesis of reactive programs

Pnueli-Rosner 89

x y

◮ Qx: domain for input variable x

◮ Qy: domain for output variable y

◮ Program: f : Q+
x → Qy

◮ Input: x1x2 · · · ∈ Qω
x .

◮ Behavior: (x1, y1)(x2, y2)(x3, y3) · · · with yn = f1(x1 · · ·xn) for all n > 0.

Implementability problem
◮ Given a linear time specification ϕ over the alphabet Σ = Qx ×Qy,

Does there exist a program f such that all f -behaviors satisfy ϕ?

◮ Given a branching time specification ϕ over the alphabet Σ = Qx ×Qy,
Does there exist a program f such that its run-tree satisfies ϕ?

11 / 65

Synthesis of reactive programs

Implementability problem

Given a linear time specification ϕ over the alphabet Σ = Qx ×Qy,
Does there exist a program f such that all f -behaviors satisfy ϕ?

Implementability 6= Satisfiability
◮ Qx = {0, 1} and ϕ = F(x = 1)

◮ ϕ is satisfiable: (1, 0)ω |= ϕ

◮ ϕ is not implementable since the input is not controllable.

Implementability 6= Validity of ∀~x ∃~y ϕ

◮ Qx = Qy = {0, 1} and ϕ = (y = 1)←→ F(x = 1)

◮ ∀~x ∃~y ϕ is valid.

◮ ϕ is not implementable by a reactive program.

For non-reactive terminating programs, Implementability = Validity of ∀~x ∃~y ϕ

11 / 65

Synthesis of reactive programs

Implementability problem

Given a linear time specification ϕ over the alphabet Σ = Qx ×Qy,
Does there exist a program f such that all f -behaviors satisfy ϕ?

Implementability 6= Satisfiability
◮ Qx = {0, 1} and ϕ = F(x = 1)

◮ ϕ is satisfiable: (1, 0)ω |= ϕ

◮ ϕ is not implementable since the input is not controllable.

Implementability 6= Validity of ∀~x ∃~y ϕ

◮ Qx = Qy = {0, 1} and ϕ = (y = 1)←→ F(x = 1)

◮ ∀~x ∃~y ϕ is valid.

◮ ϕ is not implementable by a reactive program.

For non-reactive terminating programs, Implementability = Validity of ∀~x ∃~y ϕ

11 / 65

Synthesis of reactive programs

Implementability problem

Given a linear time specification ϕ over the alphabet Σ = Qx ×Qy,
Does there exist a program f such that all f -behaviors satisfy ϕ?

Implementability 6= Satisfiability
◮ Qx = {0, 1} and ϕ = F(x = 1)

◮ ϕ is satisfiable: (1, 0)ω |= ϕ

◮ ϕ is not implementable since the input is not controllable.

Implementability 6= Validity of ∀~x ∃~y ϕ

◮ Qx = Qy = {0, 1} and ϕ = (y = 1)←→ F(x = 1)

◮ ∀~x ∃~y ϕ is valid.

◮ ϕ is not implementable by a reactive program.

For non-reactive terminating programs, Implementability = Validity of ∀~x ∃~y ϕ

12 / 65

Synthesis of reactive programs

Implementability problem

Given a linear time specification ϕ over the alphabet Σ = Qx ×Qy,
Does there exist a program f such that all f -behaviors satisfy ϕ?

Theorem (Pnueli-Rosner 89)

◮ The specification ϕ ∈ LTL is implementable iff the formula

Aϕ ∧ AG(
∧

a∈Qx

EX(x = a))

is satisfiable.

◮ When ϕ is implementable, we can construct a finite state implementation
(program) in time doubly exponential in ϕ.

13 / 65

Program synthesis versus System control

Equivalence

The implementability problem for

x y

is equivalent to the control problem for the system

Qx

Qy

14 / 65

Outline

Control for sequential systems

2 Control for distributed systems

Synchronous semantics

Asynchronous semantics

15 / 65

Distributed control
inputs from E outputs to E

Open distributed system S

S1 S2

S3 S4

Specification
ϕ

Two problems, again
◮ Decide whether there exists a distributed controller st.

(S1 ⊗ C1) ‖ · · · ‖ (Sn ⊗ Cn) ‖ E |= ϕ.

◮ Synthesis: If so, compute such a distributed controller.

Peterson-Reif 1979, Pnueli-Rosner 1990
In general, the problems are undecidable.

15 / 65

Distributed control
inputs from E outputs to E

Open distributed system SOpen distributed system SControlled open distributed system S

S1 S2

S3 S4

Specification
ϕ

C1 C2

C3 C4

Two problems, again
◮ Decide whether there exists a distributed controller st.

(S1 ⊗ C1) ‖ · · · ‖ (Sn ⊗ Cn) ‖ E |= ϕ.

◮ Synthesis: If so, compute such a distributed controller.

Peterson-Reif 1979, Pnueli-Rosner 1990
In general, the problems are undecidable.

16 / 65

Architectures with shared variables

Architecture A = (P,V, R, W)

◮ P finite set of processes/agents.

◮ V finite set of Variables.

◮ R ⊆ P × V : (a, x) ∈ R iff a reads x.
◮ R(a) variables read by process a ∈ P ,
◮ R−1(x) processes reading variable x ∈ V.

◮ W ⊆ P × V : (a, x) ∈ W iff a writes to x.
◮ W (a) variables written by process a ∈ P ,
◮ W−1(x) processes writing to variable x ∈ V.

Example

x0

x1

x2

x3

x4

x5

a1

a2 a3

a4

17 / 65

Distributed systems with shared variables

Distributed system/plant/arena

◮ A = (P ,V , R, W) architecture.

◮ Qx (finite) domain for each variable x ∈ V .

◮ δa ⊆ QR(a) ×QW (a) legal actions/moves for process/player a ∈ P .

◮ q0 ∈ QV initial state

where QI =
∏

x∈I Qx for I ⊆ V .

18 / 65

Distributed Synthesis

Problem
Given a distributed system and a specification

Problem existence/synthesis of programs/strategies for the processes/players
such that the system satisfies the specification
(whatever the environment/opponent does).

Main parameters
◮ Which subclass of architectures?

◮ Which semantics?
synchronous (with our without delay), asynchronous

◮ What kind of specification?
LTL, CLT∗, µ-calculus
Rational, Recognizable

word/tree

◮ What kind of memory for the programs?
memoryless, local memory, causal memory

finite or infinite memory

18 / 65

Distributed Synthesis

Problem
Given a distributed system and a specification

Problem existence/synthesis of programs/strategies for the processes/players
such that the system satisfies the specification
(whatever the environment/opponent does).

Main parameters
◮ Which subclass of architectures?

◮ Which semantics?
synchronous (with our without delay), asynchronous

◮ What kind of specification?
LTL, CLT∗, µ-calculus
Rational, Recognizable

word/tree

◮ What kind of memory for the programs?
memoryless, local memory, causal memory

finite or infinite memory

18 / 65

Distributed Synthesis

Problem
Given a distributed system and a specification

Problem existence/synthesis of programs/strategies for the processes/players
such that the system satisfies the specification
(whatever the environment/opponent does).

Main parameters
◮ Which subclass of architectures?

◮ Which semantics?
synchronous (with our without delay), asynchronous

◮ What kind of specification?
LTL, CLT∗, µ-calculus
Rational, Recognizable

word/tree

◮ What kind of memory for the programs?
memoryless, local memory, causal memory

finite or infinite memory

18 / 65

Distributed Synthesis

Problem
Given a distributed system and a specification

Problem existence/synthesis of programs/strategies for the processes/players
such that the system satisfies the specification
(whatever the environment/opponent does).

