T e

i
:

=
e

tbuted Systems

1Str

D

Paul Gastin
LSV, ENS Cachan, France

C. Aiswarya
CMLI, Chennai, India

Introduction

) (p, off)(g2, c27) (D, e1!) (g1, &1 7)

(p, c2)(p, off) (7, c4?)(r, 0on)
(g1,¢17)(q1, c3!) (g2, c27)(g2, cal)
r,c3?)(r, off) - -

Outline

* Concurrent Processes with Data Structures

* Behaviors as Graphs

* Specifications

* Verification with Graphs and under-approximations
* Split-width and tree interpretation

* Conclusion

System: Concurrent Processes with Data-Structures

e Processes

: uct
e Data structures IV€ ready
* Stacks: recursive programs, multithreaded _

* Queues: communication (FIFO)
* Bags: communication (unordered)

Architectures: Special cases

* PDA: Pushdown automata
Recursive programs

e MPDA: Multi-pushdown automata
Multi-threaded recursive programs =

* MPA: Message passing automata

: . : : @
Communicating finite state machines .
@

* PN: Petri Nets : Only bags

Remote on-off via 2 channels

1111
P S S .
= e .
n n
. IS

e (D
)
che latest order

()t)ey/ -

rams
System: Architecture + Boolean Prog

c:?b c:fa
c,'b C,la
/@
Cr Wi Fi C;

C)

Operational semantics

Cx!b Ci.

c:?’b c?a
— off
* “Iransition system TS 'Of'(}
. .

la
z'b Cz!a

* Configurations (infinite)

* local states of processes

* contents of data structures
* "Transitions
* Induced by the boolean programs

* [inear traces: abstractions of runs of TS

Linear Iraces

p,off)(q2, c27)(p, c1!)(q1, c17?)
p, c2!)(p, off)(r, c4?)(r, on)

(
)

(
D(p,c1!)(q1,c1?)(qu, c3!) (g2, c27)(q2, cal)
r,on)(r,c3?)(r, off) - -

Linear Iraces

Outline

M Concurrent Processes with Data Structures

* Behaviors as Graphs

* Specifications

* Verification with Graphs and under-approximations
* Split-width and tree interpretation

¥ Conclusion

Linear Iraces

Linear Iraces

WY Sl:zxi P ortant
(p,on)(p, c2!) (p Mwﬁ]vﬂm
(g2, ca!)(p,on)(p,ca!l)(p, off)(r,cs?)(r, on)
(g1, c3!)(p; e1l) (g1, 1?) (g1, e3!) (g2, c27) (g2, cal)
(r,c4?)(r,0n)(r, c3?)(r, off) - - -

): @%ﬁ)))

Linear Iraces vs. Graphs

p,on)(p, c2!)(p, off) (g2, c27) (p, c1!) (g1, 17)
q2, c4!)(p,on)(p, c2!)(p, off)(r, c47)(r, on) Sequeﬁce Charts
)

(

(

(Q1 C3- (Cl')((h C1!)((h C3-)(QQ Co !)(Q2 04') M€SsagelTU Standard
(r,c (

r,cy?)(r,on)(r, c3?)(r, off) - - ///

®
AL
®
®
—
®
®
®
Pa—
®
S—
®
®

S 2
"
e
<
<
<
<

Linear lraces vs. Graphs

p,on)(p, c2!)(p, off) (g2, c2?)(p, c1!)(q1,c17)
)

(p;on)(p

(92, ca!)(p, on)(p; c2!)(p, off) (7, c47)(r, on)
(q1,¢3!)

(¢

d1,C3: (Cl')(Q1 C1!)((h C3:)(QQ C2 !)(Q2 04') : =
0€S

r.)(on)(r .)(7“ Off) D/

Y 11

®
@
—
@
®

o) €5) C
2 A
e

Linear lraces vs. Graphs

p,on)(p, c2!)(p, off) (g2, c2?)(p, c1!)(q1,c17)
)

(p;on)(p

(92, ca!)(p, on)(p; c2!)(p, off) (7, c47)(r, on)
(q1,¢3!)

