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Open / Reactive system

e inputs from E outputs to F I\

Reactive system S Spealcatlon
Program P

» Given a specification ¢, decide whether there exists a program P such that
P||E = ¢ for all environment E.

> Build such a program P (if one exists).

-
-

Synthesis problem



Specification

Example: Elevator
Inputs: call for level i.

Outputs: open/close door ¢, move 1 level up/down.



Specification

Example: Elevator
Inputs: call for level i.

Outputs: open/close door ¢, move 1 level up/down.

Linear time: LTL, FO, MSO, regular, ...

» Safety: G(level #i — is_closed;)

> Liveness: G(is_called; — F(level =i A is_open,))

Branching time: CTL, CTL", p-calculus, ...

> AG(call;)T (call, is uncontrollable)
» AGEF(level = 0 A is_open,)



Synthesis of reactive programs

Reactive program

i,f_y,

> (Q,: domain for input variable x
> @y: domain for output variable y
Program: f: Qf — Q,

> Input: z120--- € Q.

v

v

Behavior: (z1,y1)(x2,y2)(x3,y3) - -+ with y, = f(z1---x,) for all n > 0.
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Synthesis of reactive programs

Reactive program

> (Q,: domain for input variable x
> @y: domain for output variable y
» Program: f:Qf — Q,

> Input: z120--- € Q.

» Behavior: (z1,y1)(z2,y2)(z3,y3) -+ with y,, = f(z1---2y) for all n > 0.

Chruch problem (implementability) 1962

> Given a linear time specification ¢ over the alphabet ¥ = Q. x Qy,
Does there exist a program f such that all f-behaviors satisfy ¢?

> Given a branching time specification ¢ over the alphabet ¥ = Q. x Qy,
Does there exist a program f such that its run-tree satisfies ?



Synthesis of reactive programs

Chruch problem (implementability) 1962

Given a linear time specification ¢ over the alphabet ¥ = Q, X Qy,
Does there exist a program f such that all f-behaviors satisfy ¢?

Implementability # Satisfiability
» Qy=1{0,1} and ¢ := F(x = 1)
»  is satisfiable: (1,0)“ = ¢

» ( is not implementable since the input is not controllable.
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Synthesis of reactive programs

Chruch problem (implementability) 1962

Given a linear time specification ¢ over the alphabet ¥ = Q, X Qy,
Does there exist a program f such that all f-behaviors satisfy ¢?

Implementability # Satisfiability
» Qy=1{0,1} and ¢ := F(x = 1)
»  is satisfiable: (1,0)“ = ¢

» ( is not implementable since the input is not controllable.

Implementability # Validity of V' 3y ¢
s Qe=Qy={0,1}and p:=(y=1) «— F(xz =1)
» VZ 3y ¢ is valid.

» ( is not implementable by a reactive program.

For non-reactive terminating programs, Implementability = Validity of VZ 37 ¢



Synthesis of reactive programs

Chruch problem (implementability) 1962

Given a linear time specification ¢ over the alphabet ¥ = Q, X Qy,
Does there exist a program f such that all f-behaviors satisfy ¢?

Theorem (Pnueli-Rosner 89)

» The specification ¢ € LTL is implementable iff the formula

Ap AAG( /\ EX(z = a))
a€Qy

is satisfiable.

» When ¢ is implementable, we can construct a finite state implementation
(program) in time doubly exponential in ¢.



Control problem

4 inputs from E outputs to F

O Specn:lpcatlon
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Open system: Transitions system A = (Q, ¥, qo, )

» (: finite or infinite set of states,

» §: deterministic or non deterministic transition function.



Control problem
4 inputs from E outputs to F N

Open system S

enables/disables actions

observation

Specification
¥
%

Open system: Transitions system A = (Q, ¥, qo, )

» (: finite or infinite set of states,

» §: deterministic or non deterministic transition function.

Control problem

» Given a system S and a specification ¢, decide whether there exists a
controller C such that (S ® CO)[|E = ¢.

> Build such a controller C' (if one exists).



Control versus Game

Correspondance

Transition system
Controllable events
Uncontrollable events
Behavior

Controller
Specification

Finding a controller

= Game arena (graph).

Actions of player 1 (controller).

Action of player 0 (opponent, environment).
Play.

Strategy.

Winning condition.

finding a winning strategy.



Control versus Game

Correspondance

Transition system =

Controllable events
Uncontrollable events

Behavior
Controller =
Specification =
Finding a controller =

Theorem: Biichi - Landweber 1969

Game arena (graph).
Actions of player 1 (controller).
Action of player 0 (opponent, environment).

= Play.

Strategy.
Winning condition.
finding a winning strategy.

If the system is finite state and the specification is regular then the control problem

is decidable.

Moreover, when (.S, ¢) is controllable, we can synthesize a finite state controller.



