Distributed synthesis
for synchronous systems!

Paul Gastin

LSV
ENS de Cachan & CNRS

Paul.Gastin@lsv.ens-cachan.fr

Dec 6th, 2006

! Joint work with Nathalie Sznajder and Marc Zeitoun

QOutline

0 Synthesis and control for sequential systems

Open / Reactive system

e inputs from F outputs to F/ ™\

Reactive system S Speafglpcatlon
Program P

-
Synthesis problem

/

Given a specification ¢, decide whether there exists a program P such that
P||E = ¢ for all environment E.

Build such a program P (if one exists).

Specification

Example: Elevator
Inputs: call for level i.

Outputs: open/close door ¢, move 1 level up/down.

Linear time: LTL, FO, MSO, regular, ...
Safety: G(level # i — is_closed;)

Liveness: G(is_called, — F(level =4 A is_open,))

Branching time: CTL, CTL*, p-calculus, ...
AG(call;))T (call; is uncontrollable)
AGEF(level = 0 A is_open,)

Synthesis of reactive programs

Reactive program

Q@:: domain for input variable x

Qy: domain for output variable y

Program: f: Q} — Q,

Input: 2122+ € Q%.

Behavior: (z1,y1)(22,y2)(xs,y3) - - with y, = f(x1---x,) for all n. > 0.

Chruch problem (implementability) 1962

Given a linear time specification ¢ over the alphabet ¥ = Q, x @,
Does there exist a program f such that all f-behaviors satisfy ¢©?

Given a branching time specification ¢ over the alphabet ¥ = Q. x Q.
Does there exist a program f such that its run-tree satisfies ?

Synthesis of reactive programs

Chruch problem (implementability) 1962

Given a linear time specification ¢ over the alphabet ¥ = Q. x Qy,
Does there exist a program f such that all f-behaviors satisfy 7

Implementability # Satisfiability
Q:=1{0,1} and ¢ :=F(z = 1)
© is satisfiable: (1,0)“ = ¢
 is not implementable since the input is not controllable.

Implementability # Validity of V&' 3y ¢
Qu=Qy={0,1} and pi= (y = 1) — F(z = 1)
V& 3y ¢ is valid.
 is not implementable by a reactive program.

For non-reactive terminating programs, Implementability = Validity of VZ 3y ¢

Synthesis of reactive programs

Chruch problem (implementability) 1962

Given a linear time specification ¢ over the alphabet ¥ = Q. x @,
Does there exist a program f such that all f-behaviors satisfy ¢?

Theorem (Pnueli-Rosner 89)

The specification ¢ € LTL is implementable iff the formula

Ap NAG(N\ EX(z =a))

a€Qy

is satisfiable.

When ¢ is implementable, we can construct a finite state implementation
(program) in time doubly exponential in ¢.

Control problem
4 inputs from E outputs to F N

Controller C
-

Open system: Transitions system A = (Q, X, qo, 9)

enables/disables actions

Open system S

Specification
P

observation

/

Q: finite or infinite set of states,

0: deterministic or non deterministic transition function.

Control problem

Given a system S and a specification ¢, decide whether there exists a
controller C' such that (S @ C)||E

Build such a controller C' (if one exists).

= (»

.

Control versus Game

Correspondance
Transition system = Game arena (graph).
Controllable events = Actions of player 1 (controller).
Uncontrollable events = Action of player 0 (opponent, environment).
Behavior = Play.
Controller = Strategy.

Specification

Winning condition.
Finding a controller = finding a winning strategy.

Theorem: Biichi - Landweber 1969

If the system is finite state and the specification is regular then the control problem
is decidable.

Moreover, when (S, ¢) is controllable, we can synthesize a finite state controller.

Program synthesis versus System control

Equivalence

The implementability problem for

Outline

9 Synthesis and control for distributed systems

Distributed synthesis

4 inputs from F outputs to
Open distributed system S
=Y — Py —
i - Specification
Py [y2)
\

%

Distributed synthesis problem

Decide whether there exists a distributed program st.

P« | Pl E =

Synthesis: If so, compute such a distributed program.

Peterson-Reif 1979, Pnueli-Rosner 1990

In general, the problem is undecidable.

Distributed control

inputs from F outputs to F

N/

Controlled open distributed system S

"""""" o
'
L J

Distributed control problem

Decide whether there exists a distributed controller st.
(510C) |- | (Sn®Cr) | E = o.
Synthesis: If so, compute such a distributed controller.

