Distributed synthesis for synchronous systems¹

Paul Gastin

LSV

ENS de Cachan & CNRS Paul.Gastin@lsv.ens-cachan.fr

Dec 6th, 2006

¹Joint work with Nathalie Sznajder and Marc Zeitoun

Outline

Synthesis and control for sequential systems

Synthesis and control for distributed systems

Well-connected architectures

Open / Reactive system

Synthesis problem

- Given a specification φ , decide whether there exists a program P such that $P \| E \models \varphi$ for all environment E.
- Build such a program *P* (if one exists).

Open / Reactive system

Synthesis problem

- Given a specification φ , decide whether there exists a program P such that $P \| E \models \varphi$ for all environment E.
- Build such a program P (if one exists).

Specification

Example: Elevator

- Inputs: call for level i.
- Outputs: open/close door i, move 1 level up/down.

Linear time: LTL, FO, MSO, regular, ...

- ▶ Safety: $G(\texttt{level} \neq i \longrightarrow \texttt{is_closed}_i)$
- Liveness: $G(\texttt{is_called}_i \longrightarrow F(\texttt{level} = i \land \texttt{is_open}_i))$

Branching time: CTL, CTL^* , μ -calculus, ...

- $AG(call_i) \top$ (call_i is uncontrollable)
- AGEF(level = $0 \land \texttt{is_open}_0$)

Specification

Example: Elevator

- Inputs: call for level i.
- Outputs: open/close door i, move 1 level up/down.

Linear time: LTL, FO, MSO, regular, ...

- Safety: $G(\texttt{level} \neq i \longrightarrow \texttt{is_closed}_i)$
- Liveness: $G(\texttt{is_called}_i \longrightarrow F(\texttt{level} = i \land \texttt{is_open}_i))$

Branching time: CTL, CTL*, μ -calculus, ...

- $AG(call_i) \top$ (call_i is uncontrollable)
- AGEF(level = $0 \land is_open_0$)

- Q_x : domain for input variable x
- Q_y : domain for output variable y
- Program: $f: Q_x^+ \to Q_y$
- Input: $x_1 x_2 \cdots \in Q_x^{\omega}$.
- Behavior: $(x_1, y_1)(x_2, y_2)(x_3, y_3) \cdots$ with $y_n = f(x_1 \cdots x_n)$ for all n > 0.

Chruch problem (implementability) 1962

- Given a linear time specification φ over the alphabet $\Sigma = Q_x \times Q_y$. Does there exist a program f such that all f-behaviors satisfy φ ?
- Given a branching time specification φ over the alphabet $\Sigma = Q_x \times Q_y$, Does there exist a program f such that its run-tree satisfies φ ?

- Q_x : domain for input variable x
- Q_y : domain for output variable y
- Program: $f: Q_x^+ \to Q_y$
- Input: $x_1 x_2 \cdots \in Q_x^{\omega}$.
- Behavior: $(x_1, y_1)(x_2, y_2)(x_3, y_3) \cdots$ with $y_n = f(x_1 \cdots x_n)$ for all n > 0.

Chruch problem (implementability) 1962

- Given a linear time specification φ over the alphabet Σ = Q_x × Q_y, Does there exist a program f such that all f-behaviors satisfy φ?
- Given a branching time specification φ over the alphabet $\Sigma = Q_x \times Q_y$, Does there exist a program f such that its run-tree satisfies φ ?

- Q_x : domain for input variable x
- Q_y : domain for output variable y
- Program: $f: Q_x^+ \to Q_y$
- Input: $x_1 x_2 \cdots \in Q_x^{\omega}$.
- Behavior: $(x_1, y_1)(x_2, y_2)(x_3, y_3) \cdots$ with $y_n = f(x_1 \cdots x_n)$ for all n > 0.

Chruch problem (implementability) 1962

- Given a linear time specification φ over the alphabet Σ = Q_x × Q_y, Does there exist a program f such that all f-behaviors satisfy φ?
- Given a branching time specification φ over the alphabet $\Sigma = Q_x \times Q_y$, Does there exist a program f such that its run-tree satisfies φ ?

