
1/38

Testing with asynchronous communication

Paul Gastin

LSV

ENS de Cachan & CNRS

Paul.Gastin@lsv.ens-cachan.fr

Joint work with Puneet Bhateja and Madhavan Mukund

October 29th, 2008

2/38

Outline

1 Introduction

Input/Output semantics

IO-Blocks semantics

Queue semantics (Tretman)

Conclusion

3/38

Introduction
Verification of software or hardware

◮ Proof

◮ Model checking

◮ Test

Synchronous testing
◮ The tester interacts synchronously with the system.

◮ The tester proposes an action which is either refused or accepted and
executed by the system.

◮ The tester has an immediate feedback.

Asynchronous testing
◮ The tester communicate asynchronously with the system

◮ The tester provides inputs and observes outputs.

◮ The tester does not necessarily know whether its inputs have been used by the
system or not.

3/38

Introduction
Verification of software or hardware

◮ Proof

◮ Model checking

◮ Test

Synchronous testing
◮ The tester interacts synchronously with the system.

◮ The tester proposes an action which is either refused or accepted and
executed by the system.

◮ The tester has an immediate feedback.

Asynchronous testing
◮ The tester communicate asynchronously with the system

◮ The tester provides inputs and observes outputs.

◮ The tester does not necessarily know whether its inputs have been used by the
system or not.

3/38

Introduction
Verification of software or hardware

◮ Proof

◮ Model checking

◮ Test

Synchronous testing
◮ The tester interacts synchronously with the system.

◮ The tester proposes an action which is either refused or accepted and
executed by the system.

◮ The tester has an immediate feedback.

Asynchronous testing
◮ The tester communicate asynchronously with the system

◮ The tester provides inputs and observes outputs.

◮ The tester does not necessarily know whether its inputs have been used by the
system or not.

4/38

Introduction

Static test generation – Input/Output semantics
◮ Tests are computed in advance and are sent as a whole stream to the system

◮ The tester then observes the output streams generated by the system

on the fly test generation – IO-Blocks semantics
◮ Inputs are supplied incrementally.

◮ The tester observes the outputs that are triggered by each block of input.

Test equivalence
◮ Equivalence of two systems for a given test semantics.

◮ We study the expressiveness and the decidability of some test equivalences.

4/38

Introduction

Static test generation – Input/Output semantics
◮ Tests are computed in advance and are sent as a whole stream to the system

◮ The tester then observes the output streams generated by the system

on the fly test generation – IO-Blocks semantics
◮ Inputs are supplied incrementally.

◮ The tester observes the outputs that are triggered by each block of input.

Test equivalence
◮ Equivalence of two systems for a given test semantics.

◮ We study the expressiveness and the decidability of some test equivalences.

4/38

Introduction

Static test generation – Input/Output semantics
◮ Tests are computed in advance and are sent as a whole stream to the system

◮ The tester then observes the output streams generated by the system

on the fly test generation – IO-Blocks semantics
◮ Inputs are supplied incrementally.

◮ The tester observes the outputs that are triggered by each block of input.

Test equivalence
◮ Equivalence of two systems for a given test semantics.

◮ We study the expressiveness and the decidability of some test equivalences.

5/38

Related work

I. Castellani and M Hennessy: Testing Theories for Asynchronous Languages,
Proc. FSTTCS ’98, Springer Lecture Notes in Computer Science 1530 (1998)
90–101.

R. de Nicola and M. Hennessy: Testing equivalences for processes, Theoretical
Computer Science, 34 (1984) 83–133.

A. Petrenko, N. Yevtushenko and J.L. Huo: Testing Transition Systems with
Input and Output Testers, Proc IFIP TC6/WG6.1 XV International
Conference on Testing of Communicating Systems (TestCom 2003), Sophia
Antipolis, France, (2003) 129–145.

J. Tretmans: Test Generation with Inputs, Outputs and Repetitive
Quiescence, Software—Concepts and Tools, 17(3) (1996) 103–120.