Main parameters
◮ Which subclass of architectures?

◮ Which semantics?
synchronous (with our without delay), asynchronous

◮ What kind of specification?
LTL, CLT∗, µ-calculus
Rational, Recognizable

word/tree

◮ What kind of memory for the programs?
memoryless, local memory, causal memory

finite or infinite memory

18 / 65

Distributed Synthesis

Problem
Given a distributed system and a specification

Problem existence/synthesis of programs/strategies for the processes/players
such that the system satisfies the specification
(whatever the environment/opponent does).

Main parameters
◮ Which subclass of architectures?

◮ Which semantics?
synchronous (with our without delay), asynchronous

◮ What kind of specification?
LTL, CLT∗, µ-calculus
Rational, Recognizable

word/tree

◮ What kind of memory for the programs?
memoryless, local memory, causal memory

finite or infinite memory

19 / 65

Outline

Control for sequential systems

Control for distributed systems

3 Synchronous semantics

Asynchronous semantics

20 / 65

Pnueli-Rosner (FOCS’90)

Pipeline

x y1 y2 y3

z1 z2 z3 z4

a1 a2 a3 a4

Restrictions
◮ Unique writer: |W−1(x)| = 1 for all x ∈ V

◮ Unique reader: |R−1(x)| = 1 for all x ∈ V

◮ Acyclic graph (0-delay)

◮ No restrictions on moves: δa = QR(a) ×QW (a) for all a ∈ P .

◮ Synchronous behaviors: q0q1q2 · · · where qn ∈ QV are global states.

◮ program with local memory: fa : Q∗
R(a) → QW (a) for all a ∈ P .

◮ Specification: LTL over input and output variables only.
◮ Input variables: In = W (environment)
◮ output variables: Out = R(environment)

21 / 65

0-delay synchronous semantics

Example

u

x

v z

a

b

Programs: fx : Q∗

u → Qx and fz : (Qx ×Qv)
∗ → Qz.

◮ Input:

(
u1 u2 u3 · · ·
v1 v2 v3 · · ·

)
∈ (Qu ×Qv)

ω .

◮ Behavior:

u1 u2 u3 · · ·
v1 v2 v3 · · ·
x1 x2 x3 · · ·
z1 z2 z3 · · ·

with

{
xn = fx(u1 · · ·un)
zn = fz((x1, v1) · · · (xn, vn))

for all n > 0.

22 / 65

Undecidability

Architecture A0

u

x

v

y

a b

Theorem (Pnueli-Rosner FOCS’90)

The synthesis problem for architecture A0 and LTL (or CTL) specifications is unde-
cidable.

Proof
Reduction from the halting problem on the empty tape.

23 / 65

Undecidability proof 1

SPEC1: processes a and b must output configurations

u

x

v

y

0q1p0 · · · : n(v) = p

#q+pC#ω : where C ∈ Γ∗QΓ+

a b

(v = 0 ∧ y = #) W
(
v = 1 ∧ (v = 1 ∧ y = #) W (v = 0 ∧ y ∈ Γ∗QΓ+#ω)

)

where

y ∈ Γ∗QΓ+#ω def
= y ∈ Γ U

(
y ∈ Q ∧ X

(
y ∈ Γ U (y ∈ Γ ∧ X G y = #)

))

23 / 65

Undecidability proof 1

SPEC1: processes a and b must output configurations

u

x

v

y

0q1p0 · · · : n(v) = p

#q+pC#ω : where C ∈ Γ∗QΓ+

a b

(v = 0 ∧ y = #) W
(
v = 1 ∧ (v = 1 ∧ y = #) W (v = 0 ∧ y ∈ Γ∗QΓ+#ω)

)

where

y ∈ Γ∗QΓ+#ω def
= y ∈ Γ U

(
y ∈ Q ∧ X

(
y ∈ Γ U (y ∈ Γ ∧ X G y = #)

))

24 / 65

Undecidability proof 2

SPEC2: processes a and b must start with the first configuration

u

x

v

y

0q10 · · · : n(v) = 1

#q+1C1#
ω

a b

v = 0 W
(
v = 1 ∧ X

(
v = 0 −→ y ∈ C1#

ω
))

24 / 65

Undecidability proof 2

SPEC2: processes a and b must start with the first configuration

u

x

v

y

0q10 · · · : n(v) = 1

#q+1C1#
ω

a b

v = 0 W
(
v = 1 ∧ X

(
v = 0 −→ y ∈ C1#

ω
))

25 / 65

Undecidability proof 3

SPEC3: if n(u) = n(v) are synchronized then x = y

u

x

v

y

0q1p0 · · ·

#q+pC#ω

0q1p0 · · ·

#q+pC#ω

a b

n(u) = n(v) −→ G(x = y)

where

n(u) = n(v)
def
= (u = v = 0) U (u = v = 1 ∧ (u = v = 1 U u = v = 0))

25 / 65

Undecidability proof 3

SPEC3: if n(u) = n(v) are synchronized then x = y

u

x

v

y

0q1p0 · · ·

#q+pC#ω

0q1p0 · · ·

#q+pC#ω

a b

n(u) = n(v) −→ G(x = y)

where

n(u) = n(v)
def
= (u = v = 0) U (u = v = 1 ∧ (u = v = 1 U u = v = 0))

26 / 65

Undecidability proof 4
SPEC4: if n(u) = n(v) + 1 are synchronized then Cy ⊢ Cx

u

x

v

y

0q1p+10 · · ·

#q+p+1Cx#ω

0q+11p0 · · ·

#q+p+1Cy#ω

a b

n(u) = n(v) + 1 −→ x = y U
(
Trans(y, x) ∧ X3 G x = y

)

where Trans(y, x) is defined by

∨

(p,a,q,b,←)∈T,c∈Γ

(y = cpa ∧ x = qcb) ∨
∨

(p,a,q,b,→)∈T,c∈Γ

(y = pac ∧ x = bqc)

∨
∨

(p,a,q,b,→)∈T

(y = pa# ∧ x = bq2)

26 / 65

Undecidability proof 4
SPEC4: if n(u) = n(v) + 1 are synchronized then Cy ⊢ Cx

u

x

v

y

0q1p+10 · · ·

#q+p+1Cx#ω

0q+11p0 · · ·

#q+p+1Cy#ω

a b

n(u) = n(v) + 1 −→ x = y U
(
Trans(y, x) ∧ X3 G x = y

)

where Trans(y, x) is defined by

∨

(p,a,q,b,←)∈T,c∈Γ

(y = cpa ∧ x = qcb) ∨
∨

(p,a,q,b,→)∈T,c∈Γ

(y = pac ∧ x = bqc)

∨
∨

(p,a,q,b,→)∈T

(y = pa# ∧ x = bq2)

27 / 65

Undecidability proof 5

Lemma: winning strategies must simulate the Turing machine

For each p ≥ 1, if n(u) = p then Cx = Cp is the p-th configuration of the Turing
machine starting from the empty tape.

Proof

u

x

v

y

a b

Corollary

Specifications 1-4 and 5: Gx 6= stop are implementable iff the Turing machine does
not halt starting from the empty tape.

27 / 65

Undecidability proof 5

Lemma: winning strategies must simulate the Turing machine

For each p ≥ 1, if n(u) = p then Cx = Cp is the p-th configuration of the Turing
machine starting from the empty tape.

Proof

u

x

v

y

a bSPEC2

0q10 · · ·

#q+1C1#
ω

Corollary

Specifications 1-4 and 5: Gx 6= stop are implementable iff the Turing machine does
not halt starting from the empty tape.

27 / 65

Undecidability proof 5

Lemma: winning strategies must simulate the Turing machine

For each p ≥ 1, if n(u) = p then Cx = Cp is the p-th configuration of the Turing
machine starting from the empty tape.