Chruch problem (implementability) 1962

Given a linear time specification φ over the alphabet $\Sigma = Q_x \times Q_y$, Does there exist a program f such that all f-behaviors satisfy φ ?

Implementability \neq Satisfiability

•
$$Q_x = \{0, 1\}$$
 and $\varphi := \mathsf{F}(x = 1)$

- φ is satisfiable: $(1,0)^{\omega} \models \varphi$
- φ is not implementable since the input is not controllable.

Implementability \neq Validity of $\forall \vec{x} \; \exists \vec{y} \; \varphi$

- $\blacktriangleright \ Q_x = Q_y = \{0,1\} \text{ and } \varphi := (y=1) \longleftrightarrow \mathsf{F}(x=1)$
- $\blacktriangleright \forall \vec{x} \exists \vec{y} \varphi \text{ is valid.}$
- φ is not implementable by a reactive program.

For non-reactive terminating programs, Implementability = Validity of $\forall \vec{x} \ \exists \vec{y} \ \varphi$

Chruch problem (implementability) 1962

Given a linear time specification φ over the alphabet $\Sigma = Q_x \times Q_y$, Does there exist a program f such that all f-behaviors satisfy φ ?

Implementability \neq Satisfiability

•
$$Q_x = \{0, 1\}$$
 and $\varphi := \mathsf{F}(x = 1)$

- φ is satisfiable: $(1,0)^{\omega} \models \varphi$
- φ is not implementable since the input is not controllable.

Implementability \neq Validity of $\forall \vec{x} \exists \vec{y} \varphi$

- $\blacktriangleright \ Q_x = Q_y = \{0,1\} \text{ and } \varphi := (y=1) \longleftrightarrow \mathsf{F}(x=1)$
- $\blacktriangleright \ \forall \vec{x} \ \exists \vec{y} \ \varphi \text{ is valid.}$
- φ is not implementable by a reactive program.

For non-reactive terminating programs, Implementability = Validity of $\forall \vec{x} \ \exists \vec{y} \ \varphi$

Chruch problem (implementability) 1962

Given a linear time specification φ over the alphabet $\Sigma = Q_x \times Q_y$, Does there exist a program f such that all f-behaviors satisfy φ ?

Implementability \neq Satisfiability

•
$$Q_x = \{0, 1\}$$
 and $\varphi := \mathsf{F}(x = 1)$

- φ is satisfiable: $(1,0)^{\omega} \models \varphi$
- φ is not implementable since the input is not controllable.

Implementability \neq Validity of $\forall \vec{x} \exists \vec{y} \varphi$

- $\blacktriangleright \ Q_x = Q_y = \{0,1\} \text{ and } \varphi := (y=1) \longleftrightarrow \mathsf{F}(x=1)$
- $\blacktriangleright \forall \vec{x} \exists \vec{y} \varphi \text{ is valid.}$
- $\blacktriangleright \varphi$ is not implementable by a reactive program.

For non-reactive terminating programs, Implementability = Validity of $\forall \vec{x} \ \exists \vec{y} \ \varphi$

Chruch problem (implementability) 1962

Given a linear time specification φ over the alphabet $\Sigma = Q_x \times Q_y$, Does there exist a program f such that all f-behaviors satisfy φ ?

Theorem (Pnueli-Rosner 89)

- The specification $\varphi \in \mathrm{LTL}$ is implementable iff the formula

$$\mathsf{A}\,\varphi\wedge\mathsf{AG}(\bigwedge_{a\in Q_x}\mathsf{EX}(x=a))$$

is satisfiable.

When φ is implementable, we can construct a finite state implementation (program) in time doubly exponential in φ.

Control problem

Open system: Transitions system $\mathcal{A} = (Q, \Sigma, q_0, \delta)$

- Q: finite or infinite set of states,
- δ : deterministic or non deterministic transition function.

