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Outline

1 Synthesis and control for sequential systems

Synthesis and control for distributed systems

Well-connected architectures
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Open / Reactive system

inputs from E outputs to E

Reactive system S
Specification

ϕ

Synthesis problem
◮ Given a specification ϕ, decide whether there exists a program P such that

P‖E |= ϕ for all environment E.

◮ Build such a program P (if one exists).
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Specification

Example: Elevator
◮ Inputs: call for level i.

◮ Outputs: open/close door i, move 1 level up/down.

Linear time: LTL, FO, MSO, regular, . . .
◮ Safety: G(level 6= i −→ is closedi)

◮ Liveness: G(is calledi −→ F(level = i ∧ is openi))

Branching time: CTL, CTL∗, µ-calculus, . . .
◮ AG〈calli〉⊤ (calli is uncontrollable)

◮ AGEF(level = 0 ∧ is open0)
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Synthesis of reactive programs

Reactive program

f
x y

◮ Qx: domain for input variable x

◮ Qy: domain for output variable y

◮ Program: f : Q+
x → Qy

◮ Input: x1x2 · · · ∈ Qω
x .

◮ Behavior: (x1, y1)(x2, y2)(x3, y3) · · · with yn = f(x1 · · ·xn) for all n > 0.

Chruch problem (implementability) 1962
◮ Given a linear time specification ϕ over the alphabet Σ = Qx ×Qy,

Does there exist a program f such that all f -behaviors satisfy ϕ?

◮ Given a branching time specification ϕ over the alphabet Σ = Qx ×Qy,
Does there exist a program f such that its run-tree satisfies ϕ?
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Synthesis of reactive programs

Chruch problem (implementability) 1962

Given a linear time specification ϕ over the alphabet Σ = Qx ×Qy,
Does there exist a program f such that all f -behaviors satisfy ϕ?

Implementability 6= Satisfiability
◮ Qx = {0, 1} and ϕ := F(x = 1)

◮ ϕ is satisfiable: (1, 0)ω |= ϕ

◮ ϕ is not implementable since the input is not controllable.

Implementability 6= Validity of ∀~x ∃~y ϕ

◮ Qx = Qy = {0, 1} and ϕ := (y = 1)←→ F(x = 1)

◮ ∀~x ∃~y ϕ is valid.

◮ ϕ is not implementable by a reactive program.

For non-reactive terminating programs, Implementability = Validity of ∀~x ∃~y ϕ
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Synthesis of reactive programs

Chruch problem (implementability) 1962

Given a linear time specification ϕ over the alphabet Σ = Qx ×Qy,
Does there exist a program f such that all f -behaviors satisfy ϕ?

Theorem (Pnueli-Rosner 89)

◮ The specification ϕ ∈ LTL is implementable iff the formula

Aϕ ∧ AG(
∧

a∈Qx

EX(x = a))

is satisfiable.

◮ When ϕ is implementable, we can construct a finite state implementation
(program) in time doubly exponential in ϕ.
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Control problem
inputs from E outputs to E

Open system S
Specification

ϕ

Open system: Transitions system A = (Q, Σ, q0, δ)

◮ Q: finite or infinite set of states,

◮ δ: deterministic or non deterministic transition function.

Control problem
◮ Given a system S and a specification ϕ, decide whether there exists a

controller C such that (S ⊗ C)‖E |= ϕ.

◮ Build such a controller C (if one exists).
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Control problem
inputs from E outputs to E

Open system S
Specification

ϕ
Controller C

enables/disables actions

observation

Open system: Transitions system A = (Q, Σ, q0, δ)
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Control versus Game

Correspondance

Transition system = Game arena (graph).

Controllable events = Actions of player 1 (controller).

Uncontrollable events = Action of player 0 (opponent, environment).

Behavior = Play.

Controller = Strategy.

Specification = Winning condition.

Finding a controller = finding a winning strategy.

Theorem: Büchi - Landweber 1969
If the system is finite state and the specification is regular then the control problem
is decidable.
Moreover, when (S, ϕ) is controllable, we can synthesize a finite state controller.
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Program synthesis versus System control

Equivalence

The implementability problem for

x y

is equivalent to the control problem for the system

Qx

Qy
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Outline

Synthesis and control for sequential systems

2 Synthesis and control for distributed systems

Well-connected architectures
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Distributed synthesis
inputs from E outputs to E

Open distributed system S

Specification
ϕ

Distributed synthesis problem
◮ Decide whether there exists a distributed program st.

P1 ‖ · · · ‖ Pn ‖ E |= ϕ.

◮ Synthesis: If so, compute such a distributed program.