6/38

Outline

Introduction

2 Input/Output semantics

IO-Blocks semantics

Queue semantics (Tretman)

Conclusion

7/38

The model
Labelled transition system

TS = (S, Σ, I, T) where

◮ S is the set of states

◮ I ⊆ S is the set of initial states

◮ Σ = Σi ⊎ Σo is the set of input/output actions

◮ T ⊆ S × Σ × S is the set of transitions

L(TS) = {w ∈ Σ∗ | I
w
−→ in TS}.

s ∈ S is quiescent if it refuses all output actions: s
Σo
9.

Some further properties

◮ No infinite output-only behaviour.

◮ Receptiveness: ∀s ∈ S quiescent, ∀a ∈ Σi, s
a
−→

If this is not the case, we may

◮ discard unexpected inputs

◮ enter a dead state accepting all inputs and with no possible outputs.

7/38

The model
Labelled transition system

TS = (S, Σ, I, T) where

◮ S is the set of states

◮ I ⊆ S is the set of initial states

◮ Σ = Σi ⊎ Σo is the set of input/output actions

◮ T ⊆ S × Σ × S is the set of transitions

L(TS) = {w ∈ Σ∗ | I
w
−→ in TS}.

s ∈ S is quiescent if it refuses all output actions: s
Σo
9.

Some further properties

◮ No infinite output-only behaviour.

◮ Receptiveness: ∀s ∈ S quiescent, ∀a ∈ Σi, s
a
−→

If this is not the case, we may

◮ discard unexpected inputs

◮ enter a dead state accepting all inputs and with no possible outputs.

7/38

The model
Labelled transition system

TS = (S, Σ, I, T) where

◮ S is the set of states

◮ I ⊆ S is the set of initial states

◮ Σ = Σi ⊎ Σo is the set of input/output actions

◮ T ⊆ S × Σ × S is the set of transitions

L(TS) = {w ∈ Σ∗ | I
w
−→ in TS}.

s ∈ S is quiescent if it refuses all output actions: s
Σo
9.

Some further properties

◮ No infinite output-only behaviour.

◮ Receptiveness: ∀s ∈ S quiescent, ∀a ∈ Σi, s
a
−→

If this is not the case, we may

◮ discard unexpected inputs

◮ enter a dead state accepting all inputs and with no possible outputs.

8/38

Asynchronous IO-Behaviours
Intuition: Provide some test input u ∈ Σ∗

i up front and observe the maximal
outcome v ∈ Σ∗

o. Corresponds to static test generation.

Definition: IO-Behaviours

Let TS = (S, Σ, I, T). IOBeh(TS) is the set of pairs (u, v) ∈ Σ∗
i × Σ∗

o such that

there is a run i
w
−→ s in TS with

◮ i ∈ I and s quiescent

◮ πo(w) = v, and

◮ either πi(w) = u or there exists a ∈ Σi such that πi(w)a � u and s
a
9.

Example

IOBeh(TS1):
(ε, ε)
(a, x), (a, xy)
(a2, x), (a2, xy), (a2, x2)
(an, x), (an, xy), (an, x2) if n ≥ 2.

8/38

Asynchronous IO-Behaviours
Intuition: Provide some test input u ∈ Σ∗

i up front and observe the maximal
outcome v ∈ Σ∗

o. Corresponds to static test generation.

Definition: IO-Behaviours

Let TS = (S, Σ, I, T). IOBeh(TS) is the set of pairs (u, v) ∈ Σ∗
i × Σ∗

o such that

there is a run i
w
−→ s in TS with

◮ i ∈ I and s quiescent

◮ πo(w) = v, and

◮ either πi(w) = u or there exists a ∈ Σi such that πi(w)a � u and s
a
9.

Example

TS1 a

x

a

x

x

y

IOBeh(TS1):
(ε, ε)
(a, x), (a, xy)
(a2, x), (a2, xy), (a2, x2)
(an, x), (an, xy), (an, x2) if n ≥ 2.

8/38

Asynchronous IO-Behaviours
Intuition: Provide some test input u ∈ Σ∗

i up front and observe the maximal
outcome v ∈ Σ∗

o. Corresponds to static test generation.

Definition: IO-Behaviours

Let TS = (S, Σ, I, T). IOBeh(TS) is the set of pairs (u, v) ∈ Σ∗
i × Σ∗

o such that

there is a run i
w
−→ s in TS with

◮ i ∈ I and s quiescent

◮ πo(w) = v, and

◮ either πi(w) = u or there exists a ∈ Σi such that πi(w)a � u and s
a
9.