Control problem

- Given a system S and a specification φ , decide whether there exists a controller C such that $(S \otimes C) ||E| \models \varphi$.
- Build such a controller C (if one exists).

Control problem

Open system: Transitions system $\mathcal{A} = (Q, \Sigma, q_0, \delta)$

- Q: finite or infinite set of states,
- δ : deterministic or non deterministic transition function.

Control problem

- ► Given a system S and a specification φ , decide whether there exists a controller C such that $(S \otimes C) ||E| \models \varphi$.
- Build such a controller C (if one exists).

Control versus Game

Correspondance	
Transition system	= Game arena (graph).
Controllable events	= Actions of player 1 (controller).
Uncontrollable events	= Action of player 0 (opponent, environment).
Behavior	= Play.
Controller	= Strategy.
Specification	 Winning condition.
Finding a controller	= finding a winning strategy.

Theorem: Büchi - Landweber 1969

If the system is finite state and the specification is regular then the control problem is decidable.

Moreover, when (S, φ) is controllable, we can synthesize a finite state controller.

Control versus Game

Correspondance	
Transition system	= Game arena (graph).
Controllable events	= Actions of player 1 (controller).
Uncontrollable events	= Action of player 0 (opponent, environment).
Behavior	= Play.
Controller	= Strategy.
Specification	 Winning condition.
Finding a controller	= finding a winning strategy.

Theorem: Büchi - Landweber 1969

If the system is finite state and the specification is regular then the control problem is decidable.

Moreover, when (S, φ) is controllable, we can synthesize a finite state controller.

Program synthesis versus System control

Equivalence

The implementability problem for

is equivalent to the control problem for the system

Outline

Synthesis and control for sequential systems

2 Synthesis and control for distributed systems

Well-connected architectures

Distributed synthesis

Distributed synthesis problem

- Decide whether there exists a distributed program st. $P_1 \parallel \cdots \parallel P_n \parallel E \models \varphi.$
- Synthesis: If so, compute such a distributed program.

Peterson-Reif 1979, Pnueli-Rosner 1990

In general, the problem is undecidable.

Distributed synthesis

Distributed synthesis problem

Decide whether there exists a distributed program st. $P_1 \parallel \cdots \parallel P_n \parallel E \models \varphi.$

Synthesis: If so, compute such a distributed program.

Peterson-Reif 1979, Pnueli-Rosner 1990

In general, the problem is undecidable.

Distributed synthesis

Distributed synthesis problem

Decide whether there exists a distributed program st. $P_1 \parallel \cdots \parallel P_n \parallel E \models \varphi.$

Synthesis: If so, compute such a distributed program.

Peterson-Reif 1979, Pnueli-Rosner 1990

In general, the problem is undecidable.

Distributed control

Distributed control problem

- Decide whether there exists a distributed controller st. $(S_1 \otimes C_1) \parallel \cdots \parallel (S_n \otimes C_n) \parallel E \models \varphi.$
- Synthesis: If so, compute such a distributed controller.

Distributed control

Distributed control problem

Decide whether there exists a distributed controller st. $(S_1 \otimes C_1) \parallel \cdots \parallel (S_n \otimes C_n) \parallel E \models \varphi.$

Synthesis: If so, compute such a distributed controller.

Architectures with shared variables

Example

Architecture $\mathcal{A} = (\mathcal{P}, \mathcal{V}, R, W)$

- ▶ *P* finite set of processes/agents.
- V finite set of Variables.
- $\blacktriangleright \ R \subseteq \mathcal{P} \times \mathcal{V}: \quad (a, x) \in R \text{ iff } a \text{ reads } x.$
 - R(a) variables read by process $a \in \mathcal{P}_{a}$
 - $R^{-1}(x)$ processes reading variable $x \in \mathcal{V}$.
- $W \subseteq \mathcal{P} \times \mathcal{V}$: $(a, x) \in W$ iff a writes to x.
 - W(a) variables written by process $a \in \mathcal{P}$,
 - $W^{-1}(x)$ processes writing to variable $x \in \mathcal{V}$.