Peterson-Reif 1979, Pnueli-Rosner 1990
In general, the problem is undecidable.
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Distributed control

inputs from E outputs to E

Open distributed system S

S1 S2

S3 S4

Specification
ϕ

Distributed control problem
◮ Decide whether there exists a distributed controller st.

(S1 ⊗ C1) ‖ · · · ‖ (Sn ⊗ Cn) ‖ E |= ϕ.

◮ Synthesis: If so, compute such a distributed controller.
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Distributed control

inputs from E outputs to E

Open distributed system SOpen distributed system SControlled open distributed system S

S1 S2

S3 S4

Specification
ϕ

C1 C2

C3 C4

Distributed control problem
◮ Decide whether there exists a distributed controller st.

(S1 ⊗ C1) ‖ · · · ‖ (Sn ⊗ Cn) ‖ E |= ϕ.

◮ Synthesis: If so, compute such a distributed controller.
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Architectures with shared variables

Example

x0

x1

x2

x3

x4

x5

a1

a2 a3

a4

Architecture A = (P,V, R, W )

◮ P finite set of processes/agents.

◮ V finite set of Variables.

◮ R ⊆ P × V : (a, x) ∈ R iff a reads x.
◮ R(a) variables read by process a ∈ P ,
◮ R

−1(x) processes reading variable x ∈ V.

◮ W ⊆ P × V : (a, x) ∈ W iff a writes to x.
◮ W (a) variables written by process a ∈ P ,
◮ W

−1(x) processes writing to variable x ∈ V.
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Distributed Synthesis or control

Main parameters
◮ Which subclass of architectures?

◮ Which semantics?
synchronous (with our without delay), asynchronous

◮ What kind of specification?
LTL, CLT∗, µ-calculus
Rational, Recognizable

word/tree

◮ What kind of memory for the programs?
memoryless, local memory, causal memory

finite or infinite memory
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0-delay synchronous semantics

Example

u

x

v z

a

b

Programs with local memory: fx : Q∗

u
→ Qx and fz : (Qx×Qv)

∗ → Qz.

◮ Input:

(

u1 u2 u3 · · ·
v1 v2 v3 · · ·

)

∈ (Qu ×Qv)
ω .

◮ Behavior:









u1 u2 u3 · · ·
v1 v2 v3 · · ·
x1 x2 x3 · · ·
z1 z2 z3 · · ·









with

{

xn = fx(u1 · · ·un)
zn = fz((x1, v1) · · · (xn, vn))

for all n > 0.
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Global versus distributed synthesis

Network information flow

u v

u1 v1 u2 v2 u3 v3 u4 v4 u5 v5 u6 v6

z1 z2 z3 z4

Lemma (Rasala Lehman–Lehman 2004)

If f1, . . . , fn : S2 → S are pairwise independent functions, then n ≤ |S|+ 1.
f i, f j are independent if (f i, f j) : S2 → S2 is one to one.
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Global versus distributed synthesis

Network information flow

u v

u1 v1 u2 v2 u3 v3 u4 v4 u5 v5 u6 v6

z1 z2 z3 z4u v u⊕ v
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Undecidability

Architecture A0

u

x

v

y

a b

Theorem (Pnueli-Rosner FOCS’90)

The synthesis problem for architecture A0 and LTL (or CTL) specifications is unde-
cidable.

Proof
Reduction from the halting problem on the empty tape.
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Undecidability proof 1

SPEC1: processes a and b must output configurations

u

x

v

y

0q1p0 · · · : n(v) = p

#q+pC#ω : where C ∈ Γ∗QΓ+

a b

(v = 0 ∧ y = #) W
(

v = 1 ∧ (v = 1 ∧ y = #) W (v = 0 ∧ y ∈ Γ∗QΓ+#ω)
)

where

y ∈ Γ∗QΓ+#ω def
= y ∈ Γ U

(

y ∈ Q ∧ X
(

y ∈ Γ U (y ∈ Γ ∧ X G y = #)
)

)
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Undecidability proof 2

SPEC2: processes a and b must start with the first configuration

u

x

v

y

0q10 · · · : n(v) = 1

#q+1C1#
ω

a b

v = 0 W
(

v = 1 ∧ X
(

v = 0 −→ y ∈ C1#
ω
)