Example

TS1 a

x

a

x

x

y

IOBeh(TS1):
(ε, ε)
(a, x), (a, xy)
(a2, x), (a2, xy), (a2, x2)
(an, x), (an, xy), (an, x2) if n ≥ 2.

9/38

Asynchronous testing equivalence (1)
IO-equivalence

Two transition systems TS and TS′ are IO-equivalent, denoted TS ∼io TS′ if

IOBeh(TS) = IOBeh(TS′)

Example

TS1 a

x

a

x

x

y

TS2 a

a

x

x

x
x

y

IOBeh(TS1) = IOBeh(TS2):
(ε, ε)
(a, x), (a, xy)
(an, x), (an, xy), (an, x2) if n ≥ 2.

TS1 and TS2 are IO-equivalent.

IO-equivalence corresponds to the queued quiescent trace equivalence of

A. Petrenko, N. Yevtushenko and J.L. Huo: Testing Transition Systems with
Input and Output Testers, Proc of TestCom 2003.

9/38

Asynchronous testing equivalence (1)
IO-equivalence

Two transition systems TS and TS′ are IO-equivalent, denoted TS ∼io TS′ if

IOBeh(TS) = IOBeh(TS′)

Example

TS1 a

x

a

x

x

y

TS2 a

a

x

x

x
x

y

IOBeh(TS1) = IOBeh(TS2):
(ε, ε)
(a, x), (a, xy)
(an, x), (an, xy), (an, x2) if n ≥ 2.

TS1 and TS2 are IO-equivalent.

IO-equivalence corresponds to the queued quiescent trace equivalence of

A. Petrenko, N. Yevtushenko and J.L. Huo: Testing Transition Systems with
Input and Output Testers, Proc of TestCom 2003.

10/38

Rational relations
Definition

Let A, B be two finite (and disjoint) alphabets.
A rational relation over A and B is a rational subset R of the monoid A∗ × B∗.

Equivalently, R ⊆ A∗ × B∗ is a rational relation if there exists an automaton
A = (S, A ∪ B, I, F, T) such that

R = {(u, v) ∈ A∗ × B∗ | ∃i
w
−→ f in A with i ∈ I, f ∈ F, πA(w) = u, πB(w) = v}

Example

R(A) = {(a, x), (a, xy), (a2, x2)}

10/38

Rational relations
Definition

Let A, B be two finite (and disjoint) alphabets.
A rational relation over A and B is a rational subset R of the monoid A∗ × B∗.

Equivalently, R ⊆ A∗ × B∗ is a rational relation if there exists an automaton
A = (S, A ∪ B, I, F, T) such that

R = {(u, v) ∈ A∗ × B∗ | ∃i
w
−→ f in A with i ∈ I, f ∈ F, πA(w) = u, πB(w) = v}

Example

R(A) = {(a, x), (a, xy), (a2, x2)}

10/38

Rational relations
Definition

Let A, B be two finite (and disjoint) alphabets.
A rational relation over A and B is a rational subset R of the monoid A∗ × B∗.

Equivalently, R ⊆ A∗ × B∗ is a rational relation if there exists an automaton
A = (S, A ∪ B, I, F, T) such that

R = {(u, v) ∈ A∗ × B∗ | ∃i
w
−→ f in A with i ∈ I, f ∈ F, πA(w) = u, πB(w) = v}

Example

A

a

x

a

x

x

y

R(A) = {(a, x), (a, xy), (a2, x2)}

11/38

From IO-behaviours to rational relations
Proposition

From a transition system TS = (S, Σ, I, T), we can construct an automaton A over
Σ = Σi ⊎ Σo such that

IOBeh(TS) = R(A)

Proof. Intuition: transform quiescent states into final states

Let D ⊆ S be the set of quiescent states of TS. Define A = (S′, Σ, I ′, F ′, T ′)

◮ S′ = S ⊎ D ⊎ {f} where D is a copy of D.