Architectures with shared variables

Example

Architecture $\mathcal{A} = (\mathcal{P}, \mathcal{V}, R, W)$

- \mathcal{P} finite set of processes/agents.
- V finite set of Variables.
- $R \subseteq \mathcal{P} \times \mathcal{V}$: $(a, x) \in R$ iff a reads x.
 - R(a) variables read by process $a \in \mathcal{P}$,
 - $R^{-1}(x)$ processes reading variable $x \in \mathcal{V}$.
- $W \subseteq \mathcal{P} \times \mathcal{V}$: $(a, x) \in W$ iff a writes to x.
 - W(a) variables written by process $a \in \mathcal{P}$,
 - $W^{-1}(x)$ processes writing to variable $x \in \mathcal{V}$.

Main parameters

- Which subclass of architectures?
- Which semantics?

synchronous (with our without delay), asynchronous

What kind of specification?

LTL, CLT*, µ-calculus Rational, Recognizable word/tree

Main parameters

- Which subclass of architectures?
- Which semantics?

synchronous (with our without delay), asynchronous

What kind of specification?

LTL, CLT*, µ-calculus Rational, Recognizable word/tree

Main parameters

- Which subclass of architectures?
- Which semantics?

synchronous (with our without delay), asynchronous

What kind of specification?

LTL, CLT*, μ -calculus Rational, Recognizable word/tree

Main parameters

- Which subclass of architectures?
- Which semantics?

synchronous (with our without delay), asynchronous

What kind of specification?

LTL, CLT*, μ -calculus Rational, Recognizable word/tree

0-delay synchronous semantics

Example

Programs with local memory: $f_x : Q_u^* \to Q_x$ and $f_z : (Q_x \times Q_v)^* \to Q_z$.

Input:

$$\begin{pmatrix}
u_1 & u_2 & u_3 & \cdots \\
v_1 & v_2 & v_3 & \cdots
\end{pmatrix} \in (Q_u \times Q_v)^{\omega}.$$

Behavior:

$$\begin{pmatrix}
u_1 & u_2 & u_3 & \cdots \\
v_1 & v_2 & v_3 & \cdots \\
x_1 & x_2 & x_3 & \cdots \\
z_1 & z_2 & z_3 & \cdots
\end{pmatrix}$$
with

$$\begin{cases}
x_n = f_x(u_1 \cdots u_n) \\
z_n = f_z((x_1, v_1) \cdots (x_n, v_n))
\end{cases}$$
for all $n > 0$.

Global versus distributed synthesis

Network information flow

Lemma (Rasala Lehman–Lehman 2004)

If $f^1, \ldots, f^n : S^2 \to S$ are pairwise independent functions, then $n \leq |S| + 1$. f^i, f^j are independent if $(f^i, f^j) : S^2 \to S^2$ is one to one.

Global versus distributed synthesis

Network information flow $(u_1)(v_1)(u_2)(v_2)(u_3)(v_3)(u_4)(v_4)(u_5)(v_5)(u_6)(v_6)$

Lemma (Rasala Lehman–Lehman 2004)

If $f^1, \ldots, f^n : S^2 \to S$ are pairwise independent functions, then $n \leq |S| + 1$. f^i, f^j are independent if $(f^i, f^j) : S^2 \to S^2$ is one to one.

Global versus distributed synthesis

Network information flow

Lemma (Rasala Lehman–Lehman 2004)

If $f^1, \ldots, f^n : S^2 \to S$ are pairwise independent functions, then $n \leq |S| + 1$. f^i, f^j are independent if $(f^i, f^j) : S^2 \to S^2$ is one to one.

Undecidability

Theorem (Pnueli-Rosner FOCS'90)

The synthesis problem for architecture A_0 and LTL (or CTL) specifications is undecidable.