(¢

d1,C3: (Cl')(Q1 C1!)((h C3:)(QQ C2 !)(Q2 04') : =
0€S
r.)(on)(r .)(7“ Off) D/

«ﬁ:):} @§~>)))
& i
:g

£
E
o
oy

o
R

Graphs for Sequential Systems

g
2
(@)
H
o
(@
@)
H
H
39
(e}
% o
< B
0]
3
A
\ 4
o]}

Graphs for Sequential Systems

Z
W
4
(@)
H
=
=3
Z 2
H
e
2 @
IR
o O
» =
(‘.P
on O
El
A
v
o]e]e]

MR TARY WARGINY

alcblta||alb? aliyabl!bftaafl?

WYSIWYG

Understanding Behaviors

Linear Traces

Graphs (CBMs)

* Interleaved sequence of events.
Interactions are obfuscated and
very difficult to recover.

* Successor relation not meaningful

e Combinatorial explosion
single distributed behavior results
in a huge number of linear traces

* Visual description of behavior
* Interactions are visible
* no combinatorial explosion

WYSIWYG

Understanding Behaviors

Linear Traces

Graphs (CBMs)

 Interleaved sequence of events.
Interactions are obfuscated and
very difficult to recover

faphs avior
* Succese~- “OTS Sh()u\d b€ g €
s (o B@hﬁvlo 0 combinatorial explosion
results
er of linear traces

Semantics of CGPDS on Graphs

a

Semantics of CPDS on Graphs

o (—or(-0r}) orCor]e

—0>(=-0>C—0>(]

Cb\ Ce
& —

d,d1?® a7d3!®

Semantics of CPDS on Graphs

A=e>hH=e»C—o> e

Semantics of CPDS on Graphs

Outline

M Concurrent Processes with Data Structures

M Behaviors as Graphs

* Specifications

* Verification with Graphs and under-approximations
* Split-width and tree interpretation

¥ Conclusion

Specification over Graphs

MSO: Monadic Second Order Logic

@ ::= false

a(z) | pa) [z <y|zply|z—y

reX|pVel|p|=

T | S

X @

Specification over Graphs
Obey the latest order

Il G(r A on = Latest, Y, on)

FO Vz(r(z) Aon(z2)) = Jy (p(y) Ay <
AVz(r < zAplx)=% =1

Adx(z — yAon(x)))

p__a‘D%l' T T

. ! hovale v, dob v, S B

Specification over Linear lraces

p,on)(p, ca!)(p, off) (g2, c2?)(p, c1!)(q1,c1?)
p,on)(p, ca!)(p, off)(r, c4?)(r, on)
(g1, c17)(q1, c3!)(q2, c27) (g2, ca!)

(
(
(
(

¥ Based on the word successor relation, and the word total order

¥ L'TL over words, MSO over words

Speciﬁcation over Linear lraces

(qQ,CA'\(fn s \a eSt Otdet

Ob ey the

¥ Based ¢ . MSO O\] €f n/mrd total order

in ~
* L'TL ove _ uo,m words

Specification over Linear lraces

(p,0on)(p, c2!)(p, off) (g2, c27) (p, c1!) (@1, 1 7)
(g2, ca!)(p, on)(p, c2!)(p, off) (1, c47)(r, on)
(g1, e3)) (P, c1) (g1, 1 ?) (g1, e3!) (g2, c27) (g2, cal)
(2)(r,on)(r,c3?)(r, off) - -

iR

am

)
\Dw

* Based on the word successor relation, and the word total order
¥ LTL over words, MSO over words

* L'TL specification are not always meaningful

LTL \ X, Closure properties, ...