◮ I ′ = I ⊎ I ∩ D and F ′ = D ⊎ {f}

◮ T ′ = T ∪ {(r, a, s̄) | (r, a, s) ∈ T and s ∈ D}

∪ {(s̄, a, f) | a ∈ Σi and s
a
9}

∪ {(f, a, f) | a ∈ Σi}

Let (u, v) ∈ IOBeh(TS) and i
w
−→ s in TS with i ∈ I, s ∈ D, πo(w) = v and

u = πi(w)au′ with s
a
9.

Then, i
w
−→ s̄

a
−→ f

u′

−→ f in A and u = πi(wau′), w = πo(wau′).
Hence, (u, v) ∈ R(A).
Other cases are similar.

11/38

From IO-behaviours to rational relations
Proposition

From a transition system TS = (S, Σ, I, T), we can construct an automaton A over
Σ = Σi ⊎ Σo such that

IOBeh(TS) = R(A)

Proof. Intuition: transform quiescent states into final states

Let D ⊆ S be the set of quiescent states of TS. Define A = (S′, Σ, I ′, F ′, T ′)

◮ S′ = S ⊎ D ⊎ {f} where D is a copy of D.

◮ I ′ = I ⊎ I ∩ D and F ′ = D ⊎ {f}

◮ T ′ = T ∪ {(r, a, s̄) | (r, a, s) ∈ T and s ∈ D}

∪ {(s̄, a, f) | a ∈ Σi and s
a
9}

∪ {(f, a, f) | a ∈ Σi}

Let (u, v) ∈ IOBeh(TS) and i
w
−→ s in TS with i ∈ I, s ∈ D, πo(w) = v and

u = πi(w)au′ with s
a
9.

Then, i
w
−→ s̄

a
−→ f

u′

−→ f in A and u = πi(wau′), w = πo(wau′).
Hence, (u, v) ∈ R(A).
Other cases are similar.

11/38

From IO-behaviours to rational relations
Proposition

From a transition system TS = (S, Σ, I, T), we can construct an automaton A over
Σ = Σi ⊎ Σo such that

IOBeh(TS) = R(A)

Proof. Intuition: transform quiescent states into final states

Let D ⊆ S be the set of quiescent states of TS. Define A = (S′, Σ, I ′, F ′, T ′)

◮ S′ = S ⊎ D ⊎ {f} where D is a copy of D.

◮ I ′ = I ⊎ I ∩ D and F ′ = D ⊎ {f}

◮ T ′ = T ∪ {(r, a, s̄) | (r, a, s) ∈ T and s ∈ D}

∪ {(s̄, a, f) | a ∈ Σi and s
a
9}

∪ {(f, a, f) | a ∈ Σi}

Let (u, v) ∈ IOBeh(TS) and i
w
−→ s in TS with i ∈ I, s ∈ D, πo(w) = v and

u = πi(w)au′ with s
a
9.

Then, i
w
−→ s̄

a
−→ f

u′

−→ f in A and u = πi(wau′), w = πo(wau′).
Hence, (u, v) ∈ R(A).
Other cases are similar.

11/38

From IO-behaviours to rational relations
Proposition

From a transition system TS = (S, Σ, I, T), we can construct an automaton A over
Σ = Σi ⊎ Σo such that

IOBeh(TS) = R(A)

Proof. Intuition: transform quiescent states into final states

Let D ⊆ S be the set of quiescent states of TS. Define A = (S′, Σ, I ′, F ′, T ′)

◮ S′ = S ⊎ D ⊎ {f} where D is a copy of D.

◮ I ′ = I ⊎ I ∩ D and F ′ = D ⊎ {f}

◮ T ′ = T ∪ {(r, a, s̄) | (r, a, s) ∈ T and s ∈ D}

∪ {(s̄, a, f) | a ∈ Σi and s
a
9}

∪ {(f, a, f) | a ∈ Σi}

Let (u, v) ∈ IOBeh(TS) and i
w
−→ s in TS with i ∈ I, s ∈ D, πo(w) = v and

u = πi(w)au′ with s
a
9.

Then, i
w
−→ s̄

a
−→ f

u′

−→ f in A and u = πi(wau′), w = πo(wau′).
Hence, (u, v) ∈ R(A).
Other cases are similar.

12/38

Decidability of IO-equivalence

Theorem

If |A| = |B| = 1 then equivalence of rational relations over A and B is decidable.

