Testing with asynchronous communication

Paul Gastin

LSV
ENS de Cachan & CNRS
Paul.Gastin@lsv.ens-cachan.fr

Joint work with Puneet Bhateja and Madhavan Mukund

October 29th, 2008
Outline

1. Introduction

 Input/Output semantics

 IO-Blocks semantics

 Queue semantics (Tretman)

 Conclusion
Introduction

Verification of software or hardware

- Proof
- Model checking
- Test

Synchronous testing

- The tester interacts synchronously with the system.
- The tester proposes an action which is either refused or accepted and executed by the system.
- The tester has an immediate feedback.

Asynchronous testing

- The tester communicate asynchronously with the system.
- The tester provides inputs and observes outputs.
- The tester does not necessarily know whether its inputs have been used by the system or not.
Introduction

Verification of software or hardware

- Proof
- Model checking
- Test

Synchronous testing

- The tester interacts synchronously with the system.
- The tester proposes an action which is either refused or accepted and executed by the system.
- The tester has an immediate feedback.

Asynchronous testing

- The tester communicate asynchronously with the system
- The tester provides inputs and observes outputs.
- The tester does not necessarily know whether its inputs have been used by the system or not.
Introduction

Verification of software or hardware

- Proof
- Model checking
- Test

Synchronous testing

- The tester interacts synchronously with the system.
- The tester proposes an action which is either refused or accepted and executed by the system.
- The tester has an immediate feedback.

Asynchronous testing

- The tester communicate asynchronously with the system.
- The tester provides inputs and observes outputs.
- The tester does not necessarily know whether its inputs have been used by the system or not.
Introduction

Static test generation – Input/Output semantics
- Tests are computed in advance and are sent as a whole stream to the system.
- The tester then observes the output streams generated by the system.

On the fly test generation – IO-Blocks semantics
- Inputs are supplied incrementally.
- The tester observes the outputs that are triggered by each block of input.

Test equivalence
- Equivalence of two systems for a given test semantics.
- We study the expressiveness and the decidability of some test equivalences.
Introduction

Static test generation – Input/Output semantics
- Tests are computed in advance and are sent as a whole stream to the system.
- The tester then observes the output streams generated by the system.

On the fly test generation – IO-Blocks semantics
- Inputs are supplied incrementally.
- The tester observes the outputs that are triggered by each block of input.

Test equivalence
- Equivalence of two systems for a given test semantics.
- We study the expressiveness and the decidability of some test equivalences.
Introduction

Static test generation – Input/Output semantics
- Tests are computed in advance and are sent as a whole stream to the system.
- The tester then observes the output streams generated by the system.

On the fly test generation – IO-Blocks semantics
- Inputs are supplied incrementally.
- The tester observes the outputs that are triggered by each block of input.

Test equivalence
- Equivalence of two systems for a given test semantics.
- We study the expressiveness and the decidability of some test equivalences.
Related work

Outline

Introduction

2 Input/Output semantics

IO-Blocks semantics

Queue semantics (Tretman)

Conclusion
The model

Labelled transition system

\[TS = (S, \Sigma, I, T) \text{ where} \]

- \(S \) is the set of states
- \(I \subseteq S \) is the set of initial states
- \(\Sigma = \Sigma_i \cup \Sigma_o \) is the set of input/output actions
- \(T \subseteq S \times \Sigma \times S \) is the set of transitions

\[L(TS) = \{ w \in \Sigma^* \mid I \xrightarrow{w} \text{ in } TS \} \]

\(s \in S \) is quiescent if it refuses all output actions: \(s \xrightarrow{\Sigma_o} \).

Some further properties

- No infinite output-only behaviour.
- Receptiveness: \(\forall s \in S \) quiescent, \(\forall a \in \Sigma_i, s \xrightarrow{a} \)
 If this is not the case, we may
 - discard unexpected inputs
 - enter a dead state accepting all inputs and with no possible outputs.
The model

Labelled transition system

\[T S = (S, \Sigma, I, T) \] where

- \(S \) is the set of states
- \(I \subseteq S \) is the set of initial states
- \(\Sigma = \Sigma_i \cup \Sigma_o \) is the set of input/output actions
- \(T \subseteq S \times \Sigma \times S \) is the set of transitions

\[L(TS) = \{ w \in \Sigma^* \mid I \xrightarrow{w} \text{ in } TS \}. \]

\(s \in S \) is quiescent if it refuses all output actions: \(s \not\stackrel{\Sigma_o}{\longrightarrow} \).

Some further properties

- No infinite output-only behaviour.
- Receptiveness: \(\forall s \in S \) quiescent, \(\forall a \in \Sigma_i, s \xrightarrow{a} \)

 If this is not the case, we may
 - discard unexpected inputs
 - enter a dead state accepting all inputs and with no possible outputs.
The model

Labelled transition system

\[TS = (S, \Sigma, I, T) \]

- \(S \) is the set of states
- \(I \subseteq S \) is the set of initial states
- \(\Sigma = \Sigma_i \cup \Sigma_o \) is the set of input/output actions
- \(T \subseteq S \times \Sigma \times S \) is the set of transitions

\[L(TS) = \{ w \in \Sigma^* \mid I \overset{w}{\rightarrow} \text{ in } TS \} \]

\(s \in S \) is quiescent if it refuses all output actions: \(s \not\overset{\Sigma_o}{\rightarrow} \).

Some further properties

- No infinite output-only behaviour.
- Receptiveness: \(\forall s \in S \) quiescent, \(\forall a \in \Sigma_i, s \overset{a}{\rightarrow} \)
 If this is not the case, we may
 - discard unexpected inputs
 - enter a dead state accepting all inputs and with no possible outputs.
Asynchronous IO-Behaviours

Intuition: Provide some test input $u \in \Sigma_i^*$ up front and observe the maximal outcome $v \in \Sigma_o^*$. Corresponds to static test generation.

Definition: IO-Behaviours

Let $TS = (S, \Sigma, I, T)$. $IOBeh(TS)$ is the set of pairs $(u, v) \in \Sigma_i^* \times \Sigma_o^*$ such that there is a run $i \xrightarrow{w} s$ in TS with

- $i \in I$ and s quiescent
- $\pi_o(w) = v$, and
- either $\pi_i(w) = u$ or there exists $a \in \Sigma_i$ such that $\pi_i(w)a \preceq u$ and $s \xrightarrow{a}$.

Example

$IOBeh(TS_1)$:
- $(\varepsilon, \varepsilon)$
- $(a, x), (a, xy)$
- $(a^2, x), (a^2, xy), (a^2, x^2)$
- $(a^n, x), (a^n, xy), (a^n, x^2)$ if $n \geq 2$.
Intuition: Provide some test input \(u \in \Sigma_i^* \) up front and observe the maximal outcome \(v \in \Sigma_o^* \). Corresponds to static test generation.

Definition: IO-Behaviours

Let \(TS = (S, \Sigma, I, T) \). \(IOBeh(TS) \) is the set of pairs \((u, v) \in \Sigma_i^* \times \Sigma_o^*\) such that there is a run \(i \xrightarrow{w} s \) in \(TS \) with

- \(i \in I \) and \(s \) quiescent
- \(\pi_o(w) = v \), and
- either \(\pi_i(w) = u \) or there exists \(a \in \Sigma_i \) such that \(\pi_i(w)a \preceq u \) and \(s \xrightarrow{a} \).