Architectures with shared variables

Example

Architecture A = (P, V, R, W)
P finite set of processes/agents.
V finite set of Variables.
RCPxV: (a,z)€ R iff a reads z.

R(a) variables read by process a € P,
R™!(z) processes reading variable z € V.

W CPxV: (a,z) € W iff a writes to z.

W (a) variables written by process a € P,
W1 (x) processes writing to variable = € V.

Distributed Synthesis or control

Main parameters
Which subclass of architectures?

Which semantics?
synchronous (with our without delay), asynchronous

What kind of specification?
LTL, CLT*, p-calculus
Rational, Recognizable
word /tree

What kind of memory for the programs?
memoryless, local memory, causal memory
finite or infinite memory

0-delay synchronous semantics

Example
(W—>4]
@
O}

Programs with local memory: f, : Q% — Q. and f, : (Q.xQ,)* — Q..
Input: (Gl g Gy oot) € (Qu x Qu)“.
-

V2 U3

Uy Uz ug
v U2 U3
Ty T2 X3
Z21 22 Z3

Behavior:

with { o = fz((l’lh’vl) oo (G) for all n > 0.

Global versus distributed synthesis

Network information flow

SbOLOLOHSHS

Lemma (Rasala Lehman—Lehman 2004)

If f1,...,f"*: 8% — S are pairwise independent functions, then n < |S| + 1.
f%, f7 are independent if (f?, f7) : S2 — S? is one to one.

Undecidability
Architecture Ag
@ ©
la] 2]
@ ©

Theorem (Pnueli-Rosner FOCS'90)

The synthesis problem for architecture Ay and LTL (or CTL) specifications is unde-
cidable.

Proof
Reduction from the halting problem on the empty tape.

Undecidability proof 1

SPEC;: processes a and b must output configurations

@ o 071P0--- :n(v)=p
(o] [o]

() (¥) #1PC#“ : where C € I*QI'*

(v:O/\y:#)W(U:1/\(1):lAy:#)W(v:OAyEI‘*QF+#“’))
where

y e T*QrtHe &

yEI‘U(yGQ/\X(yGFU(yGF/\XGy:#))>

Undecidability proof 2

SPEC,: processes a and b must start with the first configuration

0 0 0910--- :n(v) =1
o] [2]
@ @ #vOp

U=OW(U=1/\X(1)=O—>Z/€CI#W>>

Undecidability proof 3

SPECs: if n(u) = n(v) are synchronized then z =y

09170 - (u) (v) 07170. .
o] [2]
HITPOH @ 0 TP OH

n(u) = n(v) — Gz = y)

Undecidability proof 4
SPEC,: if n(u) = n(v) + 1 are synchronized then C, - C,

0s17+19... (u) (v) oetl1rQ...
la] [b]
Hrp Lo pw e e Hatptl C,#

n(u)=n(v)+1 — z=yU <Trans(y,)AX3Gz = y)

where Trans(y, x) is defined by

\/ (y =cpa Ax = qcb) V \/ (y = pac A x = bgc)
(p,a,q,b,«—)€T,cel’ (p,a,q,b,—)€T,cel’
vV \/ (y = pa# Nz = bgO)

(p,a,q,b,—)€T

Undecidability proof 5

Lemma: winning strategies must simulate the Turing machine

For each p > 1, if n(u) = p then Cp = C}, is the p-th configuration of the Turing
machine starting from the empty tape.

Proof
04+11PQ. .. @ o 0ati1PQ. ..
Induction a | b | SPEC;
Hatptl Cp# e e Hatptl Cp#tv
Corollary

Specifications 1-4 and 5: Gz # stop are implementable iff the Turing machine does
not halt starting from the empty tape.

Undecidability proof 5

Lemma: winning strategies must simulate the Turing machine

For each p > 1, if n(u) = p then C, = C), is the p-th configuration of the Turing
machine starting from the empty tape.

Proof
091Pt1Q. .. @ 0 0atiipQ...
SPEC, a|l |o] SPEC;
#q+p+1c¥p+l#w e 0 #q+p+lcvn#w
Corollary

Specifications 1-4 and 5: Gz # stop are implementable iff the Turing machine does
not halt starting from the empty tape.

Decidability of distributed synthesis

Some examples

i

Undecidable Decidable Undecidable

Decidability

Pipeline

Pnueli-Rosner (FOCS'90)

The synthesis problem for pipeline architectures and LTL specifications is non ele-
mentary decidable.