Proof

Reduction from the halting problem on the empty tape.

Undecidability proof 1

SPEC₁: processes a and b must output configurations

$$(v = 0 \land y = \#) \ \mathsf{W} \left(v = 1 \land (v = 1 \land y = \#) \ \mathsf{W} \left(v = 0 \land y \in \Gamma^* Q \Gamma^+ \#^\omega \right) \right)$$

where

 $y \in \Gamma^* Q \Gamma^+ \#^\omega \quad \stackrel{\mathsf{def}}{=} \quad y \in \Gamma \, \mathsf{U} \left(y \in Q \land \mathsf{X} \big(y \in \Gamma \, \mathsf{U} \, (y \in \Gamma \land \mathsf{X} \, \mathsf{G} \, y = \#) \big) \right)$

SPEC₁: processes a and b must output configurations

$$(v = 0 \land y = \#) \mathsf{W} \left(v = 1 \land (v = 1 \land y = \#) \mathsf{W} \left(v = 0 \land y \in \Gamma^* Q \Gamma^+ \#^\omega \right) \right)$$

where

$$y \in \Gamma^* Q \Gamma^+ \#^\omega \quad \stackrel{\text{def}}{=} \quad y \in \Gamma \, \mathsf{U} \left(y \in Q \land \mathsf{X} \big(y \in \Gamma \, \mathsf{U} \, (y \in \Gamma \land \mathsf{X} \, \mathsf{G} \, y = \#) \big) \right)$$

 $n(u) = n(v) \longrightarrow \mathsf{G}(x = y)$

where

 $n(u) = n(v) \stackrel{\text{def}}{=} (u = v = 0) \cup (u = v = 1 \land (u = v = 1 \cup u = v = 0))$

SPEC₃: if n(u) = n(v) are synchronized then x = y

$$n(u) = n(v) \longrightarrow \mathsf{G}(x = y)$$

where

$$n(u) = n(v) \quad \stackrel{\mathrm{def}}{=} \quad (u = v = 0) \ \mathrm{U} \ (u = v = 1 \land (u = v = 1 \ \mathrm{U} \ u = v = 0))$$

SPEC₄: if n(u) = n(v) + 1 are synchronized then $C_y \vdash C_x$

$$n(u) = n(v) + 1 \longrightarrow x = y \cup (\operatorname{Trans}(y, x) \wedge X^3 \operatorname{G} x = y)$$

where Trans(y, x) is defined by

 $\bigvee_{p,a,q,b,\leftarrow)\in T,c\in\Gamma} (y=cpa\wedge x=qcb) \quad \lor \bigvee_{(p,a,q,b,\rightarrow)\in T,c\in\Gamma} (y=pac\wedge x=bqc)$

$$\vee \bigvee_{(p,a,q,b,\to)\in T} (y = pa \# \land x = bq \Box)$$

SPEC₄: if n(u) = n(v) + 1 are synchronized then $C_y \vdash C_x$

$$n(u) = n(v) + 1 \longrightarrow x = y \cup \left(\operatorname{Trans}(y, x) \wedge \mathsf{X}^3 \operatorname{\mathsf{G}} x = y\right)$$

where Trans(y, x) is defined by

 $\bigvee_{\substack{(p,a,q,b,\leftarrow)\in T,c\in\Gamma}} (y = cpa \land x = qcb) \qquad \lor \qquad \bigvee_{\substack{(p,a,q,b,\rightarrow)\in T,c\in\Gamma}} (y = pac \land x = bqc) \\ \lor \qquad \bigvee_{\substack{(p,a,q,b,\rightarrow)\in T}} (y = pa\# \land x = bq\Box)$

Lemma: winning strategies must simulate the Turing machine

For each $p \ge 1$, if n(u) = p then $C_x = C_p$ is the *p*-th configuration of the Turing machine starting from the empty tape.