Corollary

If |Σi| = |Σo| = 1 then IO-equivalence is decidable.

12/38

Decidability of IO-equivalence

Theorem

If |A| = |B| = 1 then equivalence of rational relations over A and B is decidable.

Corollary

If |Σi| = |Σo| = 1 then IO-equivalence is decidable.

13/38

From rational relations to IO-behaviours

Several problems:

◮ Final states may not be quiescent (easy to fix).

◮ Quiescent states may not be final (harder to fix).

Example

Same rational relation: R(A1) = {(a2, x3)} = R(A2)

But different IO-behaviours:

IOBeh(A1) = {(ε, ε), (a, x2)} ∪ {(an, x3) | n ≥ 2}

IOBeh(A2) = {(ε, ε), (a, x)} ∪ {(an, x3) | n ≥ 2}

13/38

From rational relations to IO-behaviours

Several problems:

◮ Final states may not be quiescent (easy to fix).

◮ Quiescent states may not be final (harder to fix).

Example

A1
a x x a x

A2
a x a x x

Same rational relation: R(A1) = {(a2, x3)} = R(A2)

But different IO-behaviours:

IOBeh(A1) = {(ε, ε), (a, x2)} ∪ {(an, x3) | n ≥ 2}

IOBeh(A2) = {(ε, ε), (a, x)} ∪ {(an, x3) | n ≥ 2}

14/38

From rational relations to IO-behaviours

Several problems:

◮ Final states may not be quiescent (easy to fix).

◮ Quiescent states may not be final (harder to fix).

◮ Discarded inputs should be taken care of.

Example

Same IO-behaviours: IOBeh(A1) = {(ε, ε)} ∪ {(an, x) | n ≥ 1} = IOBeh(A2)

But different rational relations:

R(A1) = {(a, x)}

R(A2) = {(an, x) | n ≥ 1}

14/38

From rational relations to IO-behaviours

Several problems:

◮ Final states may not be quiescent (easy to fix).

◮ Quiescent states may not be final (harder to fix).

◮ Discarded inputs should be taken care of.

Example

A1
a x

A2
a x

a

Same IO-behaviours: IOBeh(A1) = {(ε, ε)} ∪ {(an, x) | n ≥ 1} = IOBeh(A2)

But different rational relations:

R(A1) = {(a, x)}

R(A2) = {(an, x) | n ≥ 1}

15/38

Rat(B∗)-automata

Definition

A Rat(B∗)-automaton over A is a tuple A = (S, A, λ, µ, γ) where

◮ S is the finite set of states

◮ λ : S → Rat(B∗) s
λs

A word in λs is emitted when entering A in state s.

◮ µ : A → (S × S → Rat(B∗)) r s
a / µ(a)r,s

A word in µ(a)r,s is emitted when taking a transition from r to s labelled a.

◮ γ : S → Rat(B∗) s
γs

A word in γs is emitted when exiting A in state s.

Then, (u, v) ∈ R(A) if there is a path P = s0
a1−→ s1 · · · sn−1

an−−→ sn in A with

◮ u = a1 · · · an

◮ v ∈ λs0
µ(a1)s0,s1

· · ·µ(an)sn−1,sn
γsn

.

15/38

Rat(B∗)-automata

Definition

A Rat(B∗)-automaton over A is a tuple A = (S, A, λ, µ, γ) where

◮ S is the finite set of states

◮ λ : S → Rat(B∗) s
λs

A word in λs is emitted when entering A in state s.

◮ µ : A → (S × S → Rat(B∗)) r s
a / µ(a)r,s

A word in µ(a)r,s is emitted when taking a transition from r to s labelled a.

◮ γ : S → Rat(B∗) s
γs

A word in γs is emitted when exiting A in state s.

Then, (u, v) ∈ R(A) if there is a path P = s0
a1−→ s1 · · · sn−1

an−−→ sn in A with

◮ u = a1 · · · an

◮ v ∈ λs0
µ(a1)s0,s1

· · ·µ(an)sn−1,sn
γsn

.

16/38

Rat(B∗)-automata and rational relations

Theorem

A relation R ⊆ A∗ × B∗ is rational iff there exists a Rat(B∗)-automaton A with
R = R(A).