Proof

u

x

v

y

a bInduction

0q+11p0 · · ·

#q+p+1Cp#
ω

Corollary

Specifications 1-4 and 5: Gx 6= stop are implementable iff the Turing machine does
not halt starting from the empty tape.

27 / 65

Undecidability proof 5

Lemma: winning strategies must simulate the Turing machine

For each p ≥ 1, if n(u) = p then Cx = Cp is the p-th configuration of the Turing
machine starting from the empty tape.

Proof

u

x

v

y

a bInduction

0q+11p0 · · ·

#q+p+1Cp#
ω

SPEC3

0q+11p0 · · ·

#q+p+1Cp#
ω

Corollary

Specifications 1-4 and 5: Gx 6= stop are implementable iff the Turing machine does
not halt starting from the empty tape.

27 / 65

Undecidability proof 5

Lemma: winning strategies must simulate the Turing machine

For each p ≥ 1, if n(u) = p then Cx = Cp is the p-th configuration of the Turing
machine starting from the empty tape.

Proof

u

x

v

y

a b SPEC3

0q+11p0 · · ·

#q+p+1Cp#
ω

SPEC4

0q1p+10 · · ·

#q+p+1Cp+1#
ω

Corollary

Specifications 1-4 and 5: Gx 6= stop are implementable iff the Turing machine does
not halt starting from the empty tape.

27 / 65

Undecidability proof 5

Lemma: winning strategies must simulate the Turing machine

For each p ≥ 1, if n(u) = p then Cx = Cp is the p-th configuration of the Turing
machine starting from the empty tape.

Proof

u

x

v

y

a b SPEC3

0q+11p0 · · ·

#q+p+1Cp#
ω

SPEC4

0q1p+10 · · ·

#q+p+1Cp+1#
ω

Corollary

Specifications 1-4 and 5: Gx 6= stop are implementable iff the Turing machine does
not halt starting from the empty tape.

28 / 65

Communication allows to cheat
Architecture with communication

u

x

v

y

za b

◮ Strategy for a:
◮ copy u to z

◮ if u = 0q1p0 · · · then x =

(

#p+qC1#
ω if p = 1 (for SPEC2)

#p+qC2#
ω othewise (for SPEC4).

◮ Strategy for b: if z = 0q′

1p′

0 · · · and v = 0q1p0 · · · then

y =

#p+qC1#
ω if p = 1 (for SPEC2)

#p+qC2#
ω if p = p′ > 1 and q = q′ (for SPEC3)

#p+qC1#
ω othewise (for SPEC4).

29 / 65

More undecidable architectures

Exercices
1. Show that the architecture below is undecidable.

u w

x

v

y

za b

2. Show that the undecidability results also hold for CTL specifications

30 / 65

Uncomparable information

Definition

For an output variable y, View(y) is the set of input variables x such that there is
a path from x to y.

Definition
An architecture has uncomparable information if there exist y1,y2 output variables
such that View(y2) \ View(y1) 6= ∅ and View(y1) \ View(y2) 6= ∅.
Otherwise it is said to have preordered information.

x1 x2

y1 y2

30 / 65

Uncomparable information

Definition

For an output variable y, View(y) is the set of input variables x such that there is
a path from x to y.

Definition
An architecture has uncomparable information if there exist y1,y2 output variables
such that View(y2) \ View(y1) 6= ∅ and View(y1) \ View(y2) 6= ∅.
Otherwise it is said to have preordered information.

x1

y1

x2

y2

x3

y3

x4

y4

30 / 65

Uncomparable information

Definition

For an output variable y, View(y) is the set of input variables x such that there is
a path from x to y.

Definition
An architecture has uncomparable information if there exist y1,y2 output variables
such that View(y2) \ View(y1) 6= ∅ and View(y1) \ View(y2) 6= ∅.
Otherwise it is said to have preordered information.

x1

y1

x2

y2

x3

y3

x4

y4

30 / 65

Uncomparable information

Definition

For an output variable y, View(y) is the set of input variables x such that there is
a path from x to y.

Definition
An architecture has uncomparable information if there exist y1,y2 output variables
such that View(y2) \ View(y1) 6= ∅ and View(y1) \ View(y2) 6= ∅.
Otherwise it is said to have preordered information.

x1

y1

x2

y2

x3

y3

x4

y4

30 / 65

Uncomparable information

Definition

For an output variable y, View(y) is the set of input variables x such that there is
a path from x to y.

Definition
An architecture has uncomparable information if there exist y1,y2 output variables
such that View(y2) \ View(y1) 6= ∅ and View(y1) \ View(y2) 6= ∅.
Otherwise it is said to have preordered information.

x1

y1

x2

y2

x3

y3

x4

y4

31 / 65

Uncomparable information yields

undecidability

Theorem
Architectures with uncomparable information are undecidable for LTL or CTL input-
output specifications.

Proof for LTL specifications

x0 x1

y0 y1

x0 x1

y0 y1

31 / 65

Uncomparable information yields

undecidability

Theorem
Architectures with uncomparable information are undecidable for LTL or CTL input-
output specifications.

Proof for LTL specifications

x0 x1

y0 y1

x0 x1

y0 y1

31 / 65

Uncomparable information yields

undecidability

Theorem
Architectures with uncomparable information are undecidable for LTL or CTL input-
output specifications.

Proof for LTL specifications

x0 x1

y0 y1

x0 x1

y0 y1

0 0 0 0 0 0 00

32 / 65

Decidability

Pipeline

x y1 y2 y3

z1 z2 z3 z4

a1 a2 a3 a4

Pnueli-Rosner (FOCS’90)

The synthesis problem for pipeline architectures and LTL specifications is non ele-
mentary decidable.

33 / 65

Decidability proof 1

Pipeline

x y za b x
y

z
a & b

From distributed to global

If fy : Q+
x → Qy and fz : Q+

y → Qz are local (distributed) strategies then we can
define an equivalent global strategy h = fy ⊗ fz : Q+

x → Qy ×Qz by

h(x1 · · ·xn) = (yn, fz(y1 · · · yn)) where yi = fy(x1, · · · , xi).

From global to distributed

z should only depend on y.
We cannot transmit x to y if |Qy| < |Qx|.
We have to check whether there exists a global strategy that can be distributed.

33 / 65

Decidability proof 1

Pipeline

x y za b x
y

z
a & b

From distributed to global

If fy : Q+
x → Qy and fz : Q+

y → Qz are local (distributed) strategies then we can
define an equivalent global strategy h = fy ⊗ fz : Q+

x → Qy ×Qz by

h(x1 · · ·xn) = (yn, fz(y1 · · · yn)) where yi = fy(x1, · · · , xi).

From global to distributed

z should only depend on y.
We cannot transmit x to y if |Qy| < |Qx|.
We have to check whether there exists a global strategy that can be distributed.

33 / 65

Decidability proof 1

Pipeline

x y za b x
y

z
a & b

From distributed to global

If fy : Q+
x → Qy and fz : Q+

y → Qz are local (distributed) strategies then we can
define an equivalent global strategy h = fy ⊗ fz : Q+

x → Qy ×Qz by

h(x1 · · ·xn) = (yn, fz(y1 · · · yn)) where yi = fy(x1, · · · , xi).

From global to distributed

z should only depend on y.
We cannot transmit x to y if |Qy| < |Qx|.
We have to check whether there exists a global strategy that can be distributed.

34 / 65

Decidability proof 2

Pipeline

x y za b x
y

z
a & b

Proof
1. We first solve the global game: We obtain an ND tree-automaton A accepting

the global strategies h : Q+
x → Qy ×Qz that implement the specification.