* Natural properties of graphs are difhicult or impossible to express
on linear traces

Graphs for Sequential Systems

P
2
@
H
=

7 9

=

2
c
S
»n
—
7

/Y
v
[o[e]e]

albalc faa\lﬂawa T/\I ¢aTchb>Hale-(gH m

V@y(

alx — 1) ANx>yA
ez N2<z <2

):>a(y—|—1)

Graphs for Sequential Systems

g
2
@)
H
o
(@
@)
ﬁ
H
39
(e}
% o
= p—t
o (@)
3
A
\ 4
o]}

WYSIWYG

Expressiveness of Specifications

Linear Traces

Graphs (CBMs)

* Too weak for many natural
specifications

 Difhicult to write/understand

* Requires syntactical or semantical
restrictions to be meaningful

* Powertul specifications
e Interactions are built-in
* Meaningful

* Easy to write/understand

WYSIWYG

Expressiveness of Specifications

Linear Traces

Graphs (CBMs)

-1n
M

* Easy to write/understand

Outline

M Concurrent Processes with Data Structures

M Behaviors as Graphs

M Specifications

* Verification with Graphs and under-approximations
* Split-width and tree interpretation

* Conclusion

Verification problems

* Emptiness or Reachability
* Inclusion or Universality
* Satisfiability ¢

¥ Model Checking: S = ¢

* Temporal logics G(r A on = Latest, Y, on)

* Propositional dynamic logics

Yz (r(z A onlz =i =

* Monadic second order logic AV (2 < 2 Ap(@) = o <)
Adz (x — y Aon(x)))

Verification problems

* Emptiness or Reachability

* Inclusion or Universality

* Satisfiability ¢

¥ Model Checking: S = ¢

Aon(z)) = Jy(py) Ny <=z
1C AV <z Aplrr=zt<1)
Adz (x — y Aon(x)))

Under-approximate Verification
Satisfiability problem:

C: class

behavio ecification

Is ¢ satisfiable in C?

Under-approximate Verification

Emptiness or reachability problem:

C: class
behaviors

Is-there a run of S
on some behavior from C?

Under-approximate Verification
Model checking problem: § Ec (I)

C: class

behavio: ecification

Do all behaviors trom C
accepted by S satisty ¢?

Verification problems

* Emptiness or Reachability

* Inclusion or Universality

* Satisfiability ¢

¥ Model Checking: S = ¢

* Temporal logics

AVz{r <z AplE)=T<7)
A 3dz (z — y Aon(x)))

Under-approv- ate Verification
3,.1 Q\Y &Ot * Emptiness or Reachability

* Inclusion or Un+— \

mporal logics
* Bounded data structures

* Propositional dynamic logics

* Existentially bounded [Genest et al.} ¥ Monadic secondiol 1 8
* Acyclic Architectures {La Torre et al., Heufiner et al. Clemente et al.}

* Bounded context switching {Qadeer, Rehofl, {LaTorre et al.1, ...

* Bounded phase {LaTorre et al.}

* Bounded scope {LaTorre et al.l

* Priority ordering {Atig et al., Saivasan et al.1

Model Checking vs Reachability

* Reachability reduces to model checking

* Model checking reduces to Reachability ...

... when specifications can be translated to systems

... this is NOt possible in general for graphs

SE ¢ —
S_¢

Sﬂsﬁq):@

Model Checking vs Reachability

* Reachability reduces to model checking

* Model checking reduces to Reachability ...

... when specifications can be translated to systems

.. this is not possible in general for graphs

st O(dﬁf
. lient
correct ¢
Aﬂ‘? \Zesotg: ot requests v S -
0

Under-approximate Verification
Model checking problem: § Ec (I)

C: class o

behavio: ecification

SEc ¢ iff ¢ps= P isvalidin C

ENCYCLOPEDIA OF MATHEMATICS AND ITS APPLICATIONS

Graph Structure and
Monadic Second-Order Logic
A Language-Theoretic Approach

Encychopodia of Mat hematics and b Apgdicathom 138

GRAPH STRUCTURE
AND MONADIC

SECOND-ORDER
BRUNO COURCELLE LOGIC

A Language-Theoretic Approach

Universite de Bordeaux

JOOST ENGELFRIET

Universiteit Leiden

Decidability of MSO theory

Let C be a class of bounded degree MSO definable graphs.
TFAE
1. C has a decidable MSO theory |

e ———————
— e — —————

2. Ccan be interpreted in bmary trees J

e e e o e — — = _4

3. Chas bounded tree-widt
4. C has bounded clique-width
5. C has bounded split-width ¢for CBMs)

Under-approv=— ate Verification
. ﬂ\Y &OY * Emptiness or Reachability

* Inclusion or Un+— \

: mporal logics
* Bounded channel size

* Propositional dynamic logics

* Existentially bounded [Genest et al.} ¥ Monadic secondiol 1 8
* Acyclic Architectures {La Torre et al., Heufiner et al. Clemente et al.}

