Distributed synthesis: synchronous and asynchronous semantics

Paul Gastin

LSV ENS de Cachan & CNRS Paul.Gastin@lsv.ens-cachan.fr

EPIT, May 31st, 2006

1 / 65

Open / Reactive system

inputs from E outputs to E
Open system S

Model for the open system

- Transitions system $\mathcal{A} = (Q, \Sigma, q_0, \delta)$
 - Q: finite or infinite set of states,
 - $\delta:$ deterministic or non deterministic transition function.
- $\Sigma = \Sigma_c \uplus \Sigma_{uc}$ Controllable / Uncontrollable events.
- $\Sigma = \Sigma_o \uplus \Sigma_{uo}$ Observable / Unobservable events.

Outline

Control for sequential systems

Control for distributed systems

Synchronous semantics

Asynchronous semantics

2 / 65

Example: Elevator

Transition system

States:

position of the cabin flag is_open for each door flag is_called for each level number of persons in the cabin

Events:

		Σ_o	Σ_{uo}
Σ_{i}	ıc	call level i	enter/exit cabin
Σ	c	open/close door i	
		move 1 level up/down	

We get easily a finite and deterministic transition system.

Specification

Branching time: CTL, CTL*, μ -calculus, ... AG $\langle call_i \rangle \top$ (call_i is uncontrollable) AG EF(level = $0 \land is_open_0$)

5 / 65

Controller

Under full state-event observation

Controller: $f: Q(\Sigma Q)^* \to 2^{\Sigma}$ with $\Sigma_{uc} \subseteq f(x)$ for all $x \in Q(\Sigma Q)^*$. Controlled behavior: $q_0, a_1, q_1, a_2, q_2, \ldots$ with $(q_{i-1}, a_i, q_i) \in \delta$ and

 $a_i \in f(q_0 a_1 q_1 \cdots q_{i-1})$ for all i > 0.

Controlled execution tree: $t: D^* \to \Sigma \times Q$ with

 $t(\varepsilon) = (a, q_0)$ ($a \in \Sigma$ fixed arbitrarily) for all $x = d_1 \cdots d_n \in D^*$ with $t(d_1 \cdots d_i) = (a_i, q_i)$, we have

 $t(sons(x)) = \{(a,q) \mid a \in f(q_0a_1q_1 \cdots a_nq_n) \text{ and } (q_n, a, q) \in \delta\}.$

Under full event observation

Controller: $f: \Sigma^* \to 2^{\Sigma}$ with $\Sigma_{uc} \subseteq f(x)$ for all $x \in \Sigma^*$. Remark: same as full state-event observation if the system is deterministic.

Under partial event observation

Controller: $f: \Sigma_{\alpha}^* \to 2^{\Sigma}$ with $\Sigma_{uc} \subseteq f(x)$ for all $x \in \Sigma^*$.

Controlled behavior: $q_0, a_1, q_1, a_2, q_2, \ldots$ with $(q_{i-1}, a_i, q_i) \in \delta$ and $a_i \in f \circ \prod_{\Sigma_o} (a_1 \cdots a_{i-1})$ for all i > 0.

Control problem

Two problem

Control: Given a system S and a specification φ , decide whether there exists a controller C such that $S \otimes C \models \varphi$.

Synthesis: Given a system S and a specification φ , build controller C (if one exists) such that $S \otimes C \models \varphi$.

6 / 65

Control versus Game

Correspondance

Transition system	= Game arena (graph).
Controllable events	Actions of player 1 (controller).
Uncontrollable events	= Action of player 0 (opponent, environment).
Behavior	= Play.
Controller	= Strategy.
Specification	 Winning condition.
Finding a controller	= finding a winning strategy.

Control problem

Given a system S and a specification φ , does there exist a controller C such that $\mathcal{L}(C \otimes S) \subseteq \mathcal{L}(\varphi)$?

Theorem

If the system is finite state and the specification is regular then the control problem is decidable.

Moreover, when (S,φ) is controllable, we can synthesize a finite state controller.