Example

\[IOBeh(TS_1): \]

- \((\varepsilon, \varepsilon)\)
- \((a, x), (a, xy)\)
- \((a^2, x), (a^2, xy), (a^2, x^2)\)
- \((a^n, x), (a^n, xy), (a^n, x^2)\) if \(n \geq 2 \).
Asynchronous IO-Behaviours

Intuition: Provide some test input \(u \in \Sigma_i^* \) up front and observe the maximal outcome \(v \in \Sigma_o^* \). Corresponds to static test generation.

Definition: IO-Behaviours

Let \(TS = (S, \Sigma, I, T) \). \(IOBeh(TS) \) is the set of pairs \((u, v) \in \Sigma_i^* \times \Sigma_o^*\) such that there is a run \(i \xrightarrow{w} s \) in \(TS \) with

- \(i \in I \) and \(s \) quiescent
- \(\pi_o(w) = v \), and
- either \(\pi_i(w) = u \) or there exists \(a \in \Sigma_i \) such that \(\pi_i(w)a \preceq u \) and \(s \xrightarrow{a} \).

Example

\[TS_1 \]

\[IOBeh(TS_1): \]
\[(\varepsilon, \varepsilon) \]
\[(a, x), (a, xy) \]
\[(a^2, x), (a^2, xy), (a^2, x^2) \]
\[(a^n, x), (a^n, xy), (a^n, x^2) \] if \(n \geq 2 \).
Asynchronous testing equivalence (1)

IO-equivalence

Two transition systems TS and TS' are IO-equivalent, denoted $TS \sim_{io} TS'$ if

$$IOBeh(TS) = IOBeh(TS')$$

Example

TS_1 and TS_2 are IO-equivalent.

$IOBeh(TS_1) = IOBeh(TS_2)$:

- $(\varepsilon, \varepsilon)$
- $(a, x), (a, xy)$
- $(a^n, x), (a^n, xy), (a^n, x^2)$ if $n \geq 2$.

Notes

IO-equivalence corresponds to the queued quiescent trace equivalence of

Asynchronous testing equivalence (1)

IO-equivalence

Two transition systems TS and TS' are IO-equivalent, denoted $TS \sim_{io} TS'$ if

$$IOBeh(TS) = IOBeh(TS')$$

Example

TS_1 and TS_2 are IO-equivalent.

$IOBeh(TS_1) = IOBeh(TS_2)$:

- $(\varepsilon, \varepsilon)$
- (a, x), (a, xy)
- (a^n, x), (a^n, xy), (a^n, x^2) if $n \geq 2$.

IO-equivalence corresponds to the queued quiescent trace equivalence of

Rational relations

Definition

Let A, B be two finite (and disjoint) alphabets. A rational relation over A and B is a rational subset R of the monoid $A^* \times B^*$.

Equivalently, $R \subseteq A^* \times B^*$ is a rational relation if there exists an automaton $A = (S, A \cup B, I, F, T)$ such that

$$R = \{(u, v) \in A^* \times B^* \mid \exists i \xrightarrow{w} f \text{ in } A \text{ with } i \in I, f \in F, \pi_A(w) = u, \pi_B(w) = v\}$$

Example

$$R(A) = \{(a, x), (a, xy), (a^2, x^2)\}$$
Rational relations

Definition

Let A, B be two finite (and disjoint) alphabets. A rational relation over A and B is a rational subset R of the monoid $A^* \times B^*$.

Equivalently, $R \subseteq A^* \times B^*$ is a rational relation if there exists an automaton $\mathcal{A} = (S, A \cup B, I, F, T)$ such that

$$R = \{(u, v) \in A^* \times B^* \mid \exists i \xrightarrow{w} f \text{ in } \mathcal{A} \text{ with } i \in I, f \in F, \pi_A(w) = u, \pi_B(w) = v\}$$

Example

$$\mathcal{R}(A) = \{(a, x), (a, xy), (a^2, x^2)\}$$
Rational relations

Definition

Let A, B be two finite (and disjoint) alphabets. A **rational relation** over A and B is a rational subset R of the monoid $A^* \times B^*$.

Equivalently, $R \subseteq A^* \times B^*$ is a rational relation if there exists an automaton $A = (S, A \cup B, I, F, T)$ such that

$$R = \{(u, v) \in A^* \times B^* \mid \exists i \xrightarrow{w} f \text{ in } A \text{ with } i \in I, f \in F, \pi_A(w) = u, \pi_B(w) = v\}$$

Example

$$\mathcal{R}(A) = \{(a, x), (a, xy), (a^2, x^2)\}$$
From IO-behaviours to rational relations

Proposition

From a transition system $TS = (S, \Sigma, I, T)$, we can construct an automaton A over $\Sigma = \Sigma_i \uplus \Sigma_o$ such that

$$\text{IOBeh}(TS) = \mathcal{R}(A)$$

Proof. Intuition: transform quiescent states into final states

Let $D \subseteq S$ be the set of quiescent states of TS. Define $A = (S', \Sigma, I', F', T')$

- $S' = S \uplus \overline{D} \uplus \{f\}$ where \overline{D} is a copy of D.
- $I' = I \uplus I \cap D$ and $F' = \overline{D} \uplus \{f\}$
- $T' = T \cup \{(r, a, \bar{s}) \mid (r, a, s) \in T \text{ and } s \in D\}$
 $\cup \{(\bar{s}, a, f) \mid a \in \Sigma_i \text{ and } s \not\leadsto\}$
 $\cup \{(f, a, f) \mid a \in \Sigma_i\}$

Let $(u, v) \in \text{IOBeh}(TS')$ and $i \xrightarrow{w} s$ in TS with $i \in I$, $s \in D$, $\pi_o(w) = v$ and $u = \pi_i(w)au'$ with $s \not\leadsto\$.

Then, $i \xrightarrow{w} \bar{s} \xrightarrow{a} f \xrightarrow{w'} f$ in A and $u = \pi_i(wau')$, $w = \pi_o(wau')$.

Hence, $(u, v) \in \mathcal{R}(A)$.

Other cases are similar.
Proposition

From a transition system $TS = (S, \Sigma, I, T)$, we can construct an automaton A over $\Sigma = \Sigma_i \uplus \Sigma_o$ such that

$$IOBeh(TS) = R(A)$$

Proof. Intuition: transform quiescent states into final states

Let $D \subseteq S$ be the set of quiescent states of TS. Define $A = (S', \Sigma, I', F', T')$

- $S' = S \uplus \overline{D} \uplus \{f\}$ where \overline{D} is a copy of D.
- $I' = I \uplus \overline{I \cap D}$ and $F' = \overline{D} \uplus \{f\}$
- $T' = T \cup \{(r, a, \bar{s}) \mid (r, a, s) \in T \text{ and } s \in D\}$
 $\cup \{(\bar{s}, a, f) \mid a \in \Sigma_i \text{ and } s \not\xrightarrow{a}\}$
 $\cup \{(f, a, f) \mid a \in \Sigma_i\}$

Let $(u, v) \in IOBeh(TS)$ and $i \xrightarrow{w} s$ in TS with $i \in I$, $s \in D$, $\pi_o(w) = v$ and $u = \pi_i(w)au'$ with $s \not\xrightarrow{a}$. Then, $i \xrightarrow{w} \bar{s} \xrightarrow{a} f \xrightarrow{u'} f$ in A and $u = \pi_i(wau')$, $w = \pi_o(wau')$.

Hence, $(u, v) \in R(A)$.

