Weighted automata with pebbles and weighted FO logic with transitive closures

Paul Gastin

Benedikt Bollig, Benjamin Monmege, Marc Zeitoun
LSV, ENS Cachan, CNRS, INRIA.

Dagstuhl
Dec. 13-17, 2010

Preliminary version at ICALP’10
Motivation: The Paradise for weights

Boolean: $\mathbb{B} = (\{0, 1\}, \lor, \land, 0, 1)$
Motivation: The Paradise for weights

Schützenberger

\mathcal{A} \quad wAutomata

E \quad wRat

Series

$s : \Sigma^* \rightarrow K$

Quantitative: $K = (K, +, \times, 0, 1)$
Expressivity in weighted setting

Find a robust class containing both wFO and wAutomata.
Weighted automata

- Transitions carry weights from a semiring \(\mathbb{K} : \mu : \Sigma \to K^{Q \times Q} \).

- Weight of a run on \(w = a_1 a_2 \cdots a_n \): product in the semiring.

\[
\text{weight}(p_0 \xrightarrow{k_1 a_1} p_1 \xrightarrow{k_2 a_2} \cdots \xrightarrow{k_n a_n} p_n) = k_1 k_2 \cdots k_n
\]

- Value of a word: sum of all weights of runs on this word.

\[
\mathbb{[A]}(w) = \sum_{\rho \text{ run of } A \text{ on } w} \text{weight}(\rho) = \lambda \cdot \mu(w) \cdot \gamma
\]

Example: Semirings: \(\mathbb{K} = (K, +, \times, 0, 1) \)

- \(\mathbb{B} = (\{0, 1\}, \lor, \land, 0, 1) \) - Boolean
- \(\mathbb{P} = (\mathbb{R}^+, +, \times, 0, 1) \) - Probabilistic
- \(\mathbb{N} = (\mathbb{N}, +, \times, 0, 1) \) - Natural
- \(\mathbb{T} = (\mathbb{N} \cup \{\infty\}, \min, +, \infty, 0) \) - Tropical
Examples of weighted automata

- Alphabet Σ, on $(\mathbb{N}, +, \times, 0, 1)$

 $[\mathcal{A}](u) = 2^{|u|}$ (deterministic)

- Alphabet $\Sigma = \{a, b\}$, on $(\mathbb{Z}, +, \times, 0, 1)$

 $[\mathcal{A}](u) = |u|_a - |u|_b$

- Alphabet $\{a, b, c\}$, on $(\mathbb{N} \cup \{\infty\}, \text{min}, +, \infty, 0)$

 $[\mathcal{A}](ab^nc) = \min(3 + 2n, 6 + n)$
Remark

\(A = (Q, \mu) \) weighted automaton on \(\mathbb{N} \). There exists \(M \) such that

\[
\llbracket A \rrbracket(u) = O(M^{|u|}).
\]

- There are \(|Q|^{|u|+1}\) runs on \(u = a_1 a_2 \cdots a_n \),

\[
\rho = p_0 \xrightarrow{k_1 a_1} p_1 \xrightarrow{k_2 a_2} \cdots \xrightarrow{k_n a_n} p_n
\]

- The weight of a run is exponential in \(|u|\):

\[
\text{weight}(\rho) = k_1 k_2 \cdots k_n \leq (\max\{\mu(a)_{p,q} \mid a \in \Sigma \text{ and } p, q \in Q\})^{|u|}.
\]
Weighted MSO

Definition: Syntax of wMSO

\[\varphi ::= k \mid P_a(x) \mid x \leq y \mid x \in X \mid \neg \varphi \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \exists x \varphi \mid \forall x \varphi \mid \exists X \varphi \mid \forall X \varphi \]

where \(k \in K, a \in \Sigma, x, y \) are first-order variables, \(X \) is a set variable.

Definition: Semantics

- A formula \(\varphi \) without free variables defines a mapping \([\varphi] : \Sigma^+ \rightarrow K \).
- First order variables are interpreted as positions in the word.
- \(P_a(x) \) means “position \(x \) carries an \(a \)”.
- \(x \leq y \) means “position \(x \) is before position \(y \)”.
- \([\varphi_1 \lor \varphi_2] = [\varphi_1] + [\varphi_2] \) and \([\varphi_1 \land \varphi_2] = [\varphi_1] \times [\varphi_2] \).
 Remember: \(\mathbb{B} = (\{0, 1\}, \lor, \land, 0, 1) \) and \(\mathbb{K} = (K, +, \times, 0, 1) \).
- \(\exists x \varphi \) interpreted as a sum over all positions.
- \(\forall x \varphi \) interpreted as a product over all positions.
wMSO: examples

- $\exists x \; P_a(x)](u) = \sum_{i \in \text{pos}(u)} [P_a(x)](u, i) = |u|_a$

 recognizable

- $\forall y \; 2](u) = \prod_{i \in \text{pos}(u)} [2](u, i) = 2^{|u|}$

 recognizable

- $\forall x \; \forall y \; 2](u) = \prod_{i \in \text{pos}(u)} [\forall y \; 2](u, i) = (2^{|u|})^{|u|} = 2^{|u|^2}$

 not recognizable

w-Automata are not closed under universal quantification.

Theorem (Droste & Gastin’05)

$$w\text{Automata} = w\text{RMSO}$$

wRMSO is a fragment of wMSO with

- $\forall X$ restricted to boolean formulae
- $\forall x$ restricted to $\lor \land$ of constants and boolean formulae
Extending instead of Restricting?