Ramadge - Wonham 87 \rightarrow

Control problem (Exact)

Given a system S (with accepting states) and a specification $K \subseteq \Sigma^*$, does there exist a controller C such that $\mathcal{L}(C \otimes S) = K$?

Theorem

 $(S, \operatorname{Pref}(K))$ is controllable iff $\operatorname{Pref}(K) \cdot \Sigma_{uc} \cap \operatorname{Pref}(\mathcal{L}(S)) \subseteq \operatorname{Pref}(K)$.

(S, K) is controllable without deadlock iff

 $\operatorname{Pref}(K) \cdot \Sigma_{uc} \cap \operatorname{Pref}(\mathcal{L}(S)) \subseteq \operatorname{Pref}(K)$

$$\operatorname{Pref}(K) \cap \mathcal{L}(S) = K.$$

If S is finite state and K regular then the control problem is decidable. When (S, K) is controllable, we can synthesize a finite state controller.

Other results

control under partial observation

maximal controllable sub-specification

generalization to infinite behaviors (Thistle - Wonham)

9 / 6

Synthesis of reactive programs

Implementability problem

Given a linear time specification φ over the alphabet $\Sigma = Q_x \times Q_y$, Does there exist a program f such that all f-behaviors satisfy φ ?

Implementability \neq Satisfiability

 $Q_x = \{0, 1\}$ and $\varphi = F(x = 1)$

 φ is satisfiable: $(1,0)^{\omega} \models \varphi$

 φ is not implementable since the input is not controllable.

Implementability \neq Validity of $\forall \vec{x} \exists \vec{y} \varphi$

 $Q_x = Q_y = \{0,1\} \text{ and } \varphi = (y=1) \longleftrightarrow \mathsf{F}(x=1)$

 $\forall \vec{x} \; \exists \vec{y} \; \varphi \text{ is valid.}$

 φ is not implementable by a reactive program.

For non-reactive terminating programs, Implementability = Validity of $\forall \vec{x} \; \exists \vec{y} \; \varphi$

Synthesis of reactive programs

Pnueli-Rosner 89

 $\begin{array}{l} Q_x: \mbox{ domain for input variable } x\\ Q_y: \mbox{ domain for output variable } y\\ \mbox{Program: } f:Q_x^+ \to Q_y\\ \mbox{ Input: } x_1x_2\cdots \in Q_x^\omega.\\ \mbox{ Behavior: } (x_1,y_1)(x_2,y_2)(x_3,y_3)\cdots \mbox{ with } y_n=f_1(x_1\cdots x_n) \mbox{ for all } n>0. \end{array}$

Implementability problem

Given a linear time specification φ over the alphabet $\Sigma = Q_x \times Q_y$, Does there exist a program f such that all f-behaviors satisfy φ ? Given a branching time specification φ over the alphabet $\Sigma = Q_x \times Q_y$, Does there exist a program f such that its run-tree satisfies φ ?

10 / 65

Synthesis of reactive programs

Implementability problem

Given a linear time specification φ over the alphabet $\Sigma = Q_x \times Q_y$, Does there exist a program f such that all f-behaviors satisfy φ ?

Theorem (Pnueli-Rosner 89)

The specification $\varphi \in \mathrm{LTL}$ is implementable iff the formula

$$\mathcal{A}\varphi\wedge\mathsf{AG}(\bigwedge_{a\in Q_x}\mathsf{EX}(x=a))$$

is satisfiable.

When φ is implementable, we can construct a finite state implementation (program) in time doubly exponential in φ .

Distributed systems with shared variables

Distributed system/plant/arena

 $\mathcal{A} = (\mathcal{P}, \mathcal{V}, R, W)$ architecture.

 Q_x (finite) domain for each variable $x \in \mathcal{V}$.

 $\delta_a \subseteq Q_{R(a)} \times Q_{W(a)}$ legal actions/moves for process/player $a \in \mathcal{P}$.

 $q^0 \in Q_{\mathcal{V}}$ initial state

where $Q_I = \prod_{x \in I} Q_x$ for $I \subseteq \mathcal{V}$.