Proof $\begin{array}{cccc} & u & v \\ & u & v \\ & a & b \\ & & b \\ & & & y \\ & & & y \\ \end{array}$

Corollary

Lemma: winning strategies must simulate the Turing machine

For each $p \ge 1$, if n(u) = p then $C_x = C_p$ is the *p*-th configuration of the Turing machine starting from the empty tape.

Corollary

Lemma: winning strategies must simulate the Turing machine

For each $p \ge 1$, if n(u) = p then $C_x = C_p$ is the *p*-th configuration of the Turing machine starting from the empty tape.

Proof

Corollary

Lemma: winning strategies must simulate the Turing machine

For each $p \ge 1$, if n(u) = p then $C_x = C_p$ is the *p*-th configuration of the Turing machine starting from the empty tape.

Corollary

Lemma: winning strategies must simulate the Turing machine

For each $p \ge 1$, if n(u) = p then $C_x = C_p$ is the *p*-th configuration of the Turing machine starting from the empty tape.

Proof

Corollary

Lemma: winning strategies must simulate the Turing machine

For each $p \ge 1$, if n(u) = p then $C_x = C_p$ is the *p*-th configuration of the Turing machine starting from the empty tape.

Proof

Corollary

Decidability of distributed synthesis

Pnueli-Rosner (FOCS'90)

The synthesis problem for pipeline architectures and LTL specifications is non elementary decidable.

Peterson-Reif (FOCS'79)

multi-person games with incomplete information.

 \implies non-elementary lower bound for the synthesis problem.

Kupferman-Vardi (LICS'01)

The synthesis problem is non elementary decidable for

- one-way chain, one-way ring, two-way chain and two-way ring,
- CTL* specifications (or tree-automata specifications) on all variables,
- synchronous, 1-delay semantics,
- local strategies.

one-way chain

Kupferman-Vardi (LICS'01)

The synthesis problem is non elementary decidable for

- one-way chain, one-way ring, two-way chain and two-way ring,
- CTL* specifications (or tree-automata specifications) on all variables,
- synchronous, 1-delay semantics,
- local strategies.

Kupferman-Vardi (LICS'01)

The synthesis problem is non elementary decidable for

- one-way chain, one-way ring, two-way chain and two-way ring,
- CTL* specifications (or tree-automata specifications) on all variables,
- synchronous, 1-delay semantics,
- local strategies.

two-way chain

1-delay synchronous semantics

Programs: $f_x : Q_u^* \to Q_x$ and $f_z : (Q_x \times Q_v)^* \to Q_z$. • Input: $\begin{pmatrix} u_1 & u_2 & u_3 & \cdots \\ v_1 & v_2 & v_3 & \cdots \end{pmatrix} \in (Q_u \times Q_v)^{\omega}$. • Behavior: $\begin{pmatrix} u_1 & u_2 & u_3 & \cdots \\ v_1 & v_2 & v_3 & \cdots \\ x_1 & x_2 & x_3 & \cdots \\ z_1 & z_2 & z_3 & \cdots \end{pmatrix}$ with $\begin{cases} x_{n+1} = f_x(u_1 \cdots u_n) \\ z_{n+1} = f_z((x_1, v_1) \cdots (x_n, v_n)) \end{cases}$ for all n > 0.

- An adequately connected architecture is equivalent to a singleton architecture.
- The synthesis problem is decidable for LTL specifications and pipelines of adequately connected architectures.

- > An adequately connected architecture is equivalent to a singleton architecture.
- The synthesis problem is decidable for LTL specifications and pipelines of adequately connected architectures.

- > An adequately connected architecture is equivalent to a singleton architecture.
- The synthesis problem is decidable for LTL specifications and pipelines of adequately connected architectures.

- > An adequately connected architecture is equivalent to a singleton architecture.
- The synthesis problem is decidable for LTL specifications and pipelines of adequately connected architectures.