Program synthesis versus System control

Equivalence

The implementability problem for
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Distributed synthesis

inputs from F outputs to

N/

Open distributed system S

Specification
¥

J




Distributed synthesis

4 inputs from F outputs to )
Open distributed system S
) 2 E— Py —
- Specification
L ®
Py {oo P,
- J

Distributed synthesis problem

Decide whether there exists a distributed program st.

Pl [Pl EE e

Synthesis: If so, compute such a distributed program.



Distributed synthesis

4 inputs from F outputs to )
Open distributed system S
2] P Py —
- Specification
— ¥
Py oo P,
- J/

Distributed synthesis problem

Decide whether there exists a distributed program st.
P || Pl E e
Synthesis: If so, compute such a distributed program.

Peterson-Reif 1979, Pnueli-Rosner 1990

In general, the problem is undecidable.




Distributed control

inputs from F outputs to

N/

Open distributed system S

................
...................

Specification
¥

J




Distributed control

4 inputs from F outputs to )
Controlled open distributed system S
C C
Specification
¥
...................
- J

Distributed control problem

Decide whether there exists a distributed controller st.
Synthesis: If so, compute such a distributed controller.



Architectures with shared variables

Example




Architectures with shared variables

Example

Architecture A = (P,V, R, W)

» P finite set of processes/agents.
> V finite set of Variables.
» RCPxV: (a,z) € Riff a reads .
» R(a) variables read by process a € P,
» R '(z) processes reading variable z € V.
» WCPxV: (a,z) € W iff a writes to .
> W (a) variables written by process a € P,
> W'(x) processes writing to variable z € V.



Distributed Synthesis or control

Main parameters

» Which subclass of architectures?
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Distributed Synthesis or control

Main parameters

» Which subclass of architectures?

» Which semantics?
synchronous (with our without delay), asynchronous

» What kind of specification?
LTL, CLT*, u-calculus
Rational, Recognizable
word /tree

» What kind of memory for the programs?
memoryless, local memory, causal memory
finite or infinite memory



0-delay synchronous semantics

Example

Programs with local memory: f, : @ — @, and f,

> Input: ( Zl w2ty ) € (Qu X Qy)~.

1 V2 U3

up U2 U3
V1 V2 U3
r1 T2 I3
21 22 z3

O

o o) oo (o)) o L 0=

» Behavior:



Global versus distributed synthesis

Network information flow




Global versus distributed synthesis

Network information flow
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Global versus distributed synthesis

Network information flow

Lemma (Rasala Lehman-Lehman 2004)

If f1,...,f": 5% — S are pairwise independent functions, then n < |S| + 1.
f%, f7 are independent if (f%, f7) : S? — S? is one to one.




Undecidability

Architecture Ay

Theorem (Pnueli-Rosner FOCS'90)

The synthesis problem for architecture Ay and LTL (or CTL) specifications is unde-
cidable.

Proof
Reduction from the halting problem on the empty tape.




Undecidability proof 1

SPEC;: processes a and b must output configurations

@ o 07170--- : n(v) =p
la| [b]

(x)  (¥) #9PC#“ : where C € T*QI'*



Undecidability proof 1

SPEC;: processes a and b must output configurations
@ o 071P0--- : n(v) =p

(x)  (¥) #9PC#“ : where C € T*QI'*

(sz/\yz#)W(vz1/\(v=1/\y=#)W(v=0/\y€I‘*QI‘+#“’))

where

y € T*QUT#¥ = yelU (yEQ/\X(yEFU(yEF/\XGy:#)))



Undecidability proof 2

SPEC,: processes a and b must start with the first configuration

@ 0 0710--- : n(v) =
la] [
@ @ #q-i—lcl#u



Undecidability proof 2

SPEC,: processes a and b must start with the first configuration

@ 0 0710--- : n(v) =
o] [o]
@ @ HITLC 4

szW(vzl/\X(UZO—WJGCI#w))



Undecidability proof 3

SPEC;: if n(u) = n(v) are synchronized then z =y

09170--- (uw) (v) 01°0- -
o] [o]

HITPOHw @ @ HtP O



Undecidability proof 3

SPEC;: if n(u) = n(v) are synchronized then z =y

09170--- (uw) (v) 01°0- -
o] [o]

HITPOHw @ @ HtP O

n(u) = n(v) — Gz = y)



Undecidability proof 4
SPEC,: if n(u) = n(v) + 1 are synchronized then C, - C,

091P*+1Q. .. @ o 09tiirQ. ..
o] [o]

HatPHLC e e 0 Hatptl O #v



Undecidability proof 4
SPEC,: if n(u) = n(v) + 1 are synchronized then C, - C,

091P*+1Q. .. @ o 09tiirQ. ..
o] [o]

HatPHLC e e 0 Hatptl O #v

n(u)=nlv)+1 — zxz=yU (Trans(y,x) AX3Gr = y)
where Trans(y, ) is defined by

\/(y:cpa/\ac:qcb) \Y% \/(y:pac/\ac:ch)
(p,a,q,b,<)ET,c€T (p,a,q,b,—)ET,c€L
v \ (y=pa# Az =bgD)

(p;a,q,b,—)€T



Undecidability proof 5

Lemma: winning strategies must simulate the Turing machine

For each p > 1, if n(u) = p then Cy, = C, is the p-th configuration of the Turing
machine starting from the empty tape.