17

Outline

Control for sequential systems

Control for distributed systems

3 Synchronous semantics

Asynchronous semantics

Distributed Synthesis

Problem

Given	a distributed system and a specification		
Problem	existence/synthesis of programs/strategies for the processes/players such that the system satisfies the specification (whatever the environment/opponent does).		
Main param	eters		
Which su	bclass of architectures?		
Which se	mantics?		
	synchronous (with our without delay), asynchronous		
What kin	d of specification?		
	LTL, CLT*, μ -calculus		
	Rational, Recognizable word/tree		
What kind of memory for the programs?			
	memoryless, local memory, causal memory finite or infinite memory		

18 / 65

Pnueli-Rosner (FOCS'90)

Pipeline

Restrictions

Unique writer: $|W^{-1}(x)| = 1$ for all $x \in \mathcal{V}$

Unique reader: $|R^{-1}(x)| = 1$ for all $x \in \mathcal{V}$

Acyclic graph (0-delay)

No restrictions on moves: $\delta_a = Q_{R(a)} \times Q_{W(a)}$ for all $a \in \mathcal{P}$.

Synchronous behaviors: $q^0q^1q^2\cdots$ where $q^n \in Q_V$ are global states.

program with local memory: $f_a: Q^*_{R(a)} \to Q_{W(a)}$ for all $a \in \mathcal{P}$.

Specification: LTL over input and output variables only.

Input variables: In = W(environment)output variables: Out = R(environment)

Undecidability proof 1

Undecidability Architecture \mathcal{A}_0 $\begin{bmatrix} a \\ b \\ \vdots \\ x \end{bmatrix} \begin{bmatrix} b \\ \vdots \\ y \end{bmatrix}$ Theorem (Pnueli-Rosner FOCS'90) The synthesis problem for architecture A_0 and LTL (or CTL) specifications is undecidable. Proof Reduction from the halting problem on the empty tape. Undecidability proof 2 SPEC₂: processes a and b must start with the first configuration $0^q 10 \cdots$: n(v) = 1 $\begin{array}{c} \bullet \\ a \\ \bullet \\ \bullet \\ x \end{array} \begin{array}{c} \bullet \\ \psi \\ \psi \end{array} \\ \#^{q+1}C_1 \#^{\omega} \end{array}$ v = 0 W $\left(v = 1 \land X \left(v = 0 \longrightarrow y \in C_1 \#^{\omega} \right) \right)$

Undecidability proof 3

Undecidability proof 5

Lemma: winning strategies must simulate the Turing machine

For each $p \ge 1$, if n(u) = p then $C_x = C_p$ is the p-th configuration of the Turing machine starting from the empty tape.

Corollary

Specifications 1-4 and 5: $Gx \neq stop$ are implementable iff the Turing machine does not halt starting from the empty tape.

Undecidability proof 4

Undecidability proof 5

Lemma: winning strategies must simulate the Turing machine For each $p \ge 1$, if n(u) = p then $C_x = C_p$ is the *p*-th configuration of the Turing machine starting from the empty tape.

Corollary

Specifications 1-4 and 5: $Gx \neq stop$ are implementable iff the Turing machine does not halt starting from the empty tape.

Uncomparable information

Definition

For an output variable y, View(y) is the set of input variables x such that there is a path from x to y.

Definition

An architecture has uncomparable information if there exist y_1, y_2 output variables such that $\operatorname{View}(y_2) \setminus \operatorname{View}(y_1) \neq \emptyset$ and $\operatorname{View}(y_1) \setminus \operatorname{View}(y_2) \neq \emptyset$. Otherwise it is said to have preordered information.

More undecidable architectures

29 / 65

Uncomparable information

Definition

For an output variable y, View(y) is the set of input variables x such that there is a path from x to y.

Definition

An architecture has uncomparable information if there exist y_1, y_2 output variables such that $\operatorname{View}(y_2) \setminus \operatorname{View}(y_1) \neq \emptyset$ and $\operatorname{View}(y_1) \setminus \operatorname{View}(y_2) \neq \emptyset$. Otherwise it is said to have preordered information.

Uncomparable information yields undecidability

Theorem

Architectures with uncomparable information are undecidable for LTL or CTL input-output specifications.