Easily obtained from a ND tree automaton for the specification.

2. We build from A an alternating tree automaton A′ accepting a local strategy
fz : Q+

y → Qz iff there exists a local strategy fy : Q+
x → Qy such that

h = fy ⊗ fz : Q+
x → Qy ×Qz is accepted by A

34 / 65

Decidability proof 2

Pipeline

x y za b x
y

z
a & b

Proof
1. We first solve the global game: We obtain an ND tree-automaton A accepting

the global strategies h : Q+
x → Qy ×Qz that implement the specification.

Easily obtained from a ND tree automaton for the specification.

2. We build from A an alternating tree automaton A′ accepting a local strategy
fz : Q+

y → Qz iff there exists a local strategy fy : Q+
x → Qy such that

h = fy ⊗ fz : Q+
x → Qy ×Qz is accepted by A

35 / 65

Tree automata

non deterministic transitions

a

a1 a2

1 2

Alternating transitions

or

35 / 65

Tree automata

non deterministic transitions

a

a1 a2

1 2

p

p1 p2

Alternating transitions

or

35 / 65

Tree automata

non deterministic transitions

a

a1 a2

1 2

p

p1 p2

Alternating transitions

a

a1 a2

1 2

or

35 / 65

Tree automata

non deterministic transitions

a

a1 a2

1 2

p

p1 p2

Alternating transitions

a

a1 a2

1 2

p

p1 p2 ∧ p3 or

35 / 65

Tree automata

non deterministic transitions

a

a1 a2

1 2

p

p1 p2

Alternating transitions

a

a1 a2

1 2

p

p1 p2 ∧ p3 or

a

a1 a2 a2

1 2 2

p

p1 p2 p3

36 / 65

Decidability proof 3

Proof

x y za b x
y

z
a & b

1. We first solve the global game: We obtain an ND tree-automaton A accepting
the global strategies h : Q+

x → Qy ×Qz that implement the specification.
Easily obtained from a ND tree automaton for the specification.

2. We build from A an alternating tree automaton A′ accepting a local strategy
fz : Q+

y → Qz iff there exists a local strategy fy : Q+
x → Qy such that

h = fy ⊗ fz : Q+
x → Qy ×Qz is accepted by A

36 / 65

Decidability proof 3

Proof

x y za b x
y

z
a & b

1. We first solve the global game: We obtain an ND tree-automaton A accepting
the global strategies h : Q+

x → Qy ×Qz that implement the specification.
Easily obtained from a ND tree automaton for the specification.

2. We build from A an alternating tree automaton A′ accepting a local strategy
fz : Q+

y → Qz iff there exists a local strategy fy : Q+
x → Qy such that

h = fy ⊗ fz : Q+
x → Qy ×Qz is accepted by A

A
(y, z)

(y1, z1) (y2, z2) (y2, z2)

x

x1 x2
x3

p

p1 p2 p3

36 / 65

Decidability proof 3

Proof

x y za b x
y

z
a & b

1. We first solve the global game: We obtain an ND tree-automaton A accepting
the global strategies h : Q+

x → Qy ×Qz that implement the specification.
Easily obtained from a ND tree automaton for the specification.

2. We build from A an alternating tree automaton A′ accepting a local strategy
fz : Q+

y → Qz iff there exists a local strategy fy : Q+
x → Qy such that

h = fy ⊗ fz : Q+
x → Qy ×Qz is accepted by A

A
(y, z)

(y1, z1) (y2, z2) (y2, z2)

x

x1 x2
x3

p

p1 p2 p3

A′

z

z1 z2 z2

y

y1 y2
y2

(x, p)

(x1, p1) (x2, p2) (x3, p3)

37 / 65

Decidability proof 4

Proof

x y1 y2 y3

z1 z2 z3 z4

a1 a2 a3 a4

A′ alternating

1. We first solve the global game: We obtain an ND tree-automaton A accepting
the global strategies h : Q+

x → Qy ×Qz that implement the specification.
Easily obtained from a ND tree automaton for the specification.

2. We build from A an alternating tree automaton A′ accepting a local strategy
fz : Q+

y → Qz iff there exists a local strategy fy : Q+
x → Qy such that

h = fy ⊗ fz : Q+
x → Qy ×Qz is accepted by A

3. Transform the alternating TA A′ to an equivalent non determinisitic TA A1

(Muller and Schupp 1985). Exponential blow-up.

4. Iterate and check the last automaton for emptiness.

37 / 65

Decidability proof 4

Proof

x y1 y2 y3

z1 z2 z3 z4

a1 a2 a3 a4

A′ alternating

1. We first solve the global game: We obtain an ND tree-automaton A accepting
the global strategies h : Q+

x → Qy ×Qz that implement the specification.
Easily obtained from a ND tree automaton for the specification.

2. We build from A an alternating tree automaton A′ accepting a local strategy
fz : Q+

y → Qz iff there exists a local strategy fy : Q+
x → Qy such that

h = fy ⊗ fz : Q+
x → Qy ×Qz is accepted by A

3. Transform the alternating TA A′ to an equivalent non determinisitic TA A1

(Muller and Schupp 1985). Exponential blow-up.

4. Iterate and check the last automaton for emptiness.

37 / 65

Decidability proof 4

Proof

x y1 y2 y3

z1 z2 z3 z4

a1 a2 a3 a4

A1 non deterministic

1. We first solve the global game: We obtain an ND tree-automaton A accepting
the global strategies h : Q+

x → Qy ×Qz that implement the specification.
Easily obtained from a ND tree automaton for the specification.

2. We build from A an alternating tree automaton A′ accepting a local strategy
fz : Q+

y → Qz iff there exists a local strategy fy : Q+
x → Qy such that

h = fy ⊗ fz : Q+
x → Qy ×Qz is accepted by A

3. Transform the alternating TA A′ to an equivalent non determinisitic TA A1

(Muller and Schupp 1985). Exponential blow-up.

4. Iterate and check the last automaton for emptiness.

37 / 65

Decidability proof 4

Proof

x y1 y2 y3

z1 z2 z3 z4

a1 a2 a3 a4

A′1 alternating

1. We first solve the global game: We obtain an ND tree-automaton A accepting
the global strategies h : Q+

x → Qy ×Qz that implement the specification.
Easily obtained from a ND tree automaton for the specification.

2. We build from A an alternating tree automaton A′ accepting a local strategy
fz : Q+

y → Qz iff there exists a local strategy fy : Q+
x → Qy such that

h = fy ⊗ fz : Q+
x → Qy ×Qz is accepted by A

3. Transform the alternating TA A′ to an equivalent non determinisitic TA A1

(Muller and Schupp 1985). Exponential blow-up.

4. Iterate and check the last automaton for emptiness.

37 / 65

Decidability proof 4

Proof

x y1 y2 y3

z1 z2 z3 z4

a1 a2 a3 a4

A2 non deterministic

1. We first solve the global game: We obtain an ND tree-automaton A accepting
the global strategies h : Q+

x → Qy ×Qz that implement the specification.
Easily obtained from a ND tree automaton for the specification.

2. We build from A an alternating tree automaton A′ accepting a local strategy
fz : Q+

y → Qz iff there exists a local strategy fy : Q+
x → Qy such that

h = fy ⊗ fz : Q+
x → Qy ×Qz is accepted by A

3. Transform the alternating TA A′ to an equivalent non determinisitic TA A1

(Muller and Schupp 1985). Exponential blow-up.

4. Iterate and check the last automaton for emptiness.

37 / 65

Decidability proof 4

Proof

x y1 y2 y3

z1 z2 z3 z4

a1 a2 a3 a4

A′2 alternating

1. We first solve the global game: We obtain an ND tree-automaton A accepting
the global strategies h : Q+

x → Qy ×Qz that implement the specification.
Easily obtained from a ND tree automaton for the specification.