Proof
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Lemma: winning strategies must simulate the Turing machine

For each p > 1, if n(u) = p then Cy, = C, is the p-th configuration of the Turing
machine starting from the empty tape.

Proof

0910 - - - @ 0
SPEC; |a| |[b]
#icige () (Y
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Undecidability proof 5

Lemma: winning strategies must simulate the Turing machine

For each p > 1, if n(u) = p then Cy, = C, is the p-th configuration of the Turing
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Undecidability proof 5

Lemma: winning strategies must simulate the Turing machine

For each p > 1, if n(u) = p then Cy, = C, is the p-th configuration of the Turing
machine starting from the empty tape.

Proof
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Undecidability proof 5

Lemma: winning strategies must simulate the Turing machine

For each p > 1, if n(u) = p then Cy, = C, is the p-th configuration of the Turing
machine starting from the empty tape.

Proof

0217 +1Q. .. @ 0 0atiirQ. ..
SPEC, la| [b|  SPECs

#q+p+lcp+l#w e 0 #q+p+lcp#w

Corollary

Specifications 1-4 and 5: Gz # stop are implementable iff the Turing machine does
not halt starting from the empty tape.



Decidability of distributed synthesis

Some examples

ais

Undecidable Decidable Undecidable



Decidability

Pipeline

Pnueli-Rosner (FOCS'90)

The synthesis problem for pipeline architectures and LTL specifications is non ele-
mentary decidable.

Peterson-Reif (FOCS'79)

multi-person games with incomplete information.
= non-elementary lower bound for the synthesis problem.




Decidability

Kupferman-Vardi (LICS'01)

The synthesis problem is non elementary decidable for

> one-way chain, one-way ring, two-way chain and two-way ring,

» CTL* specifications (or tree-automata specifications) on all variables,
» synchronous, 1-delay semantics,

> local strategies.

one-way chain
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Decidability

Kupferman-Vardi (LICS'01)

The synthesis problem is non elementary decidable for

> one-way chain, one-way ring, two-way chain and two-way ring,

» CTL* specifications (or tree-automata specifications) on all variables,
» synchronous, 1-delay semantics,

> local strategies.

two-way chain




1-delay synchronous semantics

Example

Programs: f, : Q% — Qu and f. : (Q X Q)" — Q-.
- (“1 up ug ) € (Qu x Qu)*.

V1 V2 U3

Uy U2 U3
U1 V2 U3
r1 X9 I3
z1 zZ9 zZ3

» Behavior:

o Tn+1 = fx(ul o un)
with { S = ol ) (i ) for all n > 0.



Decidability
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Decidability

Adequately connected sub-architecture Q. =Qforallz eV

@— —®

®— —®

Pnueli-Rosner (FOCS'90)

» An adequately connected architecture is equivalent to a singleton architecture.




Decidability

Adequately connected sub-architecture Q. =Qforallz eV

@— —®

®— —®

Pnueli-Rosner (FOCS'90)

» An adequately connected architecture is equivalent to a singleton architecture.

» The synthesis problem is decidable for LTL specifications and pipelines of
adequately connected architectures.



Information fork criterion
(Finkbeiner—Schewe LICS ’05)

u v
p

i) T1
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Information fork criterion
(Finkbeiner—Schewe LICS ’05)

u v
p

ZTo T
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Information fork criterion
(Finkbeiner—Schewe LICS ’05)

U v
p

xo 1

a b

Yo Y1
q
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Uniformly well connected architectures
Definition

For an output variable y, View(y) is the set of input variables x such that there is
a path from z to y.

Definition

An architecture is uniformly well connected if there is a uniform way to route variables
in View(y) to y for each output variable y.

Example
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Uniformly well connected architectures

An architecture is uniformly well connected if there is a uniform way to route variables
in View(v) to v for each output variable v.

» If the capacity of internal variables is big enough then the architecture is
uniformly well-connected.

» If the architecture is uniformly well-connected then we can use causal
strategies instead of local ones.



Uniformly well connected architectures

Definition

An architecture is uniformly well connected if there is a uniform way to route variables
in View(v) to v for each output variable v.

» If the capacity of internal variables is big enough then the architecture is
uniformly well-connected.

» If the architecture is uniformly well-connected then we can use causal
strategies instead of local ones.