31 / 65

Decidability proof 1

Pipeline

$$x \rightarrow a \rightarrow y \rightarrow b \rightarrow z$$
 $x \rightarrow a$

From distributed to global

If $f_y: Q_x^+ \to Q_y$ and $f_z: Q_y^+ \to Q_z$ are local (distributed) strategies then we can define an equivalent global strategy $h = f_y \otimes f_z: Q_x^+ \to Q_y \times Q_z$ by

 $h(x_1\cdots x_n)=(y_n,f_z(y_1\cdots y_n))\qquad \text{where}\qquad y_i=f_y(x_1,\cdots,x_i).$

From global to distributed

z should only depend on y.

We cannot transmit x to y if $|Q_y| < |Q_x|$. We have to check whether there exists a global strategy that can be distributed.

Decidability

Pipeline

Pnueli-Rosner (FOCS'90)

The synthesis problem for pipeline architectures and LTL specifications is non elementary decidable.

32 / 65

Decidability proof 2

Pipeline

Proof

- We first solve the global game: We obtain an ND tree-automaton A accepting the global strategies h : Q⁺_x → Q_y × Q_z that implement the specification. Easily obtained from a ND tree automaton for the specification.
- 2. We build from \mathcal{A} an alternating tree automaton \mathcal{A}' accepting a local strategy $f_z: Q_y^+ \to Q_z$ iff there exists a local strategy $f_y: Q_x^+ \to Q_y$ such that $h = f_y \otimes f_z: Q_x^+ \to Q_y \times Q_z$ is accepted by \mathcal{A}

Decidability proof 4

Proof $\begin{array}{c} x & \hline a_1 & \hline y_1 & \hline a_2 & \hline y_2 & \hline a_3 & \hline y_3 & \hline a_4 \\ \downarrow & \downarrow & \downarrow & \downarrow \\ z_1 & \hline z_2 & z_3 & z_4 \\ \hline \mathcal{A}' \text{ alternating} \end{array}$

- 1. We first solve the global game: We obtain an ND tree-automaton \mathcal{A} accepting the global strategies $h: Q_x^+ \to Q_y \times Q_z$ that implement the specification. Easily obtained from a ND tree automaton for the specification.
- 2. We build from \mathcal{A} an alternating tree automaton \mathcal{A}' accepting a local strategy $f_z: Q_y^+ \to Q_z$ iff there exists a local strategy $f_y: Q_x^+ \to Q_y$ such that $h = f_y \otimes f_z: Q_x^+ \to Q_y \times Q_z$ is accepted by \mathcal{A}
- 3. Transform the alternating TA A' to an equivalent non determinisitic TA A_1 (Muller and Schupp 1985). Exponential blow-up.
- 4. Iterate and check the last automaton for emptiness.

Decidability proof 3

Proof

$$x \rightarrow a \rightarrow y \rightarrow b \rightarrow z$$
 $x \rightarrow a \& b \rightarrow z$

- 1. We first solve the global game: We obtain an ND tree-automaton \mathcal{A} accepting the global strategies $h: Q_x^+ \to Q_y \times Q_z$ that implement the specification. Easily obtained from a ND tree automaton for the specification.
- We build from A an alternating tree automaton A' accepting a local strategy f_z: Q⁺_y → Q_z iff there exists a local strategy f_y: Q⁺_x → Q_y such that h = f_y ⊗ f_z: Q⁺_x → Q_y × Q_z is accepted by A

Decidability proof 4

- 1. We first solve the global game: We obtain an ND tree-automaton \mathcal{A} accepting the global strategies $h: Q_x^+ \to Q_y \times Q_z$ that implement the specification. Easily obtained from a ND tree automaton for the specification.
- 2. We build from \mathcal{A} an alternating tree automaton \mathcal{A}' accepting a local strategy $f_z: Q_y^+ \to Q_z$ iff there exists a local strategy $f_y: Q_x^+ \to Q_y$ such that $h = f_y \otimes f_z: Q_x^+ \to Q_y \times Q_z$ is accepted by \mathcal{A}
- 3. Transform the alternating TA A' to an equivalent non determinisitic TA A_1 (Muller and Schupp 1985). Exponential blow-up.
- 4. Iterate and check the last automaton for emptiness.