)
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Undecidability proof 3

SPEC3: if n(u) = n(v) are synchronized then x = y

u

x

v

y

0q1p0 · · ·

#q+pC#ω

0q1p0 · · ·

#q+pC#ω

a b

n(u) = n(v) −→ G(x = y)

where

n(u) = n(v)
def
= (u = v = 0) U (u = v = 1 ∧ (u = v = 1 U u = v = 0))
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Undecidability proof 4
SPEC4: if n(u) = n(v) + 1 are synchronized then Cy ⊢ Cx

u

x

v

y

0q1p+10 · · ·

#q+p+1Cx#ω

0q+11p0 · · ·

#q+p+1Cy#ω

a b

n(u) = n(v) + 1 −→ x = y U
(

Trans(y, x) ∧ X3 G x = y
)

where Trans(y, x) is defined by

∨

(p,a,q,b,←)∈T,c∈Γ

(y = cpa ∧ x = qcb) ∨
∨

(p,a,q,b,→)∈T,c∈Γ

(y = pac ∧ x = bqc)

∨
∨

(p,a,q,b,→)∈T

(y = pa# ∧ x = bq2)
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Undecidability proof 5

Lemma: winning strategies must simulate the Turing machine

For each p ≥ 1, if n(u) = p then Cx = Cp is the p-th configuration of the Turing
machine starting from the empty tape.

Proof

u

x

v

y

a b

Corollary

Specifications 1-4 and 5: Gx 6= stop are implementable iff the Turing machine does
not halt starting from the empty tape.
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Decidability of distributed synthesis

Some examples

u

x

v

y

a b

Undecidable

u

x

v

y

za b

Decidable

u w

x

v

y

za b

Undecidable
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Decidability

Pipeline

x y1 y2 y3

z1 z2 z3 z4

a1 a2 a3 a4

Pnueli-Rosner (FOCS’90)

The synthesis problem for pipeline architectures and LTL specifications is non ele-
mentary decidable.

Peterson-Reif (FOCS’79)

multi-person games with incomplete information.
=⇒ non-elementary lower bound for the synthesis problem.
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Decidability

Kupferman-Vardi (LICS’01)

The synthesis problem is non elementary decidable for

◮ one-way chain, one-way ring, two-way chain and two-way ring,

◮ CTL∗ specifications (or tree-automata specifications) on all variables,

◮ synchronous, 1-delay semantics,

◮ local strategies.

one-way chain

x y1 y2 y3

z1 z2 z3

a1 a2 a3
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Decidability

Kupferman-Vardi (LICS’01)

The synthesis problem is non elementary decidable for

◮ one-way chain, one-way ring, two-way chain and two-way ring,

◮ CTL∗ specifications (or tree-automata specifications) on all variables,

◮ synchronous, 1-delay semantics,

◮ local strategies.

two-way chain

x
y1 y2 y3

y′1 y′2 y′3

z1 z2 z3 z4

a1 a2 a3 a4
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1-delay synchronous semantics

Example

u

x

v z

a

b

Programs: fx : Q∗

u
→ Qx and fz : (Qx ×Qv)

∗ → Qz.

◮ Input:

(

u1 u2 u3 · · ·
v1 v2 v3 · · ·

)

∈ (Qu ×Qv)
ω .

◮ Behavior:









u1 u2 u3 · · ·
v1 v2 v3 · · ·
x1 x2 x3 · · ·
z1 z2 z3 · · ·









with

{

xn+1 = fx(u1 · · ·un)
zn+1 = fz((x1, v1) · · · (xn, vn))

for all n > 0.
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Decidability

Adequately connected sub-architecture Qx = Q for all x ∈ V

u

v
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y

z
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c

Pnueli-Rosner (FOCS’90)

◮ An adequately connected architecture is equivalent to a singleton architecture.

◮ The synthesis problem is decidable for LTL specifications and pipelines of
adequately connected architectures.
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Information fork criterion

(Finkbeiner–Schewe LICS ’05)
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Outline

Synthesis and control for sequential systems

Synthesis and control for distributed systems

3 Well-connected architectures
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Uniformly well connected architectures
Definition

For an output variable y, View(y) is the set of input variables x such that there is
a path from x to y.

Definition
An architecture is uniformly well connected if there is a uniform way to route variables
in View(y) to y for each output variable y.

Example

u v w

p p

s t

p p p

x y z
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Uniformly well connected architectures

Definition
An architecture is uniformly well connected if there is a uniform way to route variables
in View(v) to v for each output variable v.

◮ If the capacity of internal variables is big enough then the architecture is
uniformly well-connected.

◮ If the architecture is uniformly well-connected then we can use causal
strategies instead of local ones.

Proposition

Checking whether a given architecture is uniformly well connected is NP-complete.

Proof
Reduction to the multicast problem in Network Information Flow.
The multicast problem is NP-complete (Rasala Lehman-Lehman 2004).
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Uncomparable information

Definition
An architecture has uncomparable information if there exist y1,y2 output variables
such that View(y2) \ View(y1) 6= ∅ and View(y1) \ View(y2) 6= ∅.