Other cases are similar.
Proposition

From a transition system $TS = (S, \Sigma, I, T)$, we can construct an automaton A over $\Sigma = \Sigma_i \cup \Sigma_o$ such that

$$\text{IOBeh}(TS) = \mathcal{R}(A)$$

Proof. Intuition: transform quiescent states into final states

Let $D \subseteq S$ be the set of quiescent states of TS. Define $A = (S', \Sigma, I', F', T')$

- $S' = S \cup \overline{D} \cup \{f\}$ where \overline{D} is a copy of D.
- $I' = I \cup \overline{I \cap D}$ and $F' = \overline{D} \cup \{f\}$
- $T' = T \cup \{(r, a, \bar{s}) | (r, a, s) \in T \text{ and } s \in D\}$
 $\cup \{(\bar{s}, a, f) | a \in \Sigma_i \text{ and } s \not\xrightarrow{a}\}$
 $\cup \{(f, a, f) | a \in \Sigma_i\}$

Let $(u, v) \in \text{IOBeh}(TS')$ and $i \xrightarrow{w} s$ in TS with $i \in I$, $s \in D$, $\pi_o(w) = v$ and $u = \pi_i(w)au'$ with $s \not\xrightarrow{a}$. Then, $i \xrightarrow{w} \bar{s} \xrightarrow{a} f \xrightarrow{u'} f$ in A and $u = \pi_i(wau')$, $w = \pi_o(wau')$. Hence, $(u, v) \in \mathcal{R}(A)$.

Other cases are similar.
From IO-behaviours to rational relations

Proposition

From a transition system $TS = (S, \Sigma, I, T)$, we can construct an automaton A over $\Sigma = \Sigma_i \cup \Sigma_o$ such that

$$IOBeh(TS) = R(A)$$

Proof. Intuition: transform quiescent states into final states

Let $D \subseteq S$ be the set of quiescent states of TS. Define $A = (S', \Sigma, I', F', T')$

- $S' = S \cup \overline{D} \cup \{f\}$ where \overline{D} is a copy of D.
- $I' = I \cup I \cap D$ and $F' = \overline{D} \cup \{f\}$
- $T' = T \cup \{(r, a, \overline{s}) | (r, a, s) \in T \text{ and } s \in D\}$
 - $\cup \{(\overline{s}, a, f) | a \in \Sigma_i \text{ and } \overline{s} \not\rightarrow a\}$
 - $\cup \{(f, a, f) | a \in \Sigma_i\}$

Let $(u, v) \in IOBeh(TS')$ and $i \xrightarrow{w} s$ in TS with $i \in I$, $s \in D$, $\pi_o(w) = v$ and $u = \pi_i(w)au'$ with $s \xrightarrow{a}$. Then, $i \xrightarrow{w} \overline{s} \xrightarrow{a} f \xrightarrow{u'} f$ in A and $u = \pi_i(wau')$, $w = \pi_o(wau')$. Hence, $(u, v) \in R(A)$. Other cases are similar.
Decidability of IO-equivalence

Theorem
If $|A| = |B| = 1$ then equivalence of rational relations over A and B is decidable.

Corollary
If $|\Sigma_i| = |\Sigma_o| = 1$ then IO-equivalence is decidable.
Decidability of IO-equivalence

Theorem

If $|A| = |B| = 1$ then equivalence of rational relations over A and B is decidable.

Corollary

If $|\Sigma_i| = |\Sigma_o| = 1$ then IO-equivalence is decidable.
From rational relations to IO-behaviours

Several problems:

- Final states may not be quiescent (easy to fix).
- Quiescent states may not be final (harder to fix).

Example

Same rational relation: $\mathcal{R}(A_1) = \{(a^2, x^3)\} = \mathcal{R}(A_2)$

But different IO-behaviours:

\[
\text{IOBeh}(A_1) = \{(\varepsilon, \varepsilon), (a, x^2)\} \cup \left\{(a^n, x^3) \mid n \geq 2\right\}
\]

\[
\text{IOBeh}(A_2) = \{(\varepsilon, \varepsilon), (a, x)\} \cup \left\{(a^n, x^3) \mid n \geq 2\right\}
\]
From rational relations to IO-behaviours

Several problems:

- Final states may not be quiescent (easy to fix).
- Quiescent states may not be final (harder to fix).

Example

Same rational relation: $\mathcal{R}(\mathcal{A}_1) = \{(a^2, x^3)\} = \mathcal{R}(\mathcal{A}_2)$

But different IO-behaviours:

$$IOBeh(\mathcal{A}_1) = \{(\varepsilon, \varepsilon), (a, x^2)\} \cup \{(a^n, x^3) \mid n \geq 2\}$$

$$IOBeh(\mathcal{A}_2) = \{(\varepsilon, \varepsilon), (a, x)\} \cup \{(a^n, x^3) \mid n \geq 2\}$$
From rational relations to IO-behaviours

Several problems:

- Final states may not be quiescent (easy to fix).
- Quiescent states may not be final (harder to fix).
- Discarded inputs should be taken care of.

Example

Same IO-behaviours: $\text{IOBeh}(A_1) = \{(\varepsilon, \varepsilon)\} \cup \{(a^n, x) \mid n \geq 1\} = \text{IOBeh}(A_2)$

But different rational relations:

\[
\mathcal{R}(A_1) = \{(a, x)\} \\
\mathcal{R}(A_2) = \{(a^n, x) \mid n \geq 1\}
\]
From rational relations to IO-behaviours

Several problems:

- Final states may not be quiescent (easy to fix).
- Quiescent states may not be final (harder to fix).
- Discarded inputs should be taken care of.

Example

\[\mathcal{A}_1 \]

\[\mathcal{A}_2 \]

Same IO-behaviours: \(IOBeh(\mathcal{A}_1) = \{ (\varepsilon, \varepsilon) \} \cup \{ (a^n, x) \mid n \geq 1 \} = IOBeh(\mathcal{A}_2) \)

But different rational relations:

\[\mathcal{R}(\mathcal{A}_1) = \{ (a, x) \} \]
\[\mathcal{R}(\mathcal{A}_2) = \{ (a^n, x) \mid n \geq 1 \} \]
A \textit{Rat}(B^*)\textit{-automaton} over \(A\) is a tuple \(\mathcal{A} = (S, A, \lambda, \mu, \gamma)\) where

- \(S\) is the finite set of states
- \(\lambda : S \to \textit{Rat}(B^*)\)
 A word in \(\lambda_s\) is emitted when entering \(\mathcal{A}\) in state \(s\).
- \(\mu : A \to (S \times S \to \textit{Rat}(B^*))\)
 A word in \(\mu(a)_{r,s}\) is emitted when taking a transition from \(r\) to \(s\) labelled \(a\).
- \(\gamma : S \to \textit{Rat}(B^*)\)
 A word in \(\gamma_s\) is emitted when exiting \(\mathcal{A}\) in state \(s\).