Decidability proof 4

Proof

- 1. We first solve the global game: We obtain an ND tree-automaton \mathcal{A} accepting the global strategies $h: Q_x^+ \to Q_y \times Q_z$ that implement the specification. Easily obtained from a ND tree automaton for the specification.
- 2. We build from \mathcal{A} an alternating tree automaton \mathcal{A}' accepting a local strategy $f_z: Q_y^+ \to Q_z$ iff there exists a local strategy $f_y: Q_x^+ \to Q_y$ such that $h = f_y \otimes f_z: Q_x^+ \to Q_y \times Q_z$ is accepted by \mathcal{A}
- 3. Transform the alternating TA A' to an equivalent non determinisitic TA A_1 (Muller and Schupp 1985). Exponential blow-up.
- 4. Iterate and check the last automaton for emptiness.

37 /

Decidability

The synthesis problem is non elementary decidable for

one-way chain, one-way ring, two-way chain and two-way ring,

CTL* specifications (or tree-automata specifications) on all variables,

- synchronous, 1-delay semantics,
- local strategies.

one-way ring

Decidability

Pipeline

Pnueli-Rosner (FOCS'90)

The synthesis problem for pipeline architectures and LTL specifications is non elementary decidable.

Peterson-Reif (FOCS'79)

multi-person games with incomplete information.

 \implies non-elementary lower bound for the synthesis problem.

38 / 65

1-delay synchronous semantics

39 / 65

Decidability

Adequately connected sub-architecture

 $u \qquad b \qquad y \\ a \qquad x = u \otimes v \\ v \qquad c \qquad z$

 $Q_x = Q \text{ for all } x \in \mathcal{V}$

Pnueli-Rosner (FOCS'90)

An adequately connected architecture is equivalent to a singleton architecture. The synthesis problem is decidable for LTL specifications and pipelines of adequately connected architectures.

41 / 6

Uniformly well connected architectures

Definition

An architecture is uniformly well connected if there is a uniform way to route variables in View(y) to y for each output variable y.

Example

Information fork criterion (Finkbeiner–Schewe LICS '05)

/ 65

Uniformly well connected architectures

Definition

An architecture is uniformly well connected if there is a uniform way to route variables in View(v) to v for each output variable v.

- If the capacity of internal variables is big enough then the architecture is uniformly well-connected.
- If the architecture is uniformly well-connected then we can use causal strategies instead of local ones.

Proposition

Checking whether a given architecture is uniformly well connected is NP-complete.

Proof

Reduction to the multicast problem in Network Information Flow. The multicast problem is NP-complete (Rasala Lehman-Lehman 2004).

Uniformly well connected architectures

Theorem (PG, Nathalie Sznajder, Marc Zeitoun)

Uniformly well connected architectures with preordered information are decidable for CTL* external specifications.

Theorem: Kupferman-Vardi (LICS'01)

The synthesis problem is decidable for pipeline architectures and CTL* specifications on all variables.

Open problem

Decidability of the distributed control/synthesis problem for robust and external specifications.

Robust specifications

Definition

A specification φ is robust if it can be written $\varphi = \bigvee \bigwedge_{z \in \text{Out}} \varphi_z$ where φ_z depends only on $\text{View}(z) \cup \{z\}$.

Theorem

The synthesis problem for uniformly well-connected architectures and external and robust CTL* specifications is decidable.

Proof.

Control for sequential systems

Control for distributed systems

Synchronous semantics

An example: Romeo and Juliet

Romeo and Juliet against the environment

Want to communicate through the same communication line.

At any time, one line is broken.

Environment looks where R&J are connected, and then, atomically, changes (possibly) the broken line.

Romeo/Juliet looks status of lines and, atomically, chooses where to connect.

49 /

Romeo and Juliet (continued)

A distributed play of the asynchronous system, R & J against E

Romeo and Juliet (continued)

Architecture

Variables:

x1: Romeo's current line.	$Q_1 = \{1, 2, 3, 4\}$
x_2 : broken line	$Q_2 = \{1, 2, 3, 4\}$
x_3 : Juliet's current line.	$Q_3 = \{1, 2, 3, 4\}$

Agents: Romeo, Juliet and Environment.