Theorem

If |A| ≥ 2 then equivalence is undecidable for Rat(B∗)-automata over A.
This holds even if

◮ |B| = 1

◮ We use only finite languages: Pfin(B
∗)-automata

◮ There is no output when entering the automaton: λs 6= ∅ implies λs = {ε}

◮ There is no output when exiting the automaton: γs 6= ∅ implies γs = {ε}

◮ All transitions are visible: ε /∈ µ(a)r,s

16/38

Rat(B∗)-automata and rational relations

Theorem

A relation R ⊆ A∗ × B∗ is rational iff there exists a Rat(B∗)-automaton A with
R = R(A).

Theorem

If |A| ≥ 2 then equivalence is undecidable for Rat(B∗)-automata over A.
This holds even if

◮ |B| = 1

◮ We use only finite languages: Pfin(B
∗)-automata

◮ There is no output when entering the automaton: λs 6= ∅ implies λs = {ε}

◮ There is no output when exiting the automaton: γs 6= ∅ implies γs = {ε}

◮ All transitions are visible: ε /∈ µ(a)r,s

17/38

Undecidability of IO-equivalence
Theorem

IO-equivalence is undecidable if |Σi| ≥ 2 and |Σo| ≥ 2.

Proof

Let A = (S, A, λ, µ, γ) be a Pfin(B
+)-automaton with |A| = 2 and |B| = 1.

Define A′ = (S′, Σ, I ′, T ′) by

◮ Σi = A, Σo = B ⊎ {#} and I ′ = {s ∈ I | λs 6= ∅ (i.e., λs = {ε})}

◮ transitions r
a / µ(a)r,s

−−−−−−−→ s of A are replaced in A′ by

r a
µ(a)r,s s

x

y

Note that quiescent states of A′ are exactly the states of A.

Claim: (u, v) ∈ IOBeh(A′) iff there is a path s0
a1−→ s1 · · · sn−1

an−−→ sn in A with
λs0

= {ε}, v ∈ µ(a1)s0,s1
· · ·µ(an)sn−1,sn

, and
u = a1 · · · an or u = a1 · · · anau′ with µ(a)sn,s = ∅ for all s ∈ S.

17/38

Undecidability of IO-equivalence
Theorem

IO-equivalence is undecidable if |Σi| ≥ 2 and |Σo| ≥ 2.

Proof

Let A = (S, A, λ, µ, γ) be a Pfin(B
+)-automaton with |A| = 2 and |B| = 1.

Define A′ = (S′, Σ, I ′, T ′) by

◮ Σi = A, Σo = B ⊎ {#} and I ′ = {s ∈ I | λs 6= ∅ (i.e., λs = {ε})}

◮ transitions r
a / µ(a)r,s

−−−−−−−→ s of A are replaced in A′ by

r a
µ(a)r,s s

x

y

Note that quiescent states of A′ are exactly the states of A.

Claim: (u, v) ∈ IOBeh(A′) iff there is a path s0
a1−→ s1 · · · sn−1

an−−→ sn in A with
λs0

= {ε}, v ∈ µ(a1)s0,s1
· · ·µ(an)sn−1,sn

, and
u = a1 · · · an or u = a1 · · · anau′ with µ(a)sn,s = ∅ for all s ∈ S.

18/38

Undecidability of IO-equivalence

Theorem

IO-equivalence is undecidable if |Σi| ≥ 2 and |Σo| ≥ 2.

Proof continued

Define A′′ = (S′′, Σ, I ′, T ′′) by adding to A′ when γs = {ε}:

r a
µ(a)r,s

sx
y

f
x

y f ′

#

A

Note that quiescent states of A′ are exactly the states in S ⊎ {f ′}.

Lemma IOBeh(A′′) = IOBeh(A′) ∪R(A) · {(x, #1+|x|) | x ∈ A∗}.

Lemma A′ ⊎ B′′ ∼io A′′ ⊎ B′ if and only if R(A) = R(B).

18/38

Undecidability of IO-equivalence

Theorem

IO-equivalence is undecidable if |Σi| ≥ 2 and |Σo| ≥ 2.