Information fork criterion (Finkbeiner–Schewe LICS '05)

Information fork criterion (Finkbeiner–Schewe LICS '05)

Information fork criterion (Finkbeiner–Schewe LICS '05)

Outline

Synthesis and control for sequential systems

Synthesis and control for distributed systems

Well-connected architectures

Definition

For an output variable y, View(y) is the set of input variables x such that there is a path from x to y.

Definition

An architecture is uniformly well connected if there is a uniform way to route variables in View(y) to y for each output variable y.

Example

Definition

For an output variable y, View(y) is the set of input variables x such that there is a path from x to y.

Definition

An architecture is uniformly well connected if there is a uniform way to route variables in View(y) to y for each output variable y.

Example

Definition

An architecture is uniformly well connected if there is a uniform way to route variables in View(v) to v for each output variable v.

- If the capacity of internal variables is big enough then the architecture is uniformly well-connected.
- If the architecture is uniformly well-connected then we can use causal strategies instead of local ones.

Proposition

Checking whether a given architecture is uniformly well connected is NP-complete.

Proof

Reduction to the multicast problem in Network Information Flow. The multicast problem is NP-complete (Rasala Lehman-Lehman 2004).

Definition

An architecture is uniformly well connected if there is a uniform way to route variables in View(v) to v for each output variable v.

- If the capacity of internal variables is big enough then the architecture is uniformly well-connected.
- If the architecture is uniformly well-connected then we can use causal strategies instead of local ones.

Proposition

Checking whether a given architecture is uniformly well connected is NP-complete.

Proof

Reduction to the multicast problem in Network Information Flow. The multicast problem is NP-complete (Rasala Lehman-Lehman 2004).

Definition

An architecture has uncomparable information if there exist y_1, y_2 output variables such that $View(y_2) \setminus View(y_1) \neq \emptyset$ and $View(y_1) \setminus View(y_2) \neq \emptyset$.

Definition

An architecture has uncomparable information if there exist y_1, y_2 output variables such that $View(y_2) \setminus View(y_1) \neq \emptyset$ and $View(y_1) \setminus View(y_2) \neq \emptyset$.

Definition

An architecture has uncomparable information if there exist y_1, y_2 output variables such that $View(y_2) \setminus View(y_1) \neq \emptyset$ and $View(y_1) \setminus View(y_2) \neq \emptyset$.

Definition

An architecture has uncomparable information if there exist y_1, y_2 output variables such that $View(y_2) \setminus View(y_1) \neq \emptyset$ and $View(y_1) \setminus View(y_2) \neq \emptyset$.

Definition

An architecture has uncomparable information if there exist y_1, y_2 output variables such that $View(y_2) \setminus View(y_1) \neq \emptyset$ and $View(y_1) \setminus View(y_2) \neq \emptyset$.

Uncomparable information yields undecidability

Theorem

Architectures with uncomparable information are undecidable for LTL or CTL inputoutput specifications.

Uncomparable information yields undecidability

Theorem

Architectures with uncomparable information are undecidable for LTL or CTL inputoutput specifications.

Uncomparable information yields undecidability

Theorem

Architectures with uncomparable information are undecidable for LTL or CTL inputoutput specifications.

Theorem (PG, Nathalie Sznajder, Marc Zeitoun)

Uniformly well connected architectures with preordered information are decidable for CTL* external specifications.

Proof.

Theorem: Kupferman-Vardi (LICS'01)

Theorem (PG, Nathalie Sznajder, Marc Zeitoun)

Uniformly well connected architectures with preordered information are decidable for CTL* external specifications.

Proof.

Theorem: Kupferman-Vardi (LICS'01)

Theorem (PG, Nathalie Sznajder, Marc Zeitoun)

Uniformly well connected architectures with preordered information are decidable for CTL* external specifications.

Proof.

Theorem: Kupferman-Vardi (LICS'01)

Theorem (PG, Nathalie Sznajder, Marc Zeitoun)

Uniformly well connected architectures with preordered information are decidable for CTL* external specifications.

Proof.