Otherwise it is said to have preordered information.

x1 x2
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Uncomparable information yields

undecidability

Theorem

Architectures with uncomparable information are undecidable for LTL or CTL input-
output specifications.

Proof.
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Uniformly well connected architectures

Theorem (PG, Nathalie Sznajder, Marc Zeitoun)

Uniformly well connected architectures with preordered information are decidable for
CTL* external specifications.

Proof.
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Theorem: Kupferman-Vardi (LICS’01)

The synthesis problem is decidable for pipeline architectures and CTL∗ specifications
on all variables.



35 / 41

Uniformly well connected architectures

Theorem (PG, Nathalie Sznajder, Marc Zeitoun)

Uniformly well connected architectures with preordered information are decidable for
CTL* external specifications.

Proof.

x1

y1

x2

y2

x3

y3

x4

y4

Theorem: Kupferman-Vardi (LICS’01)

The synthesis problem is decidable for pipeline architectures and CTL∗ specifications
on all variables.



35 / 41

Uniformly well connected architectures

Theorem (PG, Nathalie Sznajder, Marc Zeitoun)

Uniformly well connected architectures with preordered information are decidable for
CTL* external specifications.

Proof.

x1

y1

x2

y2

x3

y3

x4

y4

Theorem: Kupferman-Vardi (LICS’01)

The synthesis problem is decidable for pipeline architectures and CTL∗ specifications
on all variables.



35 / 41

Uniformly well connected architectures

Theorem (PG, Nathalie Sznajder, Marc Zeitoun)

Uniformly well connected architectures with preordered information are decidable for
CTL* external specifications.

Proof.

x1

y1

x2

y2

x3

y3

x4

y4

Theorem: Kupferman-Vardi (LICS’01)

The synthesis problem is decidable for pipeline architectures and CTL∗ specifications
on all variables.



35 / 41

Uniformly well connected architectures

Theorem (PG, Nathalie Sznajder, Marc Zeitoun)

Uniformly well connected architectures with preordered information are decidable for
CTL* external specifications.

Proof.

x1

y1

x2

y2

x3

y3

x4

y4

Theorem: Kupferman-Vardi (LICS’01)

The synthesis problem is decidable for pipeline architectures and CTL∗ specifications
on all variables.



35 / 41

Uniformly well connected architectures

Theorem (PG, Nathalie Sznajder, Marc Zeitoun)

Uniformly well connected architectures with preordered information are decidable for
CTL* external specifications.

Proof.

x1

y1

x2

y2

x3

y3

x4

y4 y1 y2 y3 y4

a1 a2 a3 a4

x1

x2

x3

x4

x2

x3

x4

x3

x4 x4

Theorem: Kupferman-Vardi (LICS’01)

The synthesis problem is decidable for pipeline architectures and CTL∗ specifications
on all variables.



35 / 41

Uniformly well connected architectures

Theorem (PG, Nathalie Sznajder, Marc Zeitoun)

Uniformly well connected architectures with preordered information are decidable for
CTL* external specifications.

Proof.

x1

y1

x2

y2

x3

y3

x4

y4 y1 y2 y3 y4

a1 a2 a3 a4

x1

x2

x3

x4

x2

x3

x4

x3

x4 x4

Theorem: Kupferman-Vardi (LICS’01)

The synthesis problem is decidable for pipeline architectures and CTL∗ specifications
on all variables.



36 / 41

Robust specifications

Definition

A specification ϕ is robust if it can be written ϕ =
∨∧

z∈Out ϕz where ϕz depends
only on View(z) ∪ {z}.

Theorem
The synthesis problem for uniformly well-connected architectures and external and
robust CTL∗ specifications is decidable.

Proof.
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Well-connected architectures

Definition
An architecture is well connected if, for each output variable y, the subarchitecture
formed by (E∗)−1(y) is uniformly well connected.

Example: well-connected but not UWC

u v

z1 z2 z3 z4

z12 z13 z14 z23 z24 z34
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Well-connected architectures

Definition
An architecture is well connected if, for each output variable y, the subarchitecture
formed by (E∗)−1(y) is uniformly well connected.

Rasala Lehman–Lehman 2004
One can solve the network information flow in the special case where there is a
unique sink in polynomial time.

Corollary

One can decide whether an architecture is well-connected in polynomial time.
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Well connected preordered architectures

Theorem
The synthesis problem for LTL specifications and well connected architectures with
preordered information is undecidable.
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Specification and routing
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Open problem

◮ Find a decidability criterium for external specifications and well-connected
architectures.

◮ Find a decidability criterium for external specifications and arbitrary
architectures.

◮ Decidability of the distributed control/synthesis problem for robust and
external specifications.
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