2. We build from A an alternating tree automaton A′ accepting a local strategy
fz : Q+

y → Qz iff there exists a local strategy fy : Q+
x → Qy such that

h = fy ⊗ fz : Q+
x → Qy ×Qz is accepted by A

3. Transform the alternating TA A′ to an equivalent non determinisitic TA A1

(Muller and Schupp 1985). Exponential blow-up.

4. Iterate and check the last automaton for emptiness.

37 / 65

Decidability proof 4

Proof

x y1 y2 y3

z1 z2 z3 z4

a1 a2 a3 a4

A3 non deterministic

1. We first solve the global game: We obtain an ND tree-automaton A accepting
the global strategies h : Q+

x → Qy ×Qz that implement the specification.
Easily obtained from a ND tree automaton for the specification.

2. We build from A an alternating tree automaton A′ accepting a local strategy
fz : Q+

y → Qz iff there exists a local strategy fy : Q+
x → Qy such that

h = fy ⊗ fz : Q+
x → Qy ×Qz is accepted by A

3. Transform the alternating TA A′ to an equivalent non determinisitic TA A1

(Muller and Schupp 1985). Exponential blow-up.

4. Iterate and check the last automaton for emptiness.

38 / 65

Decidability

Pipeline

x y1 y2 y3

z1 z2 z3 z4

a1 a2 a3 a4

Pnueli-Rosner (FOCS’90)

The synthesis problem for pipeline architectures and LTL specifications is non ele-
mentary decidable.

Peterson-Reif (FOCS’79)

multi-person games with incomplete information.
=⇒ non-elementary lower bound for the synthesis problem.

39 / 65

Decidability

Kupferman-Vardi (LICS’01)

The synthesis problem is non elementary decidable for

◮ one-way chain, one-way ring, two-way chain and two-way ring,

◮ CTL∗ specifications (or tree-automata specifications) on all variables,

◮ synchronous, 1-delay semantics,

◮ local strategies.

one-way chain

x y1 y2 y3

z1 z2 z3

a1 a2 a3

39 / 65

Decidability

Kupferman-Vardi (LICS’01)

The synthesis problem is non elementary decidable for

◮ one-way chain, one-way ring, two-way chain and two-way ring,

◮ CTL∗ specifications (or tree-automata specifications) on all variables,

◮ synchronous, 1-delay semantics,

◮ local strategies.

one-way ring

x y1 y2 y3

z1 z2 z3

a1 a2 a3

39 / 65

Decidability

Kupferman-Vardi (LICS’01)

The synthesis problem is non elementary decidable for

◮ one-way chain, one-way ring, two-way chain and two-way ring,

◮ CTL∗ specifications (or tree-automata specifications) on all variables,

◮ synchronous, 1-delay semantics,

◮ local strategies.

two-way chain

x
y1 y2 y3

y′1 y′2 y′3

z1 z2 z3 z4

a1 a2 a3 a4

40 / 65

1-delay synchronous semantics

Example

u

x

v z

a

b

Programs: fx : Q∗

u → Qx and fz : (Qx ×Qv)
∗ → Qz.

◮ Input:

(
u1 u2 u3 · · ·
v1 v2 v3 · · ·

)
∈ (Qu ×Qv)

ω .

◮ Behavior:

u1 u2 u3 · · ·
v1 v2 v3 · · ·
x1 x2 x3 · · ·
z1 z2 z3 · · ·

with

{
xn+1 = fx(u1 · · ·un)
zn+1 = fz((x1, v1) · · · (xn, vn))

for all n > 0.

41 / 65

Decidability

Adequately connected sub-architecture Qx = Q for all x ∈ V

u

v

x

y

z

a

b

c

Pnueli-Rosner (FOCS’90)

◮ An adequately connected architecture is equivalent to a singleton architecture.

◮ The synthesis problem is decidable for LTL specifications and pipelines of
adequately connected architectures.

41 / 65

Decidability

Adequately connected sub-architecture Qx = Q for all x ∈ V

u

v

x

y

z

a

b

c

x = u⊗ v

Pnueli-Rosner (FOCS’90)

◮ An adequately connected architecture is equivalent to a singleton architecture.

◮ The synthesis problem is decidable for LTL specifications and pipelines of
adequately connected architectures.

41 / 65

Decidability

Adequately connected sub-architecture Qx = Q for all x ∈ V

u

v

x

y

z

a

b

c

x = u⊗ v

u

v

y

z

Pnueli-Rosner (FOCS’90)

◮ An adequately connected architecture is equivalent to a singleton architecture.

◮ The synthesis problem is decidable for LTL specifications and pipelines of
adequately connected architectures.

41 / 65

Decidability

Adequately connected sub-architecture Qx = Q for all x ∈ V

u

v

x

y

z

a

b

c

x = u⊗ v

u

v

y

z

Pnueli-Rosner (FOCS’90)

◮ An adequately connected architecture is equivalent to a singleton architecture.

◮ The synthesis problem is decidable for LTL specifications and pipelines of
adequately connected architectures.

42 / 65

Information fork criterion

(Finkbeiner–Schewe LICS ’05)

u v

p

q

w

x0 x1

a b

y0 y1

42 / 65

Information fork criterion

(Finkbeiner–Schewe LICS ’05)

u v

p

q

w

x0 x1

a b

y0 y1

42 / 65

Information fork criterion

(Finkbeiner–Schewe LICS ’05)

u v

p

q

w

x0 x1

a b

y0 y1

43 / 65

Uniformly well connected architectures

Definition
An architecture is uniformly well connected if there is a uniform way to route variables
in View(y) to y for each output variable y.

Example

u v w

p p

s t

p p p

x y z

43 / 65

Uniformly well connected architectures

Definition
An architecture is uniformly well connected if there is a uniform way to route variables
in View(y) to y for each output variable y.

Example

u v w

p p

s t

p p p

x y z

u⊕ v v ⊕ w

44 / 65

Uniformly well connected architectures

Definition
An architecture is uniformly well connected if there is a uniform way to route variables
in View(v) to v for each output variable v.

◮ If the capacity of internal variables is big enough then the architecture is
uniformly well-connected.

◮ If the architecture is uniformly well-connected then we can use causal
strategies instead of local ones.

Proposition

Checking whether a given architecture is uniformly well connected is NP-complete.

Proof
Reduction to the multicast problem in Network Information Flow.
The multicast problem is NP-complete (Rasala Lehman-Lehman 2004).

44 / 65

Uniformly well connected architectures

Definition
An architecture is uniformly well connected if there is a uniform way to route variables
in View(v) to v for each output variable v.

◮ If the capacity of internal variables is big enough then the architecture is
uniformly well-connected.

◮ If the architecture is uniformly well-connected then we can use causal
strategies instead of local ones.

Proposition

Checking whether a given architecture is uniformly well connected is NP-complete.

Proof
Reduction to the multicast problem in Network Information Flow.
The multicast problem is NP-complete (Rasala Lehman-Lehman 2004).

45 / 65

Uniformly well connected architectures

Theorem (PG, Nathalie Sznajder, Marc Zeitoun)

Uniformly well connected architectures with preordered information are decidable for
CTL* external specifications.

Proof.

x1

y1

x2

y2

x3

y3

x4

y4

Theorem: Kupferman-Vardi (LICS’01)

The synthesis problem is decidable for pipeline architectures and CTL∗ specifications
on all variables.

45 / 65

Uniformly well connected architectures

Theorem (PG, Nathalie Sznajder, Marc Zeitoun)

Uniformly well connected architectures with preordered information are decidable for
CTL* external specifications.