Then, \((u, v) \in R(\mathcal{A})\) if there is a path \(P = s_0 \xrightarrow{a_1} s_1 \cdots s_{n-1} \xrightarrow{a_n} s_n\) in \(\mathcal{A}\) with

- \(u = a_1 \cdots a_n\)
- \(v \in \lambda_{s_0} \mu(a_1)_{s_0,s_1} \cdots \mu(a_n)_{s_{n-1},s_n} \gamma_{s_n}\).
Definition

A $\text{Rat}(B^*)$-automaton over A is a tuple $\mathcal{A} = (S, A, \lambda, \mu, \gamma)$ where

- S is the finite set of states
- $\lambda : S \rightarrow \text{Rat}(B^*)$

 A word in λ_s is emitted when entering \mathcal{A} in state s.
- $\mu : A \rightarrow (S \times S \rightarrow \text{Rat}(B^*))$

 A word in $\mu(a)_{r,s}$ is emitted when taking a transition from r to s labelled a.
- $\gamma : S \rightarrow \text{Rat}(B^*)$

 A word in γ_s is emitted when exiting \mathcal{A} in state s.

Then, $(u, v) \in \mathcal{R}(\mathcal{A})$ if there is a path $P = s_0 \xrightarrow{a_1} s_1 \cdots s_{n-1} \xrightarrow{a_n} s_n$ in \mathcal{A} with

- $u = a_1 \cdots a_n$
- $v \in \lambda_{s_0} \mu(a_1)_{s_0,s_1} \cdots \mu(a_n)_{s_{n-1},s_n} \gamma_{s_n}$.
Rat(B^*)-automata and rational relations

Theorem

A relation $R \subseteq A^* \times B^*$ is rational iff there exists a Rat(B^*)-automaton \mathcal{A} with $R = \mathcal{R}(\mathcal{A})$.

Theorem

If $|A| \geq 2$ then equivalence is undecidable for Rat(B^*)-automata over A. This holds even if

- $|B| = 1$
- We use only finite languages: $\mathcal{P}_{\text{fin}}(B^*)$-automata
- There is no output when entering the automaton: $\lambda_s \neq \emptyset$ implies $\lambda_s = \{\varepsilon\}$
- There is no output when exiting the automaton: $\gamma_s \neq \emptyset$ implies $\gamma_s = \{\varepsilon\}$
- All transitions are visible: $\varepsilon \notin \mu(a)_{r,s}$
Rat(B^*)-automata and rational relations

Theorem

A relation $R \subseteq A^* \times B^*$ is rational iff there exists a Rat(B^*)-automaton A with $R = R(A)$.

Theorem

If $|A| \geq 2$ then equivalence is undecidable for Rat(B^*)-automata over A. This holds even if

- $|B| = 1$
- We use only finite languages: $P_{\text{fin}}(B^*)$-automata
- There is no output when entering the automaton: $\lambda_s \neq \emptyset$ implies $\lambda_s = \{\varepsilon\}$
- There is no output when exiting the automaton: $\gamma_s \neq \emptyset$ implies $\gamma_s = \{\varepsilon\}$
- All transitions are visible: $\varepsilon \notin \mu(a)_{r,s}$
Undecidability of IO-equivalence

Theorem

IO-equivalence is undecidable if $|\Sigma_i| \geq 2$ and $|\Sigma_o| \geq 2$.

Proof

Let $A = (S, A, \lambda, \mu, \gamma)$ be a $\mathcal{P}_\text{fin}(B^+)$-automaton with $|A| = 2$ and $|B| = 1$. Define $A' = (S', \Sigma, I', T')$ by

1. $\Sigma_i = A$, $\Sigma_o = B \cup \{\#\}$ and $I' = \{s \in I \mid \lambda_s \neq \emptyset \text{ (i.e., } \lambda_s = \{\varepsilon\})\}$
2. Transitions $r \xrightarrow{a/\mu(a)_{r,s}} s$ of A are replaced in A' by

 ![Diagram of automaton transition](attachment:image.png)

 Note that quiescent states of A' are exactly the states of A.

Claim: $(u, v) \in IOBeh(A')$ iff there is a path $s_0 \xrightarrow{a_1} s_1 \cdots s_{n-1} \xrightarrow{a_n} s_n$ in A with $\lambda_{s_0} = \{\varepsilon\}$, $v \in \mu(a_1)_{s_0,s_1} \cdots \mu(a_n)_{s_{n-1},s_n}$, and $u = a_1 \cdots a_n$ or $u = a_1 \cdots a_n au'$ with $\mu(a)_{s_n,s} = \emptyset$ for all $s \in S$.
Undecidability of IO-equivalence

Theorem

IO-equivalence is undecidable if $|\Sigma_i| \geq 2$ and $|\Sigma_o| \geq 2$.

Proof

Let $A = (S, A, \lambda, \mu, \gamma)$ be a $\mathcal{P}_{\text{fin}}(B^+)$-automaton with $|A| = 2$ and $|B| = 1$. Define $A' = (S', \Sigma, I', T')$ by

1. $\Sigma_i = A$, $\Sigma_o = B \cup \{\#\}$ and $I' = \{s \in I \mid \lambda_s \neq \emptyset \text{ (i.e., } \lambda_s = \{\varepsilon\}\}$
2. transitions $r \xrightarrow{a / \mu(a)_{r,s}} s$ of A are replaced in A' by the transitions $r \xrightarrow{a} \mu(a)_{r,s}$

Note that quiescent states of A' are exactly the states of A.

Claim: $(u, v) \in IOBeh(A')$ iff there is a path $s_0 \xrightarrow{a_1} s_1 \cdots s_{n-1} \xrightarrow{a_n} s_n$ in A with $\lambda_{s_0} = \{\varepsilon\}$, $v \in \mu(a_1)_{s_0,s_1} \cdots \mu(a_n)_{s_{n-1},s_n}$, and $u = a_1 \cdots a_n$ or $u = a_1 \cdots a_n au'$ with $\mu(a)_{s_n,s} = \emptyset$ for all $s \in S$.
Undecidability of IO-equivalence

Theorem

IO-equivalence is undecidable if $|\Sigma_i| \geq 2$ and $|\Sigma_o| \geq 2$.

Proof continued

Define $A'' = (S'', \Sigma, I', T'')$ by adding to A' when $\gamma_s = \{\varepsilon\}$:

Note that quiescent states of A' are exactly the states in $S \uplus \{f'\}$.

Lemma $IOBeh(A'') = IOBeh(A') \cup R(A) \cdot \{(x, \#^{1+|x|}) \mid x \in A^*\}$.

Lemma $A' \uplus B'' \sim_{io} A'' \uplus B'$ if and only if $R(A) = R(B)$.
Undecidability of IO-equivalence

Theorem

IO-equivalence is undecidable if $|\Sigma_i| \geq 2$ and $|\Sigma_o| \geq 2$.

Proof continued

Define $A'' = (S'', \Sigma, I', T'')$ by adding to A' when $\gamma_s = \{\varepsilon\}$:

Note that quiescent states of A' are exactly the states in $S \cup \{f'\}$.

Lemma

$IOBeh(A'') = IOBeh(A') \cup R(A) \cdot \{(x, \#^{1+|x|}) \mid x \in A^*\}$.

Lemma

$A' \uplus B'' \sim_{io} A'' \uplus B'$ if and only if $R(A) = R(B)$.
Undecidability of IO-equivalence

Theorem

IO-equivalence is undecidable if $|\Sigma_i| \geq 2$ and $|\Sigma_o| \geq 2$.

Proof continued

Define $A'' = (S'', \Sigma, I', T'')$ by adding to A' when $\gamma_s = \{\varepsilon\}$:

Note that quiescent states of A' are exactly the states in $S \uplus \{f'\}$.

Lemma

$IOBeh(A'') = IOBeh(A') \cup R(A) \cdot \{(x, \#^{1+|x|}) | x \in A^*\}$.

Lemma

$A' \uplus B'' \sim_{io} A'' \uplus B'$ if and only if $R(A) = R(B)$.
Outline

Introduction

Input/Output semantics

IO-Blocks semantics

Queue semantics (Tretman)

Conclusion
Asynchronous IO-blocks semantics

Definition

A *block observation* of $TS = (S, \Sigma, I, T)$ is a sequence $(u_1, v_1) \cdots (u_n, v_n)$ where

- $u_1 \in \Sigma_i^*$ and $u_j \in \Sigma_i^+$ for $1 < j \leq n$,
- $v_k \in \Sigma_o^*$ for $1 \leq k \leq n$

and there is a run $s_0 \xrightarrow{w_1} s_1 \cdots \xrightarrow{w_k} s_k$ with $s_0 \in I$, $1 \leq k \leq n$ and:

- s_1, s_2, \ldots, s_k are quiescent.
- $\pi_o(w_j) = v_j$ for $1 \leq j \leq k$ and $v_j = \varepsilon$ for $k < j \leq n$.
- $\pi_i(w_j) = u_j$ for $0 \leq j < k$.
- Either $k = n$ and $\pi_i(w_n) = u_n$ or there exists $a \in \Sigma_i$ with $\pi_i(w_k)a \preceq u_k$ and $s_k \xrightarrow{a}$.

Let $IOBlocks(TS)$ denote the set of block observations of TS.
IO-block equivalence

Two transition systems TS and TS' are IO-block equivalent if

$$IOBlocks(TS) = IOBlocks(TS')$$

This equivalence is denoted $TS \sim_{ioblock} TS'$.

Remark

IO-block equivalence corresponds to the queued suspension trace equivalence of

IO-block equivalence

Two transition systems TS and TS' are IO-block equivalent if

$$IOBlocks(TS) = IOBlocks(TS')$$

This equivalence is denoted $TS \sim_{ioblock} TS'$.

Remark

Example

\[T S_1 \]

\[\text{IOBlocks}(T S_1): \]
- \((\varepsilon, \varepsilon)\)
- \((a, xy)\)
- \((a, x)\)
- \((a, xy)(a^n, z)\) for \(n \geq 1\)
- \((a, x)(a^n, w)\) for \(n \geq 1\)
- \((a^n, xyz)\) for \(n \geq 2\)
- \((a^n, xw)\) for \(n \geq 2\)

\[\text{IOBeh}(T S_1): \]
- \((\varepsilon, \varepsilon)\)
- \((a, xy)\)
- \((a, x)\)
- \((a^n, xyz)\) for \(n \geq 2\)
- \((a^n, xw)\) for \(n \geq 2\)

Proposition

If \(T S_1 \sim_{\text{io_block}} T S_2\), then \(T S_1 \sim_{\text{io}} T S_2\).

Proof

\[\text{IOBeh}(TS) = \text{IOBlocks}(TS) \cap (\Sigma_i^* \times \Sigma_o^*) \]
IO-block equivalence

Example

TS_2

$\text{IOBlocks}(T S_2)$:

- $(\varepsilon, \varepsilon)$
- (a, xy)
- (a, x)
- $(a, xy)(a^n, z)$ for $n \geq 1$
- $(a, x)(a^n, w)$ for $n \geq 1$
- (a^n, xyz) for $n \geq 2$
- (a^n, xw) for $n \geq 2$
- $(a, x)(a^n, yz)$ for $n \geq 1$

$\text{IOBeh}(T S_2)$:

- $(\varepsilon, \varepsilon)$
- (a, xy)
- (a, x)
- (a^n, xyz) for $n \geq 2$
- (a^n, xw) for $n \geq 2$

Proposition

If $TS_1 \sim_{\text{ioblock}} TS_2$, then $TS_1 \sim_{\text{io}} TS_2$.

Proof

$\text{IOBeh}(T S) = \text{IOBlocks}(T S) \cap (\Sigma_i^* \times \Sigma_o^*)$
IO-block equivalence

Example

\[TS_2 \]

\[\begin{align*}
 IOBlocks(TS_2): & \quad (\varepsilon, \varepsilon) \\
 & \quad (a, xy) \\
 & \quad (a, x) \\
 & \quad (a, xy)(a^n, z) \text{ for } n \geq 1 \\
 & \quad (a, x)(a^n, w) \text{ for } n \geq 1 \\
 & \quad (a^n, xyz) \text{ for } n \geq 2 \\
 & \quad (a^n, xw) \text{ for } n \geq 2 \\
 & \quad (a, x)(a^n, yz) \text{ for } n \geq 1
\end{align*} \]

\[\begin{align*}
 IOBeh(TS_2): & \quad (\varepsilon, \varepsilon) \\
 & \quad (a, xy) \\
 & \quad (a, x) \\
 & \quad (a^n, xyz) \text{ for } n \geq 2 \\
 & \quad (a^n, xw) \text{ for } n \geq 2
\end{align*} \]

Proposition

If \(TS_1 \sim_{ioblock} TS_2 \), then \(TS_1 \sim_{io} TS_2 \).

Proof

\[IOBeh(TS) = IOBlocks(TS) \cap (\Sigma_i^* \times \Sigma_o^*) \]
Decidability of IO-block equivalence

Definition
A transition system is **well-structured** if every state either refuses Σ_i or refuses Σ_o.

Definition
A block observation $\alpha = (u_1, v_1) \cdots (u_n, v_n)$ is **reduced** if $u_1 = \varepsilon$ and $u_j \in \Sigma_i$ for $1 < j \leq n$.

$\text{redIOBlocks}(TS)$ denotes the set of **reduced** block observations of TS.

Definition
Let α and β be block-observations. We say that α is **finer than** β, denoted $\alpha \preceq \beta$, if β can be obtained from α by merging consecutive blocks.

Lemma
Let TS be **well-structured**. Then, $\text{IOBlocks}(TS) = \uparrow \text{redIOBlocks}(TS)$

where \uparrow denotes the upward closure for \preceq.
Decidability of IO-block equivalence

Theorem

For finite well structured transition systems, $\sim_{io\text{block}}$ is decidable.

Proof

For $w = v_1a_2v_2 \cdots a_nv_n \in \Sigma^*$ with $v_j \in \Sigma_o^*$ and $a_j \in \Sigma_i$, we define the reduced block observation $f(w) = (\varepsilon, v_1)(a_2, v_2) \cdots (a_n, v_n)$.

Let $L_\delta(TS)$ be the language accepted by TS with quiescent states as final states. For $a \in \Sigma_i$, let $L_{\delta,a}(TS)$ be the language accepted by TS with quiescent states that refuse a as final states.

\[
\text{redIOBlocks}(TS) = f \left(L_\delta(TS) \cup \bigcup_{a \in \Sigma_i} L_{\delta,a}(TS) \cdot a \cdot \Sigma_i^* \right)
\]

\[
f^{-1}(IOBlocks(TS)) = L_\delta(TS) \cup \bigcup_{a \in \Sigma_i} L_{\delta,a}(TS) \cdot a \cdot \Sigma_i^*
\]
Outline

Introduction

Input/Output semantics

IO-Blocks semantics

Queue semantics (Tretman)

Conclusion
Queue semantics (Tretmans)

Definition

Let $TS = (S, \Sigma, I, T)$ be a transition system. Define $Q(TS) = (S', \Sigma, I', T')$ by

- $S' = S \times \Sigma_i^\ast \times \Sigma_o^\ast$: configurations of TS.
- $I' = I \times \{\varepsilon\} \times \{\varepsilon\}$: initial configurations
- Transitions of TS are broken up into two moves, one visible and one invisible (labelled τ):

 Input

 $$(s, \sigma_i, \sigma_o) \xrightarrow{a} (s, \sigma_i a, \sigma_o)$$
 $$(s, a\sigma_i, \sigma_o) \xrightarrow{\tau} (s', \sigma_i, \sigma_o)$$

 Output

 $$(s, \sigma_i, \sigma_o) \xrightarrow{x} (s', \sigma_i, \sigma_o x)$$
 $$(s, \sigma_i, x\sigma_o) \xrightarrow{x} (s, \sigma_i, \sigma_o)$$

- $L(Q(TS))$ is the set of traces of $Q(TS)$.
Queue equivalence (Tretmans)

Definition

\[TS \sim_Q TS' \overset{\text{def}}{=} Q(TS) \sim_{\text{syn}} Q(TS'). \]

Intuitively, synchronous testing equivalence \(\sim_{\text{syn}} \) corresponds to failure semantics.

Definition

- \(w \in L(Q(TS)) \) is a quiescent trace if there is a run \((r, \epsilon, \epsilon) \xrightarrow{w} (s, \sigma_i, \epsilon) \) with \(r \in I \) and \((s, \sigma_i, \epsilon) \) quiescent in \(Q(TS) \).
- We denote by \(L_\delta(Q(TS)) \) the set of quiescent traces of \(Q(TS) \).

Proposition (Tretmans)

\[TS \sim_Q TS' \text{ iff } L(Q(TS)) = L(Q(TS')) \text{ and } L_\delta(Q(TS)) = L_\delta(Q(TS')). \]

Pb: characterization of \(\sim_Q \) on \(TS \) instead of \(Q(TS) \).
Queue equivalence (Tretmans)

Definition

\[TS \sim_Q TS' \overset{\text{def}}{=} \ Q(TS) \sim_{\text{syn}} \ Q(TS'). \]

Intuitively, synchronous testing equivalence \(\sim_{\text{syn}}\) corresponds to failure semantics.

Definition

- \(w \in L(Q(TS)) \) is a **quiescent trace** if there is a run \((r, \varepsilon, \varepsilon) \xrightarrow{w} (s, \sigma_i, \varepsilon) \) with \(r \in I \) and \((s, \sigma_i, \varepsilon) \) quiescent in \(Q(TS) \).

- We denote by \(L_\delta(Q(TS)) \) the set of quiescent traces of \(Q(TS) \).

Proposition (Tretmans)

\[TS \sim_Q TS' \iff L(Q(TS)) = L(Q(TS')) \text{ and } L_\delta(Q(TS)) = L_\delta(Q(TS')). \]

Pb: characterization of \(\sim_Q\) on \(TS\) instead of \(Q(TS)\).
Queue equivalence (Tretmans)

Definition

\[TS \sim_Q TS' \overset{\text{def}}{=} Q(TS) \sim_{\text{syn}} Q(TS'). \]

Intuitively, synchronous testing equivalence \(\sim_{\text{syn}} \) corresponds to failure semantics.

Definition

- \(w \in L(Q(TS)) \) is a **quiescent trace** if there is a run \((r, \varepsilon, \varepsilon) \xrightarrow{w} (s, \sigma_i, \varepsilon) \) with \(r \in I \) and \((s, \sigma_i, \varepsilon) \) quiescent in \(Q(TS) \).
- We denote by \(L_\delta(Q(TS)) \) the set of quiescent traces of \(Q(TS) \).

Proposition (Tretmans)

\[TS \sim_Q TS' \iff L(Q(TS)) = L(Q(TS')) \text{ and } L_\delta(Q(TS)) = L_\delta(Q(TS')) \]

Pb: characterization of \(\sim_Q \) on \(TS \) instead of \(Q(TS) \).
Ape relation for the queue semantics

- Output actions may always be postponed: \(w_1 x a w_2 \) @ \(w_1 a x w_2 \)
 For \(x \in \Sigma_o \) and \(a \in \Sigma_i \), we have
 \[w_1 x a w_2 \in L(Q(TS)) \text{ implies } w_1 a x w_2 \in L(Q(TS)). \]

- Input actions may always be added: \(w \) @ \(w a \)
 For \(a \in \Sigma_i \), we have
 \[w \in L(Q(TS)) \text{ implies } w a \in L(Q(TS)). \]

- We denote \(@ \) the reflexive and transitive closure of the relations
 postponing an output action: \(w_1 x a w_2 \) @ \(w_1 a x w_2 \)
 or adding an input action: \(w \) @ \(w a \).

- Tracks\((TS)\) is the set of \(@ \)-minimal words in \(L(Q(TS)) \).
 \(@ \)-minimal: no trailing input, outputs as early as possible.

- \(L(Q(TS)) \) is the \(@ \)-upward closure of Tracks\((TS)\).

- Tracks\((TS)\) \(\subseteq \) \(L(TS) \).

- \(L(Q(TS)) = L(Q(TS')) \) iff Tracks\((TS) = \) Tracks\((TS')\).
Ape relation (Tretmans)

Ape relation for the queue semantics

- Output actions may always be postponed: \(w_1 x a w_2 @ w_1 a x w_2 \)

 For \(x \in \Sigma_o \) and \(a \in \Sigma_i \), we have
 \[w_1 x a w_2 \in L(Q(TS)) \text{ implies } w_1 a x w_2 \in L(Q(TS)). \]

- Input actions may always be added: \(w @ a w \)

 For \(a \in \Sigma_i \), we have
 \[w \in L(Q(TS)) \text{ implies } w a \in L(Q(TS)). \]

- We denote \(@ \) the reflexive and transitive closure of the relations
 postponing an output action: \(w_1 x a w_2 @ w_1 a x w_2 \)
 or adding an input action: \(w @ a w \).

- \(\text{Tracks}(TS) \) is the set of \(@ \)-minimal words in \(L(Q(TS)) \).
 \(@ \)-minimal: no trailing input, outputs as early as possible.

- \(L(Q(TS)) \) is the \(@ \)-upward closure of \(\text{Tracks}(TS) \).

- \(\text{Tracks}(TS) \subseteq L(TS) \).

- \(L(Q(TS)) = L(Q(TS')) \) iff \(\text{Tracks}(TS) = \text{Tracks}(TS') \).
Ape relation for the queue semantics

- Output actions may always be postponed: \(w_1xaw_2 \overset{\circ}{\to} w_1axw_2 \)
 For \(x \in \Sigma_o \) and \(a \in \Sigma_i \), we have
 \[w_1xaw_2 \in L(Q(TS)) \text{ implies } w_1axw_2 \in L(Q(TS)). \]

- Input actions may always be added: \(w \overset{\circ}{\to} wa \)
 For \(a \in \Sigma_i \), we have
 \[w \in L(Q(TS)) \text{ implies } wa \in L(Q(TS)). \]

- We denote \(\overset{\circ}{\to} \) the reflexive and transitive closure of the relations postponing an output action: \(w_1xaw_2 \overset{\circ}{\to} w_1axw_2 \)
 or adding an input action: \(w \overset{\circ}{\to} wa \).

- \(\text{Tracks}(TS) \) is the set of \(\overset{\circ}{\to} \)-minimal words in \(L(Q(TS)) \).
 \(\overset{\circ}{\to} \)-minimal: no trailing input, outputs as early as possible.

- \(L(Q(TS)) \) is the \(\overset{\circ}{\to} \)-upward closure of \(\text{Tracks}(TS) \).

- \(\text{Tracks}(TS) \subseteq L(TS) \).

- \(L(Q(TS)) = L(Q(TS')) \) iff \(\text{Tracks}(TS) = \text{Tracks}(TS') \).
Ape relation for the queue semantics

- Output actions may always be postponed: $w_1xaw_2 \mathrel{@} w_1axw_2$

 For $x \in \Sigma_o$ and $a \in \Sigma_i$, we have

 $$w_1xaw_2 \in L(Q(TS)) \text{ implies } w_1axw_2 \in L(Q(TS)).$$

- Input actions may always be added: $w \mathrel{@} wa$

 For $a \in \Sigma_i$, we have

 $$w \in L(Q(TS)) \text{ implies } wa \in L(Q(TS)).$$

- We denote $\mathrel{@}$ the reflexive and transitive closure of the relations

 postponing an output action: $w_1xaw_2 \mathrel{@} w_1axw_2$
 or adding an input action: $w \mathrel{@} wa$.

- **Tracks(TS)** is the set of $\mathrel{@}$-minimal words in $L(Q(TS))$.

 $\mathrel{@}$-minimal: no trailing input, outputs as early as possible.

- $L(Q(TS))$ is the $\mathrel{@}$-upward closure of **Tracks(TS)**.

- **Tracks(TS)** $\subseteq L(TS)$.

- $L(Q(TS)) = L(Q(TS'))$ iff **Tracks(TS) = Tracks(TS')**.
Ape relation for the queue semantics

- Output actions may always be postponed: \(w_1 x a w_2 \bowtie w_1 a x w_2 \)
 For \(x \in \Sigma_o \) and \(a \in \Sigma_i \), we have
 \[w_1 x a w_2 \in L(Q(TS)) \] implies \(w_1 a x w_2 \in L(Q(TS)) \).

- Input actions may always be added: \(w \bowtie w a \)
 For \(a \in \Sigma_i \), we have
 \[w \in L(Q(TS)) \] implies \(w a \in L(Q(TS)) \).

- We denote \(\bowtie \) the reflexive and transitive closure of the relations postponing an output action: \(w_1 x a w_2 \bowtie w_1 a x w_2 \)
 or adding an input action: \(w \bowtie w a \).

- \(\text{Tracks}(TS) \) is the set of \(\bowtie \)-minimal words in \(L(Q(TS)) \).
 \(\bowtie \)-minimal: no trailing input, outputs as early as possible.

- \(L(Q(TS)) \) is the \(\bowtie \)-upward closure of \(\text{Tracks}(TS) \).

- \(\text{Tracks}(TS) \subseteq L(TS) \).

- \(L(Q(TS)) = L(Q(TS')) \) iff \(\text{Tracks}(TS) = \text{Tracks}(TS') \).
Tracks (Tretmans)

Example

Tracks(TS):
\[\varepsilon \]
\[ax \]
\[axy \]
\[axyaz \]
\[axaw \]
not \[axayz \]

\[L(Q(TS)) : \]
\[a^* \]
\[a^+ xa^* \]
\[a^+ xa^* ya^* \]
\[a^+ xa^+ ya^* za^* \]
\[a^+ xa^* ya^+ za^* \]
\[a^+ xa^+ wa^* \]
Comparing the equivalences

Proposition

If $T S_1 \sim_Q T S_2$, then $T S_1 \sim_{io} T S_2$.

The converse does not hold

Tracks($T S_1$):
- ε
- ax
- $axxx$

$I O B e h(T S_1)$:
- $(\varepsilon, \varepsilon)$
- (a^n, x) for $n \geq 1$
- (a^n, x^2) for $n \geq 1$
- (a^n, x^3) for $n \geq 2$
Comparing the equivalences

Proposition

If $T S_1 \sim_Q T S_2$, then $T S_1 \sim_{io} T S_2$.

The converse does not hold

- **Tracks($T S_2$):**
 - ε
 - ax
 - axx
 - $axxxax$

- **IOBeh($T S_2$):**
 - $(\varepsilon, \varepsilon)$
 - (a^n, x) for $n \geq 1$
 - (a^n, x^2) for $n \geq 1$
 - (a^n, x^3) for $n \geq 2$

Diagram:

- $T S_2$ tree with nodes labeled a, x, and ε.
- Tracks($T S_2$): ε, ax, axx, $axxxax$.
- IOBeh($T S_2$): $(\varepsilon, \varepsilon)$, (a^n, x), (a^n, x^2), (a^n, x^3).
Empty and blocked quiescent traces

- $w \in L(Q(TS))$ is an **empty quiescent trace** if there is a run $(r, \varepsilon, \varepsilon) \xrightarrow{w} (s, \varepsilon, \varepsilon)$ with $r \in I$ and s quiescent in TS.

 We denote by $L_\delta^{\text{empty}}(Q(TS))$ the empty quiescent traces of $Q(TS)$.

- $w \in L(Q(TS))$ is a **blocked quiescent trace** if there is a run $(r, \varepsilon, \varepsilon) \xrightarrow{w} (s, a\sigma_i, \varepsilon)$ with $r \in I$ and in TS, s quiescent and $s \not\xrightarrow{a}$.

 We denote by $L_\delta^{\text{block}}(Q(TS))$ the blocked quiescent traces of $Q(TS)$.

Proposition

$$L_\delta(Q(TS)) = L_\delta^{\text{empty}}(Q(TS)) \cup L_\delta^{\text{block}}(Q(TS))$$
Empty and blocked quiescent traces

- \(w \in L(Q(TS)) \) is an **empty quiescent trace** if there is a run \((r, \varepsilon, \varepsilon) \xrightarrow{w} (s, \varepsilon, \varepsilon)\) with \(r \in I \) and \(s \) quiescent in \(TS \).
 We denote by \(L_\emptyset^{\text{empty}}(Q(TS)) \) the empty quiescent traces of \(Q(TS) \).

- \(w \in L(Q(TS)) \) is a **blocked quiescent trace** if there is a run \((r, \varepsilon, \varepsilon) \xrightarrow{w} (s, a\sigma_i, \varepsilon)\) with \(r \in I \) and in \(TS \), \(s \) quiescent and \(s \xrightarrow{a} \).
 We denote by \(L_\emptyset^{\text{block}}(Q(TS)) \) the blocked quiescent traces of \(Q(TS) \).

Proposition

\[
L_\emptyset(Q(TS)) = L_\emptyset^{\text{empty}}(Q(TS)) \cup L_\emptyset^{\text{block}}(Q(TS))
\]
Quiescent traces (Tretmans)

Example

TS_1

$L_{\emptyset}^{\text{empty}}(TS_1)$:

- ε
- ax
- axy
- $axayz$
- $axyaz$
- $aaxyz$

$L_{\delta}^{\text{block}}(TS_1)$:

- $a^+xya^+za^+$
- $a^+xa^+yza^+$
- aa^+xyza^+
- $a^+xa^+ya^+za^*$
- \ldots

@-upper closure of $axyaza$

Lemma

$L_{\delta}^{\text{block}}(Q(TS)) = \{ w \in \Sigma^* \mid \exists r \xrightarrow{w'} s \text{ in } TS \text{ with } r \in I, s \text{ quiescent, and } \exists a \in \Sigma_i \text{ such that } s \xrightarrow{a} \text{ and } w'a@w \}$.
Quiescent traces (Tretmans)

Example

TS_1

$L_{\delta}^{\text{empty}}(TS_1)$:
- ε
- ax
- axy
- $axayz$
- $aaxyz$

$L_{\delta}^{\text{block}}(TS_1)$:
- $a^+xya^+za^+$
- $a^+xa^+yza^+$
- aa^+xyza^+
- $a^+xa^+ya^+za^*$
- \ldots

@-upper closure of $axyaza$

Lemma

$L_{\delta}^{\text{block}}(Q(TS)) = \{w \in \Sigma^* \mid \exists r \xrightarrow{w'} s \text{ in } TS \text{ with } r \in I, s \text{ quiescent, and } \exists a \in \Sigma_i \text{ such that } s \xrightarrow{a} \text{ and } w' a \preceq w\}$.
Quiescent traces (Tretmans)

Example

- $T S_1$
- $L_{\emptyset}^{\text{empty}}(T S_1)$:
 - ε
 - ax
 - axy
 - $axayz$
 - $axyaz$
 - $aaxyz$
- $L_{\delta}^{\text{block}}(T S_1)$:
 - $a^+xya^+za^+$
 - $a^+xa^+yza^+$
 - aa^+xyza^+
 - $a^+xa^+ya^+za^*$
 - \ldots
 - @-upper closure of $axyaza$

Lemma

$L_{\delta}^{\text{block}}(Q(T S)) = \{ w \in \Sigma^* \mid \exists r \xrightarrow{w'} s \text{ in } T S \text{ with } r \in I, s \text{ quiescent, and } \exists a \in \Sigma_i \text{ such that } s \xrightarrow{a} \text{ and } w'a @ w \}$.
Quiescent traces (Tretmans)

Example

$\mathcal{T}S_1$

$\delta(\mathcal{T}S_1)$:
- ε
- ax
- axy
- $axayz$
- $axyaz$
- $aaxyz$

$\mathcal{T}S_1$

$\delta^\text{empty}(\mathcal{T}S_1)$:
- $a^+xya^+za^+$
- $a^+xa^+yza^+$
- aa^+xyza^+
- $a^+xa^+ya^+za^*$

\ldots

@-upper closure of $axyaza$

Lemma

$L^\text{block}_\delta(Q(\mathcal{T}S)) = \{ w \in \Sigma^* \mid \exists r \xrightarrow{w'} s \text{ in } \mathcal{T}S \text{ with } r \in I, s \text{ quiescent, and } \exists a \in \Sigma_i \text{ such that } s \xrightarrow{a} \text{ and } w'a @ w \}$.
Strict ape relation (Tretmans)

Strict ape relation for the queue semantics

We denote \(|@|\) the reflexive and transitive closure of the relation postponing an output action: \(w_1 x a w_2 \ @ w_1 a x w_2\).

Lemma

\[L^\text{empty}_\delta(Q(TS)) = \{ w \in \Sigma^* | \exists r \xrightarrow{w'} s \text{ in } TS \text{ with } r \in I, s \text{ quiescent, } w' \ |@| w \} \]

Example

\(TS_1\):

- \(L^\text{empty}_\delta(TS_1)\):
 - \(|@|\)-upper closure of \(\epsilon\)
 - \(ax\)
 - \(axy\)
 - \(axyaz\)

- \(L^\text{block}_\delta(TS_1)\):
 - \(|@|\)-upper closure of \(axyaza\)

\[axyz \ @ axayz \]

\[axyaz \ @ aaxyz \]
Strict ape relation (Tretmans)

Strict ape relation for the queue semantics

We denote \(|@|\) the reflexive and transitive closure of the relation postponing an output action: \(w_1 x a w_2 \ @ w_1 a x w_2\).

Lemma

\[
L^\text{empty}_\delta(Q(TS)) = \{ w \in \Sigma^* \mid \exists r \xrightarrow{w'} s \text{ in } TS \text{ with } r \in I, s \text{ quiescent, } w' \ |@| w \}
\]

Example

\[
L^\text{empty}_\delta(TS_1): \\
|@|-\text{upper closure of } \\
\epsilon \\
ax \\
axy \\
axyaz \\
axyaz |@| axayz \\
axyaz |@| aaxyaz
\]

\[
L^\text{block}_\delta(TS_1): \\
|@|-\text{upper closure of } \\
axyaza
\]
Strict ape relation (Tretmans)

Strict ape relation for the queue semantics

We denote $\|\|$ the reflexive and transitive closure of the relation postponing an output action: $w_1 x a w_2 \| w_1 a x w_2$.

Lemma

$L^\text{empty}_\delta (Q(TS)) = \{ w \in \Sigma^* | \exists r \xrightarrow{w'} s \text{ in } TS \text{ with } r \in I, s \text{ quiescent, } w' \| w \}$

Example

$L^\text{empty}_\delta (TS_1)$: $\|\$-upper closure of

- ϵ
- ax
- axy
- $axyaz$
- $axyaz \|$

$L^\text{block}_\delta (TS_1)$: $\|$-upper closure of

- $axyaza$
Undecidability of \sim_{Q}

Theorem

\sim_{Q} is undecidable

Proof

Reduction from the PCP problem.

A PCP instance consists in two morphisms $f, g : A^+ \rightarrow B^+$ where A, B are finite alphabets.

The PCP instance f, g has a solution if there exists $u \in A^+$ such that $f(u) = g(u)$.

We construct two systems M_1 and M_2 such that the PCP instance (f, g) has no solution iff $M_1 \sim_{Q} M_2$.
Reduction from the PCP problem

Let $f, g : A^+ \rightarrow B^+$ be a PCP instance. We define
Reduction from the PCP problem

We want to compare the following two systems:

- $M_1 = S_0 + S_f + S_g$
- $M_2 = S_f + S_g$

Lemma

$L_\delta^\text{block}(M_1) = L_\delta^\text{block}(M_2) = \emptyset$.

Lemma

Tracks(M_1) = Tracks(M_2) = Tracks(S_f) = B^*.

Lemma

- $L_\delta^\text{empty}(S_0)$ is the $|@|$-upper closure of $A^+ B^+\$.$
- Let $u \in A^+$ and $v \in B^+$. Then, $uv\$ \in L_\delta^\text{empty}(S_f)$ if and only if $v \neq f(u)$.

Theorem

$M_1 \sim_Q M_2$ iff the PCP instance (f, g) has no solution.
Outline

Introduction

Input/Output semantics

IO-Blocks semantics

Queue semantics (Tretman)

Conclusion
Conclusion

Summary

- We have investigated 3 asynchronous testing equivalences.
- We have shown that \sim_{io} is strictly weaker than \sim_Q and $\sim_{ioblock}$, but \sim_Q and $\sim_{ioblock}$ are incomparable.
- $\sim_{ioblock}$ is decidable, while \sim_{io} and \sim_Q are undecidable.

Open problems

- Construct test suites based on the IO-Blocks semantics.
- Investigate distributed testing.
Conclusion

Summary

- We have investigated 3 asynchronous testing equivalences.
- We have shown that \sim_{io} is strictly weaker than \sim_{Q} and $\sim_{ioblock}$, but \sim_{Q} and $\sim_{ioblock}$ are incomparable.
- $\sim_{ioblock}$ is decidable, while \sim_{io} and \sim_{Q} are undecidable.

Open problems

- Construct test suites based on the IO-Blocks semantics.
- Investigate distributed testing.