Read/Write table

	Romeo	Juliet	Environment
Read	$\{x_1, x_2\}$	$\{x_2, x_3\}$	$\{x_1, x_2, x_3\}$
Write	$\{x_1\}$	$\{x_3\}$	$\{x_2\}$

Distributed Behaviors

A play is a Mazurkiewicz (real) trace

A finite play:

Move: extension of the current Mazurkiewicz trace following the rules.

The game is not "position based", nor "turn based".

Winning condition: set of finite or infinite Mazurkiewicz traces $\mathcal{W} \subseteq \mathbb{R}(\Sigma, D)$. Team 0 wins plays of \mathcal{W} and loses plays of $\mathbb{R}(\Sigma, D) \setminus \mathcal{W}$.

Romeo and Juliet

 $\ensuremath{\mathcal{W}}$ imposes fairness conditions to the environment.

51 / 65

Memory for strategies

Memory

Each player only has a partial view of the global history. Memoryless: move can depend only on the current state. Local memory: a player can remember its read history.

Causal memory (intuitively, maximal history a player can observe)

Players gather and forward as much information as possible.

but no global view, the choice for an action cannot depend on a concurrent event.

53 / 6

Finite abstraction of the causal memory

Distributed memory

A distributed memory is a mapping $\mu:\mathbb{M}(\Sigma,D)\to M$ satisfying the following equivalent properties:

- 1. $\mu^{-1}(m)$ is recognizable for each $m \in M$,
- 2. μ is an abstraction of an asynchronous mapping (cf. Zielonka),
- 3. μ can be computed in a distributed way (allowing additional contents inside existing communications (piggy-backing), but no extra communications).

Strategy with memory μ

 $f_a: M \times Q_{R(a)} \to Q_{W(a)} \cup \mathsf{Stop}$

the associated strategy is defined by

 $f_a^{\mu}(t,q) = f_a(\mu(t),q)$

If M is finite then f^{μ} is a distributed strategy with finite memory. If |M|=1 then f^{μ} is memoryless.

55 / 6

Winning strategies

Tuple $(f_a)_{a \in \mathcal{P}_0}$ where f_a tells player $a \in \mathcal{P}_0$ how to play.

f-maximal *f*-plays

Given a strategy $f = (f_a)_{a \in \mathcal{P}_0}$, one looks at plays t which are consistent with f: all a-moves played according to f_a (f-play). maximal: f predicts to Stop for all a-moves enabled at t with $a \in \mathcal{P}_0$.

Winning strategies

A strategy f is winning in G if all f-maximal f-plays in G are in \mathcal{W} .

54 / 65

Embedding causal memory inside games

Proposition: PG-Lerman-Zeitoun (LATIN'04)

For a distributed game G and a distributed memory $\mu,$ one can build a game G^{μ} such that

team 0 has a WDS in G with memory μ

iff

team 0 has a memoryless WDS in G^{μ} .

Proof.

 $G^{\mu} = G \times \mu$

From distributed to sequential games

Theorem: PG-Lerman-Zeitoun (LATIN'04)

Given a finite distributed game (G, W), we can effectively build a finite sequential 2-players game $(\widetilde{G}, \widetilde{W})$ st. the following are equivalent:

- There exists a memoryless distributed WS for team 0 in (G, W).
- There exists a memoryless WS for player 0 in $(\widetilde{G}, \widetilde{\mathcal{W}})$.
- There exists a WS for player 0 in $(\widetilde{G}, \widetilde{W})$.

Moreover, if ${\mathcal W}$ is recognizable then so is $\widetilde{{\mathcal W}}$

Naive idea Consider the game on the global transition system. Main problem The controller has more information than its causal memory.

Solution

- The opponent controls the linearization to be played.
- Using reset moves, he can replay different linearizations for the same play.
- ► The winning condition $\widetilde{\mathcal{W}}$ makes sure that the strategy followed by the controller is indeed distributed.