Theorem: Kupferman-Vardi (LICS'01)

Theorem (PG, Nathalie Sznajder, Marc Zeitoun)

Uniformly well connected architectures with preordered information are decidable for CTL* external specifications.

Proof.

Theorem: Kupferman-Vardi (LICS'01)

Theorem (PG, Nathalie Sznajder, Marc Zeitoun)

Uniformly well connected architectures with preordered information are decidable for CTL* external specifications.

Proof.

Theorem: Kupferman-Vardi (LICS'01)

Theorem (PG, Nathalie Sznajder, Marc Zeitoun)

Uniformly well connected architectures with preordered information are decidable for CTL* external specifications.

Proof.

Theorem: Kupferman-Vardi (LICS'01)

Definition

A specification φ is robust if it can be written $\varphi = \bigvee \bigwedge_{z \in \text{Out}} \varphi_z$ where φ_z depends only on $\text{View}(z) \cup \{z\}$.

Theorem

The synthesis problem for uniformly well-connected architectures and external and robust CTL* specifications is decidable.

Definition

A specification φ is robust if it can be written $\varphi = \bigvee \bigwedge_{z \in \text{Out}} \varphi_z$ where φ_z depends only on $\text{View}(z) \cup \{z\}$.

Theorem

The synthesis problem for uniformly well-connected architectures and external and robust CTL* specifications is decidable.

Definition

A specification φ is robust if it can be written $\varphi = \bigvee \bigwedge_{z \in \text{Out}} \varphi_z$ where φ_z depends only on $\text{View}(z) \cup \{z\}$.

Theorem

The synthesis problem for uniformly well-connected architectures and external and robust CTL* specifications is decidable.

Definition

A specification φ is robust if it can be written $\varphi = \bigvee \bigwedge_{z \in \text{Out}} \varphi_z$ where φ_z depends only on $\text{View}(z) \cup \{z\}$.

Theorem

The synthesis problem for uniformly well-connected architectures and external and robust CTL* specifications is decidable.

Definition

A specification φ is robust if it can be written $\varphi = \bigvee \bigwedge_{z \in \text{Out}} \varphi_z$ where φ_z depends only on $\text{View}(z) \cup \{z\}$.

Theorem

The synthesis problem for uniformly well-connected architectures and external and robust CTL* specifications is decidable.

Definition

A specification φ is robust if it can be written $\varphi = \bigvee \bigwedge_{z \in \text{Out}} \varphi_z$ where φ_z depends only on $\text{View}(z) \cup \{z\}$.

Theorem

The synthesis problem for uniformly well-connected architectures and external and robust CTL* specifications is decidable.

Definition

A specification φ is robust if it can be written $\varphi = \bigvee \bigwedge_{z \in Out} \varphi_z$ where φ_z depends only on $View(z) \cup \{z\}$.

Theorem

The synthesis problem for uniformly well-connected architectures and external and robust CTL* specifications is decidable.

Well-connected architectures

Definition

An architecture is well connected if, for each output variable y, the subarchitecture formed by $(E^*)^{-1}(y)$ is uniformly well connected.

Well-connected architectures

Definition

An architecture is well connected if, for each output variable y, the subarchitecture formed by $(E^*)^{-1}(y)$ is uniformly well connected.

Rasala Lehman–Lehman 2004

One can solve the network information flow in the special case where there is a unique sink in polynomial time.

Corollary

One can decide whether an architecture is well-connected in polynomial time.

Well connected preordered architectures

Theorem

The synthesis problem for LTL specifications and well connected architectures with preordered information is undecidable.

Well connected preordered architectures

Theorem

The synthesis problem for LTL specifications and well connected architectures with preordered information is undecidable.

Well connected preordered architectures

Theorem

The synthesis problem for LTL specifications and well connected architectures with preordered information is undecidable.

One bit of u is hidden to p_6

Open problem

- Find a decidability criterium for external specifications and well-connected architectures.
- Find a decidability criterium for external specifications and arbitrary architectures.
- Decidability of the distributed control/synthesis problem for robust and external specifications.