Proposition

Checking whether a given architecture is uniformly well connected is NP-complete.

Proof

Reduction to the multicast problem in Network Information Flow.
The multicast problem is NP-complete (Rasala Lehman-Lehman 2004).




Uncomparable information

Definition
An architecture has uncomparable information if there exist y;,y2 output variables
such that View(ys) \ View(y1) # 0 and View(y1) \ View(ys) # 0.
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Uncomparable information

Definition
An architecture has uncomparable information if there exist y;,y2 output variables
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Otherwise it is said to have preordered information.
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Uncomparable information

Definition
An architecture has uncomparable information if there exist y;,y2 output variables
such that View(ys) \ View(y1) # 0 and View(y1) \ View(ys) # 0.

Otherwise it is said to have preordered information.




Uncomparable information yields
undecidability

Architectures with uncomparable information are undecidable for LTL or CTL input-
output specifications.
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Uncomparable information yields
undecidability

Architectures with uncomparable information are undecidable for LTL or CTL input-
output specifications.
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Uniformly well connected architectures

Theorem (PG, Nathalie Sznajder, Marc Zeitoun)

Uniformly well connected architectures with preordered information are decidable for
CTL* external specifications.

Proof.
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Uniformly well connected architectures

Theorem (PG, Nathalie Sznajder, Marc Zeitoun)

Uniformly well connected architectures with preordered information are decidable for
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Uniformly well connected architectures

Theorem (PG, Nathalie Sznajder, Marc Zeitoun)

Uniformly well connected architectures with preordered information are decidable for
CTL* external specifications.

Proof.
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Uniformly well connected architectures

Theorem (PG, Nathalie Sznajder, Marc Zeitoun)

Uniformly well connected architectures with preordered information are decidable for
CTL* external specifications.

T79Y
\ =]
OO o o

Theorem: Kupferman-Vardi (LICS'01)

The synthesis problem is decidable for pipeline architectures and CTL* specifications
on all variables.
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Robust specifications

Definition

A specification ¢ is robust if it can be written ¢ = \/ \_ .o, ¥~ Where ¢ depends
only on View(z) U {z}.

Theorem

The synthesis problem for uniformly well-connected architectures and external and
robust CTL* specifications is decidable.
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Definition
A specification ¢ is robust if it can be written ¢ = \/ \_ .o, ¥~ Where ¢ depends
only on View(z) U {z}.

Theorem

The synthesis problem for uniformly well-connected architectures and external and
robust CTL* specifications is decidable.
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Robust specifications

Definition
A specification ¢ is robust if it can be written ¢ = \/ \_ .o, ¥~ Where ¢ depends
only on View(z) U {z}.

Theorem

The synthesis problem for uniformly well-connected architectures and external and
robust CTL* specifications is decidable.

Proof.
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Robust specifications

Definition

A specification ¢ is robust if it can be written o = \/ A\
only on View(z) U {z}.

~cOut Pz Where . depends

Theorem

The synthesis problem for uniformly well-connected architectures and external and
robust CTL* specifications is decidable.

Proof.

b6 oo
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Robust specifications

Definition

A specification ¢ is robust if it can be written o = \/ A\
only on View(z) U {z}.

~cOut Pz Where . depends

Theorem

The synthesis problem for uniformly well-connected architectures and external and
robust CTL* specifications is decidable.

Proof.

@) @ @ @
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Robust specifications

Definition

A specification ¢ is robust if it can be written ¢ = \/ \_ .o, ¥~ Where ¢ depends
only on View(z) U {z}.

Theorem

The synthesis problem for uniformly well-connected architectures and external and
robust CTL* specifications is decidable.

Proof.

N




Well-connected architectures

Definition
An architecture is well connected if, for each output variable y, the subarchitecture
formed by (E*)~!(y) is uniformly well connected.

Example: well-connected but not UWC




Well-connected architectures

Definition

An architecture is well connected if, for each output variable y, the subarchitecture
formed by (E*)~!(y) is uniformly well connected.
Rasala Lehman—Lehman 2004

One can solve the network information flow in the special case where there is a
unique sink in polynomial time.

Corollary

One can decide whether an architecture is well-connected in polynomial time.



Well connected preordered architectures

Theorem

The synthesis problem for LTL specifications and well connected architectures with
preordered information is undecidable.




Well connected preordered architectures

Theorem

The synthesis problem for LTL specifications and well connected architectures with
preordered information is undecidable.

39 / 41



Well connected preordered architectures

Theorem

The synthesis problem for LTL specifications and well connected architectures with
preordered information is undecidable.
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Specification and routing

One bit of u is hidden to pg



Open problem

» Find a decidability criterium for external specifications and well-connected
architectures.

» Find a decidability criterium for external specifications and arbitrary
architectures.

» Decidability of the distributed control/synthesis problem for robust and
external specifications.
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