* Bounded context switching {Qadeer, Rehofl, {LaTorre et al.1, ...

* Bounded phase {LaTorre et al.}

* Bounded scope {LaTorre et al.l

* Priority ordering {Atig et al., Saivasan et al.1

Under-approximate Verification

The Tree Width of Auxiliary Storage

P. Madhusudan

University of Illinois at Urbana-Champaign, USA
madhu@illinois.edu

)stract

- propose a generalization of results on the decidability of empti-
s for several restricted classes of sequential and distributed au-
1ata with auxiliary storage (stacks, queues) that have recently
n proved. Our generalization relies on reducing emptiness of
se automata to finite-state graph automata (without storage)
ricted to monadic second-order (MSO) definable graphs of
mmded tree-width where the oranh structure encodes the mech-

Gennaro Parlato

LIAFA, CNRS and University of Paris Diderot, France.
gennaro@liafa.jussieu.fr

However, the various identified decidable restrictions on the
automata are, for the most part, awkward in their definitions
e.g. emptiness of multi-stack pushdown automata where pust
to any stack is allowed at any time, but popping is restricted
the first non-empty stack is decidable! [8]. Yet, relaxing the
definitions to more natural ones seems to either destroy decidabil
or their power. It is hence natural to ask: why do these autom:
have decidable emptiness problems? Is there a common underlyi

Outline

M Concurrent Processes with Data Structures

M Behaviors as Graphs

M Specifications

M Verification with Graphs and under-approximations

* Split-width and tree interpretation \

‘Olﬂt

C. Aiswary?

* Conclusion

Width: split vs tree vs clique

t<2(k+IProcsl) - 1__ SPIEWidth k| o< opc4 IProcsi) + 1

[Tree-Width t] [Clique-Width c]

Let C be a class of bounded degree MSO definable graphs.
TFAE

1. C has a decidable MSO theory

C can be interpreted in binary trees

C has bounded tree-width

. C has bounded clique-width

C has bounded split-width ¢or CBMs)

B |

SR SIS

Width: split vs tree vs clique
Split-Width k |

k <120(t + 1) '\kszc-s

[Tree-Width t] [Clique-Width c]

Let C be a class of bounded degree MSO definable graphs.
TFAE f
1. C has a decidable MSO theory

C can be interpreted in binary trees

C has bounded tree-width

. C has bounded clique-width

C has bounded split-width ¢or CBMs)

I ——————————=m5mmm—— |

SR SIS

Decomposition game

* Eve: Disconnect the graph by cutting edges
* Adam: Choose a connected component

* Split game: Eve cuts process edges only (CBM)

* Width: Maximal number of holes in graphs (CBMs)

along a play until reaching an atomic graph

Q—>Q—>ph—>C—>(]

b%c

\/

| SPLIT DECOMPOSITION OF CBMs |

!
i

| SPLIT DECOMPOSITION OF CBMs |

i

| sPLIT DECOMPOSITION OF CBMs |

r. . . 9
e i o
{ hole eft

| sPLIT DECOMPOSITION OF CBMS |

.

