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System: Concurrent Processes with Data-Structures

e Processes

: uct
e Data structures IV€ ready
* Stacks: recursive programs, multithreaded _

* Queues: communication (FIFO)
* Bags: communication (unordered)



Architectures: Special cases

* PDA: Pushdown automata
Recursive programs

e MPDA: Multi-pushdown automata
Multi-threaded recursive programs =

* MPA: Message passing automata

: . : : @
Communicating finite state machines .
@

* PN: Petri Nets : Only bags
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System: Architecture + Boolean Prog
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Operational semantics
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* Configurations (infinite)

* local states of processes

* contents of data structures
* "Transitions
* Induced by the boolean programs

* [inear traces: abstractions of runs of TS



Linear Iraces
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Linear Iraces
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Linear Iraces vs. Graphs
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Linear lraces vs. Graphs
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Linear lraces vs. Graphs
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Graphs for Sequential Systems
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Graphs for Sequential Systems
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WYSIWYG

Understanding Behaviors

Linear Traces

Graphs (CBMs)

* Interleaved sequence of events.
Interactions are obfuscated and
very difficult to recover.

* Successor relation not meaningful

e Combinatorial explosion
single distributed behavior results
in a huge number of linear traces

* Visual description of behavior
* Interactions are visible
* no combinatorial explosion




WYSIWYG

Understanding Behaviors

Linear Traces

Graphs (CBMs)

 Interleaved sequence of events.
Interactions are obfuscated and
very difficult to recover

faphs avior
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er of linear traces




Semantics of CGPDS on Graphs
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Semantics of CPDS on Graphs
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Semantics of CPDS on Graphs
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Semantics of CPDS on Graphs
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Specification over Graphs

MSO: Monadic Second Order Logic

@ ::= false

a(z) | pa) [z <y|zply|z—y

reX|pVel|p|=

T | S

X @




Specification over Graphs
Obey the latest order
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Specification over Linear lraces
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¥ Based on the word successor relation, and the word total order

¥ L'TL over words, MSO over words



Speciﬁcation over Linear lraces
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Specification over Linear lraces
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* Based on the word successor relation, and the word total order
¥ LTL over words, MSO over words

* L'TL specification are not always meaningful

LTL \ X, Closure properties, ...

* Natural properties of graphs are difhicult or impossible to express
on linear traces



Graphs for Sequential Systems
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Graphs for Sequential Systems
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WYSIWYG

Expressiveness of Specifications

Linear Traces

Graphs (CBMs)

* Too weak for many natural
specifications

 Difhicult to write/understand

* Requires syntactical or semantical
restrictions to be meaningful

* Powertul specifications
e Interactions are built-in
* Meaningful

* Easy to write/understand




WYSIWYG

Expressiveness of Specifications

Linear Traces

Graphs (CBMs)
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M Behaviors as Graphs

M Specifications

* Verification with Graphs and under-approximations
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* Conclusion



Verification problems

* Emptiness or Reachability
* Inclusion or Universality
* Satisfiability ¢

¥ Model Checking: S = ¢

* Temporal logics G(r A on = Latest, Y, on)

* Propositional dynamic logics

Yz (r(z A onlz =i =

* Monadic second order logic AV (2 < 2 Ap(@) = o <)
Adz (x — y Aon(x)))



Verification problems

* Emptiness or Reachability

* Inclusion or Universality

* Satisfiability ¢

¥ Model Checking: S = ¢

Aon(z)) = Jy(py) Ny <=z
1C AV <z Aplrr=zt<1)
Adz (x — y Aon(x)))



Under-approximate Verification
Satisfiability problem:

C: class

behavio ecification

Is ¢ satisfiable in C?



Under-approximate Verification

Emptiness or reachability problem:

C: class
behaviors

Is-there a run of S
on some behavior from C?



Under-approximate Verification
Model checking problem: § Ec (I)

C: class

behavio: ecification

Do all behaviors trom C
accepted by S satisty ¢?



Verification problems

* Emptiness or Reachability

* Inclusion or Universality

* Satisfiability ¢

¥ Model Checking: S = ¢

* Temporal logics

AVz{r <z AplE)=T<7)
A 3dz (z — y Aon(x)))



Under-approv- ate Verification
3,.1 Q\Y &Ot * Emptiness or Reachability

* Inclusion or Un+— \

mporal logics
* Bounded data structures

* Propositional dynamic logics

* Existentially bounded [Genest et al.} ¥ Monadic secondiol 1 8
* Acyclic Architectures {La Torre et al., Heufiner et al. Clemente et al.}

* Bounded context switching {Qadeer, Rehofl, {LaTorre et al.1, ...

* Bounded phase {LaTorre et al.}

* Bounded scope {LaTorre et al.l

* Priority ordering {Atig et al., Saivasan et al.1



Model Checking vs Reachability

* Reachability reduces to model checking

* Model checking reduces to Reachability ...

... when specifications can be translated to systems

... this is NOt possible in general for graphs
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Model Checking vs Reachability

* Reachability reduces to model checking

* Model checking reduces to Reachability ...

... when specifications can be translated to systems

.. this is not possible in general for graphs
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Under-approximate Verification
Model checking problem: § Ec (I)

C: class o

behavio: ecification

SEc ¢ iff ¢ps= P isvalidin C



ENCYCLOPEDIA OF MATHEMATICS AND ITS APPLICATIONS

Graph Structure and
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A Language-Theoretic Approach
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Decidability of MSO theory

Let C be a class of bounded degree MSO definable graphs.
TFAE
1. C has a decidable MSO theory |

e ———————
— e —  —————

2. Ccan be interpreted in bmary trees J

e e e o e — — = _4

3. Chas bounded tree-widt
4. C has bounded clique-width
5. C has bounded split-width ¢for CBMs)




Under-approv=— ate Verification
. ﬂ\Y &OY * Emptiness or Reachability

* Inclusion or Un+— \

: mporal logics
* Bounded channel size

* Propositional dynamic logics

* Existentially bounded [Genest et al.} ¥ Monadic secondiol 1 8
* Acyclic Architectures {La Torre et al., Heufiner et al. Clemente et al.}

* Bounded context switching {Qadeer, Rehofl, {LaTorre et al.1, ...

* Bounded phase {LaTorre et al.}

* Bounded scope {LaTorre et al.l

* Priority ordering {Atig et al., Saivasan et al.1



Under-approximate Verification

The Tree Width of Auxiliary Storage

P. Madhusudan

University of Illinois at Urbana-Champaign, USA
madhu@illinois.edu

)stract

- propose a generalization of results on the decidability of empti-
s for several restricted classes of sequential and distributed au-
1ata with auxiliary storage (stacks, queues) that have recently
n proved. Our generalization relies on reducing emptiness of
se automata to finite-state graph automata (without storage)
ricted to monadic second-order (MSO) definable graphs of
mmded tree-width where the oranh structure encodes the mech-

Gennaro Parlato

LIAFA, CNRS and University of Paris Diderot, France.
gennaro@liafa.jussieu.fr

However, the various identified decidable restrictions on the
automata are, for the most part, awkward in their definitions
e.g. emptiness of multi-stack pushdown automata where pust
to any stack is allowed at any time, but popping is restricted
the first non-empty stack is decidable! [8]. Yet, relaxing the
definitions to more natural ones seems to either destroy decidabil
or their power. It is hence natural to ask: why do these autom:
have decidable emptiness problems? Is there a common underlyi



Outline

M Concurrent Processes with Data Structures

M Behaviors as Graphs

M Specifications

M Verification with Graphs and under-approximations

* Split-width and tree interpretation \

‘Olﬂt

C. Aiswary?

* Conclusion




Width: split vs tree vs clique

t<2(k+IProcsl) - 1__ SPIEWidth k| o< opc4 IProcsi) + 1

[ Tree-Width t ] [ Clique-Width c ]

Let C be a class of bounded degree MSO definable graphs.
TFAE

1. C has a decidable MSO theory

C can be interpreted in binary trees

C has bounded tree-width

. C has bounded clique-width

C has bounded split-width ¢or CBMs)
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Width: split vs tree vs clique
Split-Width k |

k <120(t + 1) '\kszc-s

[ Tree-Width t ] [ Clique-Width c ]

Let C be a class of bounded degree MSO definable graphs.
TFAE f
1. C has a decidable MSO theory

C can be interpreted in binary trees

C has bounded tree-width

. C has bounded clique-width

C has bounded split-width ¢or CBMs)
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Decomposition game

* Eve: Disconnect the graph by cutting edges
* Adam: Choose a connected component

* Split game: Eve cuts process edges only (CBM)

* Width: Maximal number of holes in graphs (CBMs)

along a play until reaching an atomic graph
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| sPLIT DECOMPOSITION OF CBMs |




SPLIT DECOMPOSITION OF CBMs
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Abstract Tree Decomposition




“, s)  Data edges -

Tree interpretation Iin

Abstract Tree Decomposition




4 N
P a—a—>h—>=Cc—>

“, s)  Data edges -

q

\_

4 N
P a—Q= - >b£\C—>d
q

N\

~_ )

e — N s ~
e p a\a"\‘g bﬁ\c_,d
g be--% c—d @ M, /

_ \—l/v Y \a | Y

(7 a- -»a ) 4 N
M g \A\g ba\d

q b----+ c—=d- —tc M2 /

L \_/ ) a

a D a c bmd
Ms \ \ /
e g ¢
/a |
M \
bec--- 3 ~d
e
a
\c b nd

Tree interpretation Iin

Abstract Tree Decomposition




4 N
P a—a—>h—>=Cc—>

« 7 Process edges -

|

q
\_
4 N
P a—Q= - >b£\C—>d
q
N\

~_ )

e — N s ~
e p a\a"\‘g bﬁ\c_,d
g be--% c—d @ M, /

_ \—l/v Y \a | Y

(7 a- -»a ) 4 N
M g \A\g ba\d

q b----+ c—=d- —tc M2 /

L \_/ ) a

a D a c bmd
Ms \ \ /
e g ¢
/a |
M \
bec--- 3 ~d
e
a
\c b nd

Tree interpretation Iin

Abstract Tree Decomposition




4 N
P a—a—>h—>=Cc—>

M| S
b—a=—>c——>( C

\_/' )
|

q

-

4 R
P a—>a=- >b£\C—>d
q

-

~_ )

M \
o pe e M /
9 \_l/' ) a
/p - -»Q N Ve
M \A\g
q b=----+ c—=d- -®cC M2 /
L \_/ ) \(1,
/a N\ a C b
T \ \ /
e g ¢
/a |
Ms \
beo--- 3 ¢ -2d
CL\
o) (o

Tree interpretation Iin

Abstract Tree Decomposition




P a—a—>h—>=Cc—>

Ml e
q b—a—>c—=(d c
- J

\_/‘V

|
=
P a—raecrhpo—3g

M/ %
q >Q~ -»C—( c
\

\_/V

/p a—a N\ a
M \
1 . he - _%C M2 /
9 \_l/' ) a
/p - -»Q N Ve
M \\g
q b=----+ c—=d- -®cC M2 /
L \_/ ) \(1,
/a N\ a C b
T \ \ /
e g ¢
/a |
Ms \
beo--- 3 ¢ -2d
CL\
o) (o

Tree interpretation Iin

Abstract Tree Decomposition




P a—a—>h—>=Cc—>

Ml e
q b—a—>c—=(d c
- J

\_/‘V

|
N
P a—>a=- >b£\C—>d

M %——»( 1——>—> (
\_

~_ )

/p a—a N\ a
M \
1 . he - _%C M2 /
9 \_l/' ) a
/p - -»Q N Ve
M \\g
q b=----+ c—=d- -®cC M2 /
L \_/ ) \(1,
/a N\ a C b
T \ \ /
e g ¢
/a |
Ms \
beo--- 3 ¢ -2d
CL\
o) (o

Tree interpretation Iin

Abstract Tree Decomposition




P a—a—>h—>=Cc—>

Ml e
q b—a—>c—=(d c
- J

\_/‘V

|
N
P a—>a=- >b£\C—>d

M %——»( 1——>—> (
\_

~_ )

/p a—a N\ a
M \
1 . he - _%C M2 /
9 \_l/' ) a
/p - -»Q N Ve
M \\g
q b=----+ c—=d- -®cC M2 /
L \_/ ) \(1,
/a N\ a C b
T \ \ /
e g ¢
/a |
Ms \
beo--- 3 ¢ -2d
CL\
o) (o

Tree interpretation Iin

Abstract Tree Decomposition




4 N
P a—a—>h—>=Cc—>

M| S
b—a=—>c——>( C

\_/' )
|

q

G

4 N
P a—>a=- >b£\C—>d
q

G

~_ )

M \
¢ b Ay Mo /
9 \_l/' ) a
/p - -»Q N Ve
M \\g
4 b Teed e Mo /
- J \(1,
/a N\ a C b
Mg \ \ /
e g ¢
/a |
Ms \
bez---3 c--5d
CL\
o) (o

Tree interpretation Iin

Abstract Tree Decomposition




4 N
P a—a—>h—>=Cc—>

« 27 Process edges ,§,

\_/' )
|

q

o

4 N
P a—Q= - >b£\C—>d
q

N\

%c

\_/V

- . N - ~
e p a\a" bﬁ\c_,d
g be--% c—d @ M, /
. \—l/v J @ | J
(p  a<-»a A a A
M g \A\g de
q b----+ c—=d- —tc M2 /
8 ~_ == ) La )
a N a el vy
Mg \ \ /
e g ¢
a |
Ms \
)
a\
) (A

Tree interpretation Iin

Abstract Tree Decomposition




4 N
P a—a—>h—>=Cc—>

M| S
b—a=—>c——>( C

\_/' )
|

q

G

4 N
P a—>a=- >b£\C—>d
q

G

%c

\_/V

/p a—a N a
M \
1 . b____%c M2 /
9 \_l/' ) a
/p - -»Q N Ve
M \\g
4 b Teed e Mo /
- J \(1,
/a N\ a C b
T \ \ /
e g ¢
/a |
Ms \
boo--- % ¢ -xd
CL\
o) (o

Tree interpretation Iin

Abstract Tree Decomposition




4 N
P a—a—>h—>=Cc—>

« ) Process edges

~_ )

q
= |
e B P
P a—>a=- >b£\C—>d .
M %‘ : | -
q -~ ->C—2(] c
b ‘.0 \o &

\_/‘V

*
....
L 4
L

4
'..
...
...

e . \ - N
e p a\a" bﬁ\c_,d
g b3 P @ Mo /
N \—l/v J W | J
(p  a<-—»a h 4 N
M g \A\g de
q b----+ c—=d- -tc My /
8 ~ T ) La )
7 N a el vy
Mg \ \ /
e g ¢
‘a |
M; \
)
a\
) (A

Tree interpretation Iin

Abstract Tree Decomposition



P a—-Q—> de

« Y Process edges

q b—a—>c
|

¢¢¢¢
S
L 4

" In the abstract tree, we can o, .F NN
interpret the graph (CBM) s
- vertices and labels
 data edges

* process edges .
1 with e
| tree (walking) automata i ¥ d

PDL or MSO formulas \f '

: 4

Tree interpretation Iin

Abstract Tree Decomposition




Split-width: under-approximations

* Words

* Nested Words

. :  —— Constant ]
* Mazurkiewicz Traces

* Acyclic Architectures

* Bounded channel size

* EXxistentially boundead

Bound + 2 ]
* Bounded context switching

* Bounded scope

* Bounded phase

- ZBound ]

S Priority ordering



reachability/emptiness

o Q—o>(Q=0>)Hh~o>C—o> e

n L)
[ ] |
L} a
| ] n |}
|} ] |}
‘¢ Il
0. * Q’
* L4
* L 20 N
+* * .
. . *
. . s
. . '
o v e .y
.......
. L
.....

b, ds' R

73



reachability/emptiness
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Split-width: parametrized verification

Complexity

Problem bound on split-width | bound on split-width

part of the input (in | fixed

unary)
CPDS emptiness ExPTIME-Complete PTiME-Complete
CPDS inclusion or universality 2EXPTIME ExpPTIME-Complete
LTL / CPDL satisfiability or model checking ExPTIME-Complete
ICPDL satisfiability or model checking 2EXPTIME -Complete
MSO satisfiability or model checking Non-elementary

C. Aiswarya, PG, K. Narayan Kumar
*  MSO decidability of multi-pushdown systems via split-width. In CONCUR 2012.
*  Verifying Communicating Multi-pushdown Systems via Split-width. In ATVA 2014.




Outline

M Concurrent Processes with Data Structures

M Behaviors as Graphs

M Specifications

M Verification with Graphs and under-approximations
M Split-width

* Conclusion



WYSIWYG

Understanding Behaviors

Linear Traces

Graphs (CBMs)

* Interleaved sequence of events.
Interactions are obfuscated and
very difficult to recover.

* Successor relation not meaningful

e Combinatorial explosion
single distributed behavior results
in a huge number of linear traces

* Visual description of behavior
* Interactions are visible
* no combinatorial explosion




WYSIWYG

Expressiveness of Specifications

Linear Traces

Graphs (CBMs)

* Too weak for many natural
specifications

 Difhicult to write/understand

* Requires syntactical or semantical
restrictions to be meaningful

* Powertul specifications
e Interactions are built-in
* Meaningful

* Easy to write/understand




WYSIWYG
Efficiency of Algorithms

Linear Traces Graphs (CBMs)
* Undecidable in general
+ Undecidable in general * Decidable under more lenient

Decidable under restrictions
Reductions to word automata
Good space complexity
Many tools available

restrictions

* Reductions to tree automata
via tree-interpretations

* Good time complexity

* Tools to be developed




Conclusion

* Use graphs to reason about behaviors of systems
distributed or sequential

* Exploit graph theory
Logics, decompositions, tree interpretations

* Split-width: convenient decomposition technique
as powerful as tree-width or clique-width for CBMs
yields optimal algorithms



Perspectives

* Extensions
* Parameterized systems (size, topology)

with Marie Fortin, FOSSACS’16

* Timed systems
with S. Akshay and S. Krishna, submitted

* Higher-order PDA
with C. Aiswarya and P. Saivasan

* Dynamic creation of processes
* Read from many

* Infinite behaviors
* o0 o

* Tools
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