Proof continued

Define A′′ = (S′′, Σ, I ′, T ′′) by adding to A′ when γs = {ε}:

r a
µ(a)r,s

sx
y

f
x

y f ′

#

A

Note that quiescent states of A′ are exactly the states in S ⊎ {f ′}.

Lemma IOBeh(A′′) = IOBeh(A′) ∪R(A) · {(x, #1+|x|) | x ∈ A∗}.

Lemma A′ ⊎ B′′ ∼io A′′ ⊎ B′ if and only if R(A) = R(B).

18/38

Undecidability of IO-equivalence

Theorem

IO-equivalence is undecidable if |Σi| ≥ 2 and |Σo| ≥ 2.

Proof continued

Define A′′ = (S′′, Σ, I ′, T ′′) by adding to A′ when γs = {ε}:

r a
µ(a)r,s

sx
y

f
x

y f ′

#

A

Note that quiescent states of A′ are exactly the states in S ⊎ {f ′}.

Lemma IOBeh(A′′) = IOBeh(A′) ∪R(A) · {(x, #1+|x|) | x ∈ A∗}.

Lemma A′ ⊎ B′′ ∼io A′′ ⊎ B′ if and only if R(A) = R(B).

19/38

Outline

Introduction

Input/Output semantics

3 IO-Blocks semantics

Queue semantics (Tretman)

Conclusion

20/38

Asynchronous IO-blocks semantics

Definition

A block observation of TS = (S, Σ, I, T) is a sequence (u1, v1) · · · (un, vn) where

◮ u1 ∈ Σ∗
i and uj ∈ Σ+

i for 1 < j ≤ n,

◮ vk ∈ Σ∗
o for 1 ≤ k ≤ n

and there is a run s0
w1−−→ s1 · · ·

wk−−→ sk with s0 ∈ I, 1 ≤ k ≤ n and:

◮ s1, s2, . . . , sk are quiescent.

◮ πo(wj) = vj for 1 ≤ j ≤ k and vj = ε for k < j ≤ n.

◮ πi(wj) = uj for 0 ≤ j < k.

◮ Either k = n and πi(wn) = un or there exists a ∈ Σi with πi(wk)a � uk and

sk
a
9.

Let IOBlocks(TS) denote the set of block observations of TS.

21/38

IO-block equivalence

IO-block equivalence

Two transition systems TS and TS′ are IO-block equivalent if

IOBlocks(TS) = IOBlocks(TS′)

This equivalence is denoted TS ∼ioblock TS′.

Remark
IO-block equivalence corresponds to the queued suspension trace equivalence of

A. Petrenko, N. Yevtushenko and J.L. Huo: Testing Transition Systems with
Input and Output Testers, Proc of TestCom 2003.

21/38

IO-block equivalence

IO-block equivalence

Two transition systems TS and TS′ are IO-block equivalent if

IOBlocks(TS) = IOBlocks(TS′)

This equivalence is denoted TS ∼ioblock TS′.

Remark
IO-block equivalence corresponds to the queued suspension trace equivalence of

A. Petrenko, N. Yevtushenko and J.L. Huo: Testing Transition Systems with
Input and Output Testers, Proc of TestCom 2003.

22/38

IO-block equivalence

Example

TS1
a

x

y

a

z

a

x

a

w

IOBlocks(TS1):
(ε, ε)
(a, xy)
(a, x)
(a, xy)(an, z) for n ≥ 1
(a, x)(an, w) for n ≥ 1
(an, xyz) for n ≥ 2
(an, xw) for n ≥ 2

IOBeh(TS1):
(ε, ε)
(a, xy)
(a, x)
(an, xyz) for n ≥ 2
(an, xw) for n ≥ 2

Proposition

If TS1 ∼ioblock TS2, then TS1 ∼io TS2.

Proof

IOBeh(TS) = IOBlocks(TS) ∩ (Σ∗
i × Σ∗

o)

22/38

IO-block equivalence

Example

TS2
a

x

y

a

z

a

x

a

w
y

z

IOBlocks(TS2):
(ε, ε)
(a, xy)
(a, x)
(a, xy)(an, z) for n ≥ 1
(a, x)(an, w) for n ≥ 1
(an, xyz) for n ≥ 2
(an, xw) for n ≥ 2
(a, x)(an, yz) for n ