

C. Aiswarya, <u>Paul Gastin</u>, K. Narayan Kumar

Gossip Maintaining Latest Information Beyond Channel Bounds

ALFA, June 16th, 2015

Distributed Systems

Finite set of processes

Communicating via reliable FIFO message passing

multiple channels between processes

Remote control light

Gossip

- Cooperate so that every process maintains latest information about every other process
- When receiving a message, a process needs to identify which is more recent:
 - the information it has,
 - the information transmitted by the sender

How to maintain the latest information?

How to maintain the latest information?

Why How to maintain the latest information using only finite set of messages?

Finite communication complexity

Formal Methods Model checking

Distributed Synthesis

Local testing

Global Snapshots Causal Ordering

Bounded implementations of replicated data-types

How to maintain the latest information using only finite set of messages?

How to maintain the latest information using only finite set of messages? We use some secondary knowledge WIF No natural ordering between the tags

How to maintain the latest information using only finite set of messages?

Is it even possible?

At least in some cases?

Synchronous communication [Zielonka87]

Bounded channels [Mukund et al.03] Beyond Bounded channels?

challenges How to maintain the latest information	
using only finite set of	
When is a color not needed any more?	Lets analyse for k-Bounded channels
I can reuse a color when I know that the tagged message has been received	requires k colors
	necessary, but not sufficient
and I know that everyone knows that the tagged message has been received	Secondary knowledge
	requires k ² colors
colors are not freed in the order they were used	showing a bound, and using a round-robin does not work

k-Bounded channels permit finite time-stamping

channel ow to maintain the latest information using only finite set of messages?

k-Bounded channels permit finite time-stamping

Are channel bounds necessary for finite time-stamping?

Equivalent writes

Not simply stuttering

Important writes

Are existential channel bounds necessary?

writed ow to maintain the latest information using only finite set of messages?

Are existential channel bounds necessary?

Equivalent writes

Important writes

We need some bound: Primary information

We need some bound: Primary information

We solve the gossip problem for primary bounded

How do we maintain the primary?

Keeping primary alone is not enough

Need secondary knowledge

What is secondary knowledge?

Secondary = Primary of Primary

Secondary = Primary of Primary

YES, WE CAN!

Gossip: more precisely

Message passing automaton (MPA or CFM)

```
Gossip = (Locs, (Trans_p)_{p \in Procs})
```

Run: ρ : Events \rightarrow Locs

Known and Latest

Known: Locs $\rightarrow 2^{\text{Procs}}$

 $Known(\ell'') = \{p_2, p_3, ..., p_6\}$

Latest: $Locs^2 \rightarrow 2^{Procs}$

Latest(ℓ, ℓ') = {p₃, p₅, p₆}

Colors and time-stamps

$$\chi(g) = \min(\mathbb{N} \setminus \chi(\mathsf{Sec}(\Downarrow g) \cap \mathsf{Send}(d)))$$

$$h(g) = (d, \chi(g))$$

 $K^{1}(g) = \{h(e) \mid e \in \mathsf{Prim}(\downarrow g)\}$

Locations of Gossip

d/d/ d/d/ d" 6 4

 $K^{2}(g) = (\operatorname{pid}(g), d, c, K^{1}(g), (K^{1}(e))_{e \in \operatorname{Prim}(g)})$

 $\ell = (p, d, c, P, (S_{\gamma})_{\gamma \in P})$

Locations of Gossip

p 6 d"

 $K^{2}(g) = (\mathsf{pid}(g), d, c, K^{1}(g), (K^{1}(e))_{e \in K^{1}(g)})$

$$\ell = (p, d, c, P, (S_{\gamma})_{\gamma \in P})$$

Known

$\mathsf{pid}(\downarrow g) = \{\mathsf{pid}(g)\} \cup \mathsf{pid}(\mathsf{Prim}(\downarrow g))$

$$\mathsf{Known}(\ell) = \{p\} \cup \mathsf{pid}(P)$$

$$\ell = (p, d, c, P, (S_{\gamma})_{\gamma \in P})$$

Equivalent writes : no changes

New channel: requires an available color

$$\ell = (p, d, c, P, (S_{\gamma})_{\gamma \in P})$$
$$\ell' = (p, d', c', P' = P \cup \{(d', c')\}, (S'_{\gamma})_{\gamma \in P'})$$

$$\ell = (p, d, c, P, (S_{\gamma})_{\gamma \in P})$$
$$\ell' = (p', d', c', P', (S'_{\gamma})_{\gamma \in P'})$$

read event

case 1

$$\begin{array}{l} \mathsf{f} < \mathsf{e} \text{ iff} \\ (d',c') \in P \land \exists (d'',c'') \in P \setminus P' \, (d'' \neq d' \land \mathsf{W}(d'') = \mathsf{W}(d')) \end{array}$$

 $\ell = (p, d, c, P, (S_{\gamma})_{\gamma \in P})$ $\ell' = (p', d', c', P', (S'_{\gamma})_{\gamma \in P'})$

read event

case 1

f < e iff $(d',c') \in P \land \exists (d'',c'') \in P \setminus P' (d'' \neq d' \land W(d'') = W(d'))$

read event

case i

 $\ell = (p, d, c, P, (S_{\gamma})_{\gamma \in P})$ $\ell' = (p', d', c', P', (S'_{\gamma})_{\gamma \in P'})$

$$\ell'' = (p, \bot, \bot, P'', (S''_{\gamma})_{\gamma \in P''})$$
$$P'' = (P \setminus (P' \cap d')) \cup \{(d', c')\}$$

f < e iff $(d',c') \in P \land \exists (d'',c'') \in P \setminus P' (d'' \neq d' \land W(d'') = W(d'))$

$$\ell = (p, d, c, P, (S_{\gamma})_{\gamma \in P})$$
$$\ell' = (p, d', c', P', (S'_{\gamma})_{\gamma \in P'})$$

read event

case 2

e < f implies $(d,c) \in P'$

 $\ell = (p, d, c, P, (S_{\gamma})_{\gamma \in P})$ $\ell' = (p, d', c', P', (S'_{\gamma})_{\gamma \in P'})$

read event

case 2

e < f implies $(d,c) \in P'$

$$\ell = (p, d, c, P, (S_{\gamma})_{\gamma \in P})$$
$$\ell' = (p, d', c', P', (S'_{\gamma})_{\gamma \in P'})$$

$$\ell'' = (p, \bot, \bot, P'', (S''_{\gamma})_{\gamma \in P''})$$
$$P'' = (P' \setminus (P' \cap d')) \cup \{(d', c')\}$$

not iff

e < f implies $(d,c) \in P'$

not case 1 and $(d,c) \in P'$ implies ...

not (case 1 or case 2) implies e || f

 $\mathsf{Prim}(\Downarrow g) = (\mathsf{Prim}(\downarrow e) \cap \mathsf{Prim}(\downarrow f)) \cup (\mathsf{Prim}(\downarrow e) \setminus \downarrow f) \cup (\mathsf{Prim}(\downarrow f) \setminus \downarrow e)$

 $\mathsf{Prim}(\downarrow e) \setminus \bigcup_{e' \in \mathsf{Prim}(\downarrow e) \cap \mathsf{Prim}(\downarrow f)} \mathsf{Prim}(\downarrow e')$

not (case 1 or case 2) implies e || f

 $\mathsf{Prim}(\Downarrow g) = (\mathsf{Prim}(\downarrow e) \cap \mathsf{Prim}(\downarrow f)) \cup (\mathsf{Prim}(\downarrow e) \setminus \downarrow f) \cup (\mathsf{Prim}(\downarrow f) \setminus \downarrow e)$

$$''' = (P \cap P') \cup \left(P \setminus \bigcup_{\gamma \in P \cap P'} S_{\gamma}\right) \cup \left(P' \setminus \bigcup_{\gamma \in P \cap P'} S'_{\gamma}\right)$$

 $\mathsf{Prim}(\downarrow e) \setminus \bigcup_{e' \in \mathsf{Prim}(\downarrow e) \cap \mathsf{Prim}(\downarrow f)} \mathsf{Prim}(\downarrow e')$

not (case 1 or case 2) implies e || f

 $P''' = (P \cap P') \cup \left(P \setminus \bigcup_{\gamma \in P \cap P'} S_{\gamma}\right) \cup \left(P' \setminus \bigcup_{\gamma \in P \cap P'} S'_{\gamma}\right)$

How to maintain the latest information using only finite set of messages?

Is it even possible?

At least in some cases?

Synchronous communication [Zielonka87]

Bounded channels [Mukund et al.03] Primary bounded