b—%C—>d

s

a

SPLIT DECOMPOSITION OF CBMs |

bFes cIeRd

e

SPLIT DECOMPOSITION OF CBMs |

pk, ek d | b \

~

SPLIT DECOMPOSITION OF CBMs |

SPLIT DECOMPOSITION OF CBMs |

T —

E—

| sPLIT DECOMPOSITION OF CBMs |

SPLIT DECOMPOSITION OF CBMs

| sPLIT DECOMPOSITION OF CBMS

\\A 3 holes

SPLIT DECOMPOSITION OF CBMs

‘_,amﬂ’

| sPLIT DECOMPOSITION OF CBMSs |

SPLIT DECOMPOSITION OF CBMs

| sPLIT DECOMPOSITION OF CBMSs |

SPLIT DECOMPOSITION OF CBMs

SPLIT DECOMPOSITION OF CBMs |

T —

E—

P a—>aQ—>Hh—>=Cc—>(

- %
1 bR
|

~)
_>d C

J

4 N

p a—=0=->b—=Cc—>(eS |
S] | e

P a—a—>h—>=Cc—>

w o >=_"'Vertices are leaves

- J
| !
N
.

P a—>a=- >b£\C—>d

M %——»(1——>—>
\

~_)

s — N s N
e p a\a" b@d
g b3 P @ Mo /
_ \—l/v Y \a | Y
(p a<-—»a h 4 N
M g \A\g ba\d
q b----+ c—=d- —tc M2 /
7 N a el vy
Mg \ \ /
______ e a
\b\—c/'d/ ‘
a |
M3 \
)

Tree interpretation Iin

Abstract Tree Decomposition

“, s) Data edges -

Tree interpretation Iin

Abstract Tree Decomposition

4 N
P a—a—>h—>=Cc—>

“, s) Data edges -

q

_

4 N
P a—Q= - >b£\C—>d
q

N\

~_)

e — N s ~
e p a\a"\‘g bﬁ\c_,d
g be--% c—d @ M, /

_ \—l/v Y \a | Y

(7 a- -»a) 4 N
M g \A\g ba\d

q b----+ c—=d- —tc M2 /

L _/) a

a D a c bmd
Ms \ \ /
e g ¢
/a |
M \
bec--- 3 ~d
e
a
\c b nd

Tree interpretation Iin

Abstract Tree Decomposition

4 N
P a—a—>h—>=Cc—>

« 7 Process edges -

|

q
_
4 N
P a—Q= - >b£\C—>d
q
N\

~_)

e — N s ~
e p a\a"\‘g bﬁ\c_,d
g be--% c—d @ M, /

_ \—l/v Y \a | Y

(7 a- -»a) 4 N
M g \A\g ba\d

q b----+ c—=d- —tc M2 /

L _/) a

a D a c bmd
Ms \ \ /
e g ¢
/a |
M \
bec--- 3 ~d
e
a
\c b nd

Tree interpretation Iin

Abstract Tree Decomposition

4 N
P a—a—>h—>=Cc—>

M| S
b—a=—>c——>(C

_/')
|

q

-

4 R
P a—>a=- >b£\C—>d
q

-

~_)

M \
o pe e M /
9 _l/') a
/p - -»Q N Ve
M \A\g
q b=----+ c—=d- -®cC M2 /
L _/) \(1,
/a N\ a C b
T \ \ /
e g ¢
/a |
Ms \
beo--- 3 ¢ -2d
CL\
o) (o

Tree interpretation Iin

Abstract Tree Decomposition

P a—a—>h—>=Cc—>

Ml e
q b—a—>c—=(d c
- J

_/‘V

|
=
P a—raecrhpo—3g

M/ %
q >Q~ -»C—(c
\

_/V

/p a—a N\ a
M \
1 . he - _%C M2 /
9 _l/') a
/p - -»Q N Ve
M \\g
q b=----+ c—=d- -®cC M2 /
L _/) \(1,
/a N\ a C b
T \ \ /
e g ¢
/a |
Ms \
beo--- 3 ¢ -2d
CL\
o) (o

Tree interpretation Iin

Abstract Tree Decomposition

P a—a—>h—>=Cc—>

Ml e
q b—a—>c—=(d c
- J

_/‘V

|
N
P a—>a=- >b£\C—>d

M %——»(1——>—> (
_

~_)

/p a—a N\ a
M \
1 . he - _%C M2 /
9 _l/') a
/p - -»Q N Ve
M \\g
q b=----+ c—=d- -®cC M2 /
L _/) \(1,
/a N\ a C b
T \ \ /
e g ¢
/a |
Ms \
beo--- 3 ¢ -2d
CL\
o) (o

Tree interpretation Iin

Abstract Tree Decomposition

P a—a—>h—>=Cc—>

Ml e
q b—a—>c—=(d c
- J

_/‘V

|
N
P a—>a=- >b£\C—>d

M %——»(1——>—> (
_

~_)

/p a—a N\ a
M \
1 . he - _%C M2 /
9 _l/') a
/p - -»Q N Ve
M \\g
q b=----+ c—=d- -®cC M2 /
L _/) \(1,
/a N\ a C b
T \ \ /
e g ¢
/a |
Ms \
beo--- 3 ¢ -2d
CL\
o) (o

Tree interpretation Iin

Abstract Tree Decomposition

4 N
P a—a—>h—>=Cc—>

M| S
b—a=—>c——>(C

_/')
|

q

G

4 N
P a—>a=- >b£\C—>d
q

G

~_)

M \
¢ b Ay Mo /
9 _l/') a
/p - -»Q N Ve
M \\g
4 b Teed e Mo /
- J \(1,
/a N\ a C b
Mg \ \ /
e g ¢
/a |
Ms \
bez---3 c--5d
CL\
o) (o

Tree interpretation Iin

Abstract Tree Decomposition

4 N
P a—a—>h—>=Cc—>

« 27 Process edges ,§,

_/')
|

q

o

4 N
P a—Q= - >b£\C—>d
q

N\

%c

_/V

- . N - ~
e p a\a" bﬁ\c_,d
g be--% c—d @ M, /
. \—l/v J @ | J
(p a<-»a A a A
M g \A\g de
q b----+ c—=d- —tc M2 /
8 ~_ ==) La)
a N a el vy
Mg \ \ /
e g ¢
a |
Ms \
)
a\
) (A

Tree interpretation Iin

Abstract Tree Decomposition

4 N
P a—a—>h—>=Cc—>

M| S
b—a=—>c——>(C

_/')
|

q

G

4 N
P a—>a=- >b£\C—>d
q

G

%c

_/V

/p a—a N a
M \
1 . b____%c M2 /
9 _l/') a
/p - -»Q N Ve
M \\g
4 b Teed e Mo /
- J \(1,
/a N\ a C b
T \ \ /
e g ¢
/a |
Ms \
boo--- % ¢ -xd
CL\
o) (o

Tree interpretation Iin

Abstract Tree Decomposition

4 N
P a—a—>h—>=Cc—>

«) Process edges

~_)

q
= |
e B P
P a—>a=- >b£\C—>d .
M %‘ : | -
q -~ ->C—2(] c
b ‘.0 \o &

_/‘V

*
....
L 4
L

4
'..
...
...

e . \ - N
e p a\a" bﬁ\c_,d
g b3 P @ Mo /
N \—l/v J W | J
(p a<-—»a h 4 N
M g \A\g de
q b----+ c—=d- -tc My /
8 ~ T) La)
7 N a el vy
Mg \ \ /
e g ¢
‘a |
M; \
)
a\
) (A

Tree interpretation Iin

Abstract Tree Decomposition

P a—-Q—> de

« Y Process edges

q b—a—>c
|

¢¢¢¢
S
L 4

" In the abstract tree, we can o, .F NN
interpret the graph (CBM) s
- vertices and labels
 data edges

* process edges .
1 with e
| tree (walking) automata i ¥ d

PDL or MSO formulas \f '

: 4

Tree interpretation Iin

Abstract Tree Decomposition

Split-width: under-approximations

* Words

* Nested Words

. : —— Constant]
* Mazurkiewicz Traces

* Acyclic Architectures

* Bounded channel size

* EXxistentially boundead

Bound + 2]
* Bounded context switching

* Bounded scope

* Bounded phase

- ZBound]