Proof.

x1

y1

x2

y2

x3

y3

x4

y4

Theorem: Kupferman-Vardi (LICS’01)

The synthesis problem is decidable for pipeline architectures and CTL∗ specifications
on all variables.

45 / 65

Uniformly well connected architectures

Theorem (PG, Nathalie Sznajder, Marc Zeitoun)

Uniformly well connected architectures with preordered information are decidable for
CTL* external specifications.

Proof.

x1

y1

x2

y2

x3

y3

x4

y4

Theorem: Kupferman-Vardi (LICS’01)

The synthesis problem is decidable for pipeline architectures and CTL∗ specifications
on all variables.

45 / 65

Uniformly well connected architectures

Theorem (PG, Nathalie Sznajder, Marc Zeitoun)

Uniformly well connected architectures with preordered information are decidable for
CTL* external specifications.

Proof.

x1

y1

x2

y2

x3

y3

x4

y4

Theorem: Kupferman-Vardi (LICS’01)

The synthesis problem is decidable for pipeline architectures and CTL∗ specifications
on all variables.

45 / 65

Uniformly well connected architectures

Theorem (PG, Nathalie Sznajder, Marc Zeitoun)

Uniformly well connected architectures with preordered information are decidable for
CTL* external specifications.

Proof.

x1

y1

x2

y2

x3

y3

x4

y4

Theorem: Kupferman-Vardi (LICS’01)

The synthesis problem is decidable for pipeline architectures and CTL∗ specifications
on all variables.

45 / 65

Uniformly well connected architectures

Theorem (PG, Nathalie Sznajder, Marc Zeitoun)

Uniformly well connected architectures with preordered information are decidable for
CTL* external specifications.

Proof.

x1

y1

x2

y2

x3

y3

x4

y4 y1 y2 y3 y4

a1 a2 a3 a4

x1

x2

x3

x4

x2

x3

x4

x3

x4 x4

Theorem: Kupferman-Vardi (LICS’01)

The synthesis problem is decidable for pipeline architectures and CTL∗ specifications
on all variables.

45 / 65

Uniformly well connected architectures

Theorem (PG, Nathalie Sznajder, Marc Zeitoun)

Uniformly well connected architectures with preordered information are decidable for
CTL* external specifications.

Proof.

x1

y1

x2

y2

x3

y3

x4

y4 y1 y2 y3 y4

a1 a2 a3 a4

x1

x2

x3

x4

x2

x3

x4

x3

x4 x4

Theorem: Kupferman-Vardi (LICS’01)

The synthesis problem is decidable for pipeline architectures and CTL∗ specifications
on all variables.

46 / 65

Robust specifications

Definition

A specification ϕ is robust if it can be written ϕ =
∨∧

z∈Out ϕz where ϕz depends
only on View(z) ∪ {z}.

Theorem
The synthesis problem for uniformly well-connected architectures and external and
robust CTL∗ specifications is decidable.

Proof.

46 / 65

Robust specifications

Definition

A specification ϕ is robust if it can be written ϕ =
∨∧

z∈Out ϕz where ϕz depends
only on View(z) ∪ {z}.

Theorem
The synthesis problem for uniformly well-connected architectures and external and
robust CTL∗ specifications is decidable.

Proof.

46 / 65

Robust specifications

Definition

A specification ϕ is robust if it can be written ϕ =
∨∧

z∈Out ϕz where ϕz depends
only on View(z) ∪ {z}.

Theorem
The synthesis problem for uniformly well-connected architectures and external and
robust CTL∗ specifications is decidable.

Proof.

x1

y1

x2

y2

x3

y3

x4

y4

46 / 65

Robust specifications

Definition

A specification ϕ is robust if it can be written ϕ =
∨∧

z∈Out ϕz where ϕz depends
only on View(z) ∪ {z}.

Theorem
The synthesis problem for uniformly well-connected architectures and external and
robust CTL∗ specifications is decidable.

Proof.

x1

y1

x2

y2

x3

y3

x4

y4

x1

y1

x2 x3

46 / 65

Robust specifications

Definition

A specification ϕ is robust if it can be written ϕ =
∨∧

z∈Out ϕz where ϕz depends
only on View(z) ∪ {z}.

Theorem
The synthesis problem for uniformly well-connected architectures and external and
robust CTL∗ specifications is decidable.

Proof.

x1

y1

x2

y2

x3

y3

x4

y4

x1

y1

x2 x3 x2

y2

x3 x4

46 / 65

Robust specifications

Definition

A specification ϕ is robust if it can be written ϕ =
∨∧

z∈Out ϕz where ϕz depends
only on View(z) ∪ {z}.

Theorem
The synthesis problem for uniformly well-connected architectures and external and
robust CTL∗ specifications is decidable.

Proof.

x1

y1

x2

y2

x3

y3

x4

y4

x1

y1

x2 x3 x2

y2

x3 x4

y3

x2 x3

46 / 65

Robust specifications

Definition

A specification ϕ is robust if it can be written ϕ =
∨∧

z∈Out ϕz where ϕz depends
only on View(z) ∪ {z}.

Theorem
The synthesis problem for uniformly well-connected architectures and external and
robust CTL∗ specifications is decidable.

Proof.

x1

y1

x2

y2

x3

y3

x4

y4

x1

y1

x2 x3 x2

y2

x3 x4

y3

x2 x3

y4

x3 x4

47 / 65

Open problem

◮ Decidability of the distributed control/synthesis problem for robust and
external specifications.

48 / 65

Outline

Control for sequential systems

Control for distributed systems

Synchronous semantics

4 Asynchronous semantics

49 / 65

An example: Romeo and Juliet

R J

4 4

3 3

2 2
Broken line

1 1

Romeo and Juliet against the environment
◮ Want to communicate through the same communication line.

◮ At any time, one line is broken.

◮ Environment looks where R&J are connected, and then, atomically, changes
(possibly) the broken line.

◮ Romeo/Juliet looks status of lines and, atomically, chooses where to connect.

49 / 65

An example: Romeo and Juliet

R J

4 4

3 3

2 2
Broken line

1 1

Romeo and Juliet against the environment
◮ Want to communicate through the same communication line.

◮ At any time, one line is broken.

◮ Environment looks where R&J are connected, and then, atomically, changes
(possibly) the broken line.

◮ Romeo/Juliet looks status of lines and, atomically, chooses where to connect.

49 / 65

An example: Romeo and Juliet

R J

4 4

3 3

2 2
Broken line

1 1

Romeo and Juliet against the environment
◮ Want to communicate through the same communication line.

◮ At any time, one line is broken.

◮ Environment looks where R&J are connected, and then, atomically, changes
(possibly) the broken line.

◮ Romeo/Juliet looks status of lines and, atomically, chooses where to connect.

49 / 65

An example: Romeo and Juliet

R J

4 4

3 3

2 2
Broken line

1 1

Romeo and Juliet against the environment
◮ Want to communicate through the same communication line.

◮ At any time, one line is broken.

◮ Environment looks where R&J are connected, and then, atomically, changes
(possibly) the broken line.

◮ Romeo/Juliet looks status of lines and, atomically, chooses where to connect.

50 / 65

Romeo and Juliet (continued)
Architecture

◮ Variables:
◮ x1: Romeo’s current line. Q1 = {1, 2, 3, 4}
◮ x2: broken line Q2 = {1, 2, 3, 4}
◮ x3: Juliet’s current line. Q3 = {1, 2, 3, 4}

◮ Agents: Romeo, Juliet and Environment.