We aim at a robust class extending both wFO and wAutomata.
Nested automata (= 1-way pebble automata)

A 0-nested wA is a classical weighted automaton.

\[\mathcal{A}_1 \](u) = 2^{i+1} \text{ if } u \in \Sigma_0^i \Sigma_1 \Sigma_0^* \]

\[\mathcal{A}_2 \](u) = 3|u| \]

Each transition \(p \overset{a}{\rightarrow} q \) of an \(r \)-nested wA \(A \) calls an \((r - 1)\)-nested wA \(A_{p,a,q} \) with the current position \(i \) marked.

\(A_{p,a,q} \) restarts on \((u, i)\) and computes the weight \(p \overset{\mathcal{A}_{p,a,q}(u,i) a}{\rightarrow} q \).

\[\mathcal{A}_1, a \]

\[\mathcal{A}_2, b \]

\[\mathcal{A}(u) = 3|u||u|_b \cdot 2 \sum_{\text{pos}(a,u)} \]

An \(r \)-nested automaton does \(1 + |u| + |u|^2 + \cdots + |u|^r \) 1-way runs on a word \(u \).
Nested automata are closed under $\exists \forall$

Proof: $\forall x \ A(x)$

Proof: $\exists x \ A(x)$

$[B](u) = \prod_{i=1}^{ |u| } [A](u, i)$

$[B](u) = \sum_{i=1}^{ |u| } [A](u, i)$
Nested weighted Automata vs wFO

We aim now at a logical characterization of w-Nested-Automata.
(2-way) Pebble weighted automata

- Automaton with 2-way mechanism and pebbles \(\{1, \ldots, r\} \).

- Applicable transitions depend on current (state, letter, pebbles).
 \[(p, ka, \text{Pebbles}, D, q), \text{where } D \in \{\leftarrow, \rightarrow, \text{lift, drop}\}. \]

- **Stack policy:** only the most recently dropped pebble may be lifted
- **Weak policy:** pebble may be lifted only when the head scans its position.
- **Note:** For Boolean word automata, this does not add expressive power.
wPA can simulate wNA

Proof by example: Consider the 1wNA

\[[A](u) = 3|u||u|b \cdot 2\sum_{\text{pos}(a,u)} \]

\[A_1, a \]

\[A_2, b \]

\[\Sigma, *, \leftarrow \quad \Sigma, \emptyset, \leftarrow \]

\[\Sigma, *, \rightarrow \quad \Sigma, \bullet, \text{lift} \]

\[a, *, \text{drop} \]

\[b, *, \text{drop} \]

\[\Sigma, *, \leftarrow \quad \Sigma, \emptyset, \leftarrow \]

\[\Sigma, *, \rightarrow \quad \Sigma, \bullet, \text{lift} \]
Transitive closure logics: TC and BTC

- For $\varphi(x, y)$ with (at least) two first order free variables, define

 $\varphi^1(x, y) = \varphi(x, y)$

 $\varphi^n(x, y) = \exists z_0 \cdots \exists z_n \left(x = z_0 \land z_n = y \land \text{diff}(z_0, \ldots, z_n) \land \left[\bigwedge_{1 \leq \ell \leq n} \varphi(z_{\ell-1}, z_{\ell}) \right] \right)$.

- The transitive closure operator is defined by $\text{TC}_{xy} \varphi = \bigvee_{n \geq 1} \varphi^n$.

- Bounded transitive closure: $\text{N-TC}_{xy} \varphi = \text{TC}_{xy} (\varphi \land |x - y| \leq N)$.
Express N-TC$_{xy}$ψ with 2 additional pebbles:

Given p-pebble automaton A on Σ_{xy} recognizing $[\psi]$ and a word (u, i, j)

1. B goes to i and drops pebble 1
2. B drops nondeterministically pebble 2 on a position at distance $\leq N$
3. B simulates A on w where x and y are mapped to the positions of pebbles
4. B lifts pebble 2 and pebble 1, and drops again pebble 1 where pebble 2 was.
5. If pebble 1 is not on j then goto 2 else stop.
Theorem (Bollig, Gastin, Monmege, Zeitoun)

\[w(FO + BTC) = wPA = wNA \]

- Proof of \(w(FO + BTC) \subseteq wPA \) done in the previous slides
- Proof of \(wPA \subseteq wNA \):
 Generalization of the translation of 2-way automata to 1-way automata.
- Proof of \(wNA \subseteq w(FO + BTC) \):
 Generalization of a proof showing that weighted automata are expressible with transitive closure.
Flavor of the proof of 1-pebble $\subseteq 1$-nested

Requires commutativity
Summary

- Pebbles and nesting add expressive power in weighted automata.
- 2-way \(wA = 0 \)-pebble \(wA = 0 \)-nested \(wA = 1 \)-way \(wA \)
- SAT of \(w(FO + BTC) \) is decidable for positive semiring
Open problems

Some closely related questions:

1. Unbounded steps in transitive closure?
2. Weak pebbles vs. strong pebbles?
3. Extended wRat for wPA?
4. Algorithms on wPA or wNA?

Extensions to other structures: Trees (ranked or unranked)

- Tree walking automata (TWA) are 2-way automata
- 1-way TWA = Depth First Search Automata (DFSA)

- Main Theorem (almost): w-Nested-DFSA = w(FO + BTC<)

- pebble TWA ≡ nested DFSA
- Quantitative query languages: wXPath, wRXPath