S Priority ordering

reachability/emptiness

o Q—o>(Q=0>)Hh~o>C—o> e

n L)
[] |
L} a
|] n |}
|}] |}
‘¢ Il
0. * Q’
* L4
* L 20 N
+* * .
. . *
. . s
. . '
o v e .y
.......
. L
.....

b, ds' R

73

reachability/emptiness

® Q=0>0=0>)Hh~0>C—0> ®

74

reachability/emptiness

>,

75

o A—0>(0=9>pHh-o>C—o> e

ob%co

\8/

d;

- reachability/emptiness

ifﬁ
L4 .
N L 3
n .
n [] -
-)) o M “‘Y - l_‘ e
. u . . .
o, .‘.‘ .
/.* ’QQ’ . .
‘0’ ‘0'0, . . .
** * 4
R o’ ’ n o
A g e
-u" e ° . A
N] [n

L 4 .
L /
o ¢ “
< N i
L
L 2 ° Y
Y
e

.
|

L 4
& L 4
e - 4 N\¢
0. 0.

. s R

o

C

||

04 O
e o =R

b, dy!

TR

reachability/emptiness

o A—e+>a=0>| —0—>C-‘—0—>d ©
.

78

reachability/emptiness

® Q—o>Q=0>)Hh~o»C—o> e

ob%co

\g/

d;

79

Split-width: parametrized verification

Complexity

Problem bound on split-width | bound on split-width

part of the input (in | fixed

unary)
CPDS emptiness ExPTIME-Complete PTiME-Complete
CPDS inclusion or universality 2EXPTIME ExpPTIME-Complete
LTL / CPDL satisfiability or model checking ExPTIME-Complete
ICPDL satisfiability or model checking 2EXPTIME -Complete
MSO satisfiability or model checking Non-elementary

C. Aiswarya, PG, K. Narayan Kumar
* MSO decidability of multi-pushdown systems via split-width. In CONCUR 2012.
* Verifying Communicating Multi-pushdown Systems via Split-width. In ATVA 2014.

Outline

M Concurrent Processes with Data Structures

M Behaviors as Graphs

M Specifications

M Verification with Graphs and under-approximations
M Split-width

* Conclusion

WYSIWYG

Understanding Behaviors

Linear Traces

Graphs (CBMs)

* Interleaved sequence of events.
Interactions are obfuscated and
very difficult to recover.

* Successor relation not meaningful

e Combinatorial explosion
single distributed behavior results
in a huge number of linear traces

* Visual description of behavior
* Interactions are visible
* no combinatorial explosion

WYSIWYG

Expressiveness of Specifications

Linear Traces

Graphs (CBMs)

* Too weak for many natural
specifications

 Difhicult to write/understand

* Requires syntactical or semantical
restrictions to be meaningful

* Powertul specifications
e Interactions are built-in
* Meaningful

* Easy to write/understand

WYSIWYG
Efficiency of Algorithms

Linear Traces Graphs (CBMs)
* Undecidable in general
+ Undecidable in general * Decidable under more lenient

Decidable under restrictions
Reductions to word automata
Good space complexity
Many tools available

restrictions

* Reductions to tree automata
via tree-interpretations

* Good time complexity

* Tools to be developed

Conclusion

* Use graphs to reason about behaviors of systems
distributed or sequential

* Exploit graph theory
Logics, decompositions, tree interpretations

* Split-width: convenient decomposition technique
as powerful as tree-width or clique-width for CBMs
yields optimal algorithms

Perspectives

* Extensions
* Parameterized systems (size, topology)

with Marie Fortin, FOSSACS’16

* Timed systems
with S. Akshay and S. Krishna, submitted

* Higher-order PDA
with C. Aiswarya and P. Saivasan

* Dynamic creation of processes
* Read from many

* Infinite behaviors
* o0 o

* Tools

Perspectives

* Extensions
* Parameterized systems (size, topology)

with Marie Fortin, FOSSACS’16

* Timed systems
with S. Akshay and S. Krishna, submitted

* Higher-order PDA
with C. Aiswarya and P. Saivasan

* Dynamic creation of processes
* Read from many

* Infinite behaviors
* o0 o

* Tools