◮ Read/Write table

Romeo Juliet Environment
Read {x1, x2} {x2, x3} {x1, x2, x3}
Write {x1} {x3} {x2}

x1

x2

x3

R

E

J

x1

x2

x3

R

E J

read-write ability

read-only ability

51 / 65

Romeo and Juliet (continued)

Legal moves: δa ⊆ QR(a) ×QW (a)

x1 : 3

x2 : 1

x3 : 4

x2 : 4E

x1 : 1

x2 : 1

x1 : 3R

A distributed play of the asynchronous system, R & J against E

51 / 65

Romeo and Juliet (continued)

Legal moves: δa ⊆ QR(a) ×QW (a)

x1 : 3

x2 : 1

x3 : 4

x2 : 4E

x1 : 1

x2 : 1

x1 : 3R

A distributed play of the asynchronous system, R & J against E

x1

x2

x3

1

1

1
#

2

R

2J 4J

3

E

1

R 4

E 1J

#
1
1
1

J
2

J
4

R
2

E
3

R
1

E
4

J
1

52 / 65

Distributed Behaviors

A play is a Mazurkiewicz (real) trace

◮ A finite play: #
1
1
1 J

2
J
4

R
2

E
3

R
1

E
4

J
1

◮ Move: extension of the current Mazurkiewicz trace following the rules.

◮ The game is not “position based”, nor “turn based”.

◮ Winning condition: set of finite or infinite Mazurkiewicz traces W ⊆ R(Σ, D).
Team 0 wins plays of W and loses plays of R(Σ, D) \W.

Romeo and Juliet
W imposes fairness conditions to the environment.

53 / 65

Memory for strategies

Memory
◮ Each player only has a partial view of the global history.

◮ Memoryless: move can depend only on the current state.

◮ Local memory: a player can remember its read history.

1

1

1

#

2

J

2

R

4

J 3E

1

R

1

J 4E

1

J

#
1
1
1

J
2

J
4

R
2

E
3

R
1

J
1

E
4

J
2

Causal memory (intuitively, maximal history a player can observe)
◮ Players gather and forward as much information as possible.

◮ but no global view, the choice for an action cannot depend on a concurrent
event.

53 / 65

Memory for strategies

Memory
◮ Each player only has a partial view of the global history.

◮ Memoryless: move can depend only on the current state.

◮ Local memory: a player can remember its read history.

1

1

1

#

2

J

2

R

4

J 3E

1

R

1

J 4E

1

J

??

R
#

1
1
1

J
2

J
4

R
2

E
3

R
1

J
1

E
4

J
2

R
??

Causal memory (intuitively, maximal history a player can observe)
◮ Players gather and forward as much information as possible.

◮ but no global view, the choice for an action cannot depend on a concurrent
event.

53 / 65

Memory for strategies

Memory
◮ Each player only has a partial view of the global history.

◮ Memoryless: move can depend only on the current state.

◮ Local memory: a player can remember its read history.

1

1

1

#

2

J

2

R

4

J 3E

1

R

1

J 4E

1

J

??

R
#

1
1
1

J
2

J
4

R
2

E
3

R
1

J
1

E
4

J
2

R
??

Causal memory (intuitively, maximal history a player can observe)
◮ Players gather and forward as much information as possible.

◮ but no global view, the choice for an action cannot depend on a concurrent
event.

53 / 65

Memory for strategies

Memory
◮ Each player only has a partial view of the global history.

◮ Memoryless: move can depend only on the current state.

◮ Local memory: a player can remember its read history.

1

1

1

#

2

J

2

R

4

J 3E

1

R

1

J 4E

1

J

??

R
#

1
1
1

J
2

J
4

R
2

E
3

R
1

J
1

E
4

J
2

R
??

Causal memory (intuitively, maximal history a player can observe)
◮ Players gather and forward as much information as possible.

◮ but no global view, the choice for an action cannot depend on a concurrent
event.

53 / 65

Memory for strategies

Memory
◮ Each player only has a partial view of the global history.

◮ Memoryless: move can depend only on the current state.

◮ Local memory: a player can remember its read history.

1

1

1

#

2

J

2

R

4

J 3E

1

R

1

J 4E

1

J

??

R
#

1
1
1

J
2

J
4

R
2

E
3

R
1

J
1

E
4

J
2

R
??

Causal memory (intuitively, maximal history a player can observe)
◮ Players gather and forward as much information as possible.

◮ but no global view, the choice for an action cannot depend on a concurrent
event.

54 / 65

Winning strategies
Tuple (fa)a∈P0

where fa tells player a ∈ P0 how to play.

Memoryless fa : QR(a) → QW (a) ∪ Stop

Local memory fa : (QR(a))
∗QR(a) → QW (a) ∪ Stop

Causal memory fa : M(Σ, D)×QR(a) → QW (a) ∪ Stop

#
1
1
1

J
2

J
4

R
2

E
3

R
1

J
1

E
4

J
2

R
??

f -maximal f -plays

Given a strategy f = (fa)a∈P0
, one looks at plays t which are

◮ consistent with f : all a-moves played according to fa (f -play).

◮ maximal: f predicts to Stop for all a-moves enabled at t with a ∈ P0.

Winning strategies

A strategy f is winning in G if all f -maximal f -plays in G are in W .

54 / 65

Winning strategies
Tuple (fa)a∈P0

where fa tells player a ∈ P0 how to play.

Memoryless fa : QR(a) → QW (a) ∪ Stop

Local memory fa : (QR(a))
∗QR(a) → QW (a) ∪ Stop

Causal memory fa : M(Σ, D)×QR(a) → QW (a) ∪ Stop

#
1
1
1

J
2

J
4

R
2

E
3

R
1

J
1

E
4

J
2

R
??

f -maximal f -plays

Given a strategy f = (fa)a∈P0
, one looks at plays t which are

◮ consistent with f : all a-moves played according to fa (f -play).

◮ maximal: f predicts to Stop for all a-moves enabled at t with a ∈ P0.

Winning strategies

A strategy f is winning in G if all f -maximal f -plays in G are in W .

55 / 65

Finite abstraction of the causal memory

Distributed memory

A distributed memory is a mapping µ : M(Σ, D) → M satisfying the following
equivalent properties:

1. µ−1(m) is recognizable for each m ∈M ,

2. µ is an abstraction of an asynchronous mapping (cf. Zielonka),

3. µ can be computed in a distributed way
(allowing additional contents inside existing communications (piggy-backing),
but no extra communications).

Strategy with memory µ

fa : M ×QR(a) → QW (a) ∪ Stop

the associated strategy is defined by

fµ
a (t, q) = fa(µ(t), q)

If M is finite then fµ is a distributed strategy with finite memory.
If |M | = 1 then fµ is memoryless.

56 / 65

Embedding causal memory inside games

Proposition: PG-Lerman-Zeitoun (LATIN’04)

For a distributed game G and a distributed memory µ, one can build a game Gµ

such that

team 0 has a WDS in G with memory µ

iff

team 0 has a memoryless WDS in Gµ.

Proof.

Gµ = G× µ

57 / 65

From distributed to sequential games

Theorem: PG-Lerman-Zeitoun (LATIN’04)

Given a finite distributed game (G,W), we can effectively build a finite sequential

2-players game (G̃, W̃) st. the following are equivalent:

◮ There exists a memoryless distributed WS for team 0 in (G,W).

◮ There exists a memoryless WS for player 0 in (G̃, W̃).

◮ There exists a WS for player 0 in (G̃, W̃).

Moreover, if W is recognizable then so is W̃

Naive idea Consider the game on the global transition system.

Main problem The controller has more information than its causal memory.

Solution

◮ The opponent controls the linearization to be played.

◮ Using reset moves, he can replay different linearizations for the same play.

◮ The winning condition W̃ makes sure that the strategy followed by the
controller is indeed distributed.

57 / 65

From distributed to sequential games

Theorem: PG-Lerman-Zeitoun (LATIN’04)

Given a finite distributed game (G,W), we can effectively build a finite sequential

2-players game (G̃, W̃) st. the following are equivalent:

◮ There exists a memoryless distributed WS for team 0 in (G,W).

◮ There exists a memoryless WS for player 0 in (G̃, W̃).

◮ There exists a WS for player 0 in (G̃, W̃).

Moreover, if W is recognizable then so is W̃

Naive idea Consider the game on the global transition system.

Main problem The controller has more information than its causal memory.

Solution

◮ The opponent controls the linearization to be played.

◮ Using reset moves, he can replay different linearizations for the same play.

◮ The winning condition W̃ makes sure that the strategy followed by the
controller is indeed distributed.

57 / 65

From distributed to sequential games

Theorem: PG-Lerman-Zeitoun (LATIN’04)

Given a finite distributed game (G,W), we can effectively build a finite sequential

2-players game (G̃, W̃) st. the following are equivalent:

◮ There exists a memoryless distributed WS for team 0 in (G,W).

◮ There exists a memoryless WS for player 0 in (G̃, W̃).

◮ There exists a WS for player 0 in (G̃, W̃).

Moreover, if W is recognizable then so is W̃

Naive idea Consider the game on the global transition system.

Main problem The controller has more information than its causal memory.

Solution

◮ The opponent controls the linearization to be played.

◮ Using reset moves, he can replay different linearizations for the same play.

◮ The winning condition W̃ makes sure that the strategy followed by the
controller is indeed distributed.

58 / 65

(Un)deciding games

Proposition: (Folklore)

Deciding whether team 0 has a distributed WS with causal memory is undecidable
for rational winning conditions.

Proof. Simple reduction of the universality problem for rational trace languages.

Peterson-Reif Madhusudan–Thiagarajan Bernet–Janin–Walukiewicz

Deciding whether team 0 has a distributed WS with local memory is undecidable
even:

◮ for reachability or safety winning conditions.

◮ with 3 players against the environment.

58 / 65

(Un)deciding games

Proposition: (Folklore)

Deciding whether team 0 has a distributed WS with causal memory is undecidable
for rational winning conditions.

Proof. Simple reduction of the universality problem for rational trace languages.

Peterson-Reif Madhusudan–Thiagarajan Bernet–Janin–Walukiewicz

Deciding whether team 0 has a distributed WS with local memory is undecidable
even:

◮ for reachability or safety winning conditions.

◮ with 3 players against the environment.

59 / 65

Series-parallel architectures

Theorem: PG-Lerman-Zeitoun (FSTTCS’04)

Distributed games with recognizable winning conditions are decidable for series-
parallel systems and causal memory strategies.

Definition : let A = (P,V, R, W) be some architecture.
◮ A is a parallel product if
P = A ⊎B with R(a) ∩W (b) = ∅ for all (a, b) ∈ A×B.

◮ A is a serial product if
P = A ⊎B with R(a) ∩W (b) 6= ∅ for all (a, b) ∈ A×B.

◮ A is series-parallel if it can be obtained from singletons (|P| = 1) using serial
and parallel compositions.

◮ A is series-parallel iff the associated dependence relation does not contain a
P4: a b c d as induced subgraph.

◮ Behaviors of series parallel architectures are series-parallel posets.

59 / 65

Series-parallel architectures

Theorem: PG-Lerman-Zeitoun (FSTTCS’04)

Distributed games with recognizable winning conditions are decidable for series-
parallel systems and causal memory strategies.

Definition : let A = (P,V, R, W) be some architecture.
◮ A is a parallel product if
P = A ⊎B with R(a) ∩W (b) = ∅ for all (a, b) ∈ A×B.

◮ A is a serial product if
P = A ⊎B with R(a) ∩W (b) 6= ∅ for all (a, b) ∈ A×B.

◮ A is series-parallel if it can be obtained from singletons (|P| = 1) using serial
and parallel compositions.

◮ A is series-parallel iff the associated dependence relation does not contain a
P4: a b c d as induced subgraph.

◮ Behaviors of series parallel architectures are series-parallel posets.

60 / 65

Proof outline
Team 0 has a WDS ⇒ it has a WDS with a “small” distributed memory.

Induction on Σ.

Difficult case: serial product.

BA A

µ

· · ·

1. A WS on A ⊎B induces WS on the restrictions of the game to A and B.

2. Replace the WS on A, B by WS with small memory (induction).

3. Finally, glue together these WS on A and B to obtain a WS on A ∪B using
small memory.

Main problem
◮ Team 0 must know on which small game it is playing.

◮ Team 0 has to compute this information in a distributed way.

61 / 65

Madhusudan and Thiagarajan (Concur’02)

Setting
◮ Architecture: A = (P ,V , R, W) with R(a) = W (a) for all a ∈ P .

◮ Moves: δa are built from local moves for variables δa,x ⊆ Qx ×Qx:

δa =
∏

x∈R(a)

δa,x

◮ Strategies with local memory: associated with variables and not with agents,
and only predict the next actions and not the next state:

fx : Q∗x → 2R−1(x)

action a is enabled by (fx)x∈V at some finite play t if

∀x ∈ R(a), a ∈ fx(πQx
(t))

◮ The environment decides which a-transition should be taken among the
actions a enabled by the strategies.

62 / 65

Madhusudan and Thiagarajan (Concur’02)

Restricted control synthesis problem

Given a distributed system and a recognizable specification,

Question existence of a clocked and com-rigid non-blocking winning
distributed strategy with local memory.

◮ clocked: fx(w) only depends on |w|.

◮ com-rigid: a, b ∈ fx(w) implies R(a) = R(b).

Theorem
1. The restricted control synthesis problem is decidable.

2. It becomes undecidable if one of the red condition is dropped.

62 / 65

Madhusudan and Thiagarajan (Concur’02)

Restricted control synthesis problem

Given a distributed system and a recognizable specification,

Question existence of a clocked and com-rigid non-blocking winning
distributed strategy with local memory.

◮ clocked: fx(w) only depends on |w|.

◮ com-rigid: a, b ∈ fx(w) implies R(a) = R(b).

Theorem
1. The restricted control synthesis problem is decidable.

2. It becomes undecidable if one of the red condition is dropped.

63 / 65

Mohalik and Walukiewicz (FSTTCS’03)

Restrictions
◮ Controllable actions: R(a) = W (a) is a singleton for all a ∈ P0.

◮ Environment actions: R(e) = W (e) = V and P1 = {e}.

◮ Moves: δe ⊆ QV ×QV .

◮ Strategies: local memory with stuttering reduction so that a player a ∈ P0

cannot see how long it has been idle.

Theorem
◮ Previous settings with local memory can be encoded.

◮ two constructions to solve the distributed control problem subsuming
previously known decidable cases with local memory.

64 / 65

Open problems

◮ Generalization to arbitrary symmetric architectures.

◮ Generalization to non-symmetric architectures.

◮ Reasonable upper bounds for synthesis?

65 / 65

Symmetric architecture

Architecture A = (P,V, R, W)

◮ Restrictions:

{
∀a ∈ P ∅ 6= W (a) ⊆ R(a)
∀a, b ∈ P R(a) ∩W (b) 6= ∅ ⇐⇒ R(b) ∩W (a) 6= ∅

◮ Dependence: a D b⇐⇒ R(a) ∩W (b) 6= ∅ ⇐⇒ R(b) ∩W (a) 6= ∅

Legal and forbidden architectures

R

E J

OK

a

c

d

e

b

OK

a

b

Forbidden (not symmetric)

	Control for sequential systems
	Control for distributed systems
	Synchronous semantics
	Asynchronous semantics