57 / 65

Series-parallel architectures

Theorem: PG-Lerman-Zeitoun (FSTTCS'04)

Distributed games with recognizable winning conditions are decidable for seriesparallel systems and causal memory strategies.

Definition : let $\mathcal{A} = (\mathcal{P}, \mathcal{V}, R, W)$ be some architecture.

 \mathcal{A} is a parallel product if $\mathcal{P} = A \uplus B$ with $R(a) \cap W(b) = \emptyset$ for all $(a, b) \in A \times B$.

 \mathcal{A} is a serial product if $\mathcal{P} = A \uplus B$ with $R(a) \cap W(b) \neq \emptyset$ for all $(a, b) \in A \times B$.

 \mathcal{A} is series-parallel if it can be obtained from singletons ($|\mathcal{P}| = 1$) using serial and parallel compositions.

 \mathcal{A} is series-parallel iff the associated dependence relation does not contain a P_4 : a - b - c - d as induced subgraph.

Behaviors of series parallel architectures are series-parallel posets.

(Un)deciding games

Proposition: (Folklore)

Deciding whether team 0 has a distributed WS with causal memory is undecidable for rational winning conditions.

Proof. Simple reduction of the universality problem for rational trace languages.

Peterson-Reif Madhusudan-Thiagarajan Bernet-Janin-Walukiewicz

Deciding whether team 0 has a distributed WS with local memory is undecidable even:

for reachability or safety winning conditions.

with 3 players against the environment.

58 / 65

Proof outline

Team 0 has a WDS \Rightarrow it has a WDS with a "small" distributed memory. Induction on Σ .

Difficult case: serial product.

- 1. A WS on $A \uplus B$ induces WS on the restrictions of the game to A and B.
- 2. Replace the WS on A, B by WS with small memory (induction).
- 3. Finally, glue together these WS on A and B to obtain a WS on $A\cup B$ using small memory.

Main problem

Team 0 must know on which small game it is playing.

Team 0 has to compute this information in a distributed way.

Madhusudan and Thiagarajan (Concur'02)

Setting

Architecture: $\mathcal{A} = (\mathcal{P}, \mathcal{V}, R, W)$ with R(a) = W(a) for all $a \in \mathcal{P}$.

Moves: δ_a are built from local moves for variables $\delta_{a,x} \subseteq Q_x \times Q_x$:

$$\delta_a = \prod_{x \in R(a)} \delta_{a,x}$$

Strategies with local memory: associated with variables and not with agents, and only predict the next actions and not the next state:

$$f_x: Q_x^* \to 2^{R^{-1}(x)}$$

action a is enabled by $(f_x)_{x \in \mathcal{V}}$ at some finite play t if

$$\forall x \in R(a), \qquad a \in f_x(\pi_{Q_x}(t))$$

The environment decides which a-transition should be taken among the actions a enabled by the strategies.

61 / 6

Mohalik and Walukiewicz (FSTTCS'03)

Restricted control synthesis problem

Given a distributed system and a recognizable specification,

Question existence of a clocked and com-rigid non-blocking winning distributed strategy with local memory.

clocked: $f_x(w)$ only depends on |w|. com-rigid: $a, b \in f_x(w)$ implies R(a) = R(b).

Theorem

- 1. The restricted control synthesis problem is decidable.
- 2. It becomes undecidable if one of the red condition is dropped.

62 / 65

Open problems

Generalization to arbitrary symmetric architectures. Generalization to non-symmetric architectures. Reasonable upper bounds for synthesis?

Restrictions

Controllable actions: R(a) = W(a) is a singleton for all $a \in \mathcal{P}_0$.

Environment actions: $R(e) = W(e) = \mathcal{V}$ and $\mathcal{P}_1 = \{e\}$.

Moves: $\delta_e \subseteq Q_{\mathcal{V}} \times Q_{\mathcal{V}}$.

Strategies: local memory with stuttering reduction so that a player $a \in \mathcal{P}_0$ cannot see how long it has been idle.

Theorem

Previous settings with local memory can be encoded.

two constructions to solve the distributed control problem subsuming previously known decidable cases with local memory.