Peterson-Reif (FOCS'79)

multi-person games with incomplete information.
= non-elementary lower bound for the synthesis problem.

Decidability

Kupferman-Vardi (LICS'01)

The synthesis problem is non elementary decidable for
one-way chain, one-way ring, two-way chain and two-way ring,
CTL* specifications (or tree-automata specifications) on all variables,
synchronous, 1-delay semantics,

local strategies.

one-way ring

1-delay synchronous semantics

Example
(W—>4]
@
O}

Programs: f, : Q; — Q and f. : (Q; x Q)" — Q..
Input: < e > € (Qu x Qu)~.
-

V2 U3

Uy Uz ug
v1 U2 U3
Ty T2 X3
Z21 22 Z3

Behavior:

. Tpg1 = folur - un)
with { ot = @0y 010 00 (G @) for all n > 0.

Decidability

Q,=Qforallz eV
@— —@®

Adequately connected sub-architecture

©— —®

Pnueli-Rosner (FOCS'90)

An adequately connected architecture is equivalent to a singleton architecture.

The synthesis problem is decidable for LTL specifications and pipelines of
adequately connected architectures.

Information fork criterion
(Finkbeiner—Schewe LICS ’05)

Outline

© Well-connected architectures

Uniformly well connected architectures
Definition
For an output variable y, View(y) is the set of input variables = such that there is
a path from z to y.

Definition
An architecture is uniformly well connected if there is a uniform way to route variables

in View(y) to y for each output variable y.

Example

Uniformly well connected architectures

Definition
An architecture is uniformly well connected if there is a uniform way to route variables
in View(v) to v for each output variable v.

> If the capacity of internal variables is big enough then the architecture is
uniformly well-connected.

> If the architecture is uniformly well-connected then we can use causal
strategies instead of local ones.

Proposition

Checking whether a given architecture is uniformly well connected is NP-complete.

Proof

Reduction to the multicast problem in Network Information Flow.
The multicast problem is NP-complete (Rasala Lehman-Lehman 2004).

Uncomparable information

Definition
An architecture has uncomparable information if there exist 1,y2 output variables
such that View(yz) \ View(y1) # 0 and View(y1) \ View(y2) # 0.

? 9
6 ©

Uncomparable information

Definition
An architecture has uncomparable information if there exist y;,y2 output variables
such that View(yz) \ View(y1) # 0 and View(y1) \ View(y2) # 0.

Otherwise it is said to have preordered information.

Uncomparable information yields
undecidability

Theorem

Architectures with uncomparable information are undecidable for LTL or CTL input-
output specifications.

Proof.
0 0

D @ Ll

H N

Y
®» ®

0 0) 0

LR
®

Uniformly well connected architectures

Theorem (PG, Nathalie Sznajder, Marc Zeitoun)

Uniformly well connected architectures with preordered information are decidable for
CTL* external specifications.

el
T2 T2
x3 rs x3

Theorem: Kupferman-Vardi (LICS'01)

The synthesis problem is decidable for pipeline architectures and CTL* specifications
on all variables.

Robust specifications

Definition
A specification ¢ is robust if it can be written ¢ = \/ A . ¢~ where . depends
only on View(z) U {z}.

Theorem

The synthesis problem for uniformly well-connected architectures and external and
robust CTL* specifications is decidable.

@ ®» ®» ®

Proof.

Well-connected architectures

Definition
An architecture is well connected if, for each output variable y, the subarchitecture
formed by (E*)~1(y) is uniformly well connected.

Example: well-connected but not UWC

Well-connected architectures

Definition
An architecture is well connected if, for each output variable y, the subarchitecture
formed by (E*)~1(y) is uniformly well connected.

Rasala Lehman—Lehman 2004

One can solve the network information flow in the special case where there is a
unique sink in polynomial time.

Corollary

One can decide whether an architecture is well-connected in polynomial time.

Well connected preordered architectures

Theorem
The synthesis problem for LTL specifications and well connected architectures with
preordered information is undecidable.

®

Specification and routing

Specification and routing

One bit of u is hidden to pg

Open problem

Find a decidability criterium for external specifications and well-connected
architectures.

Find a decidability criterium for external specifications and arbitrary
architectures.

Decidability of the distributed control/synthesis problem for robust and
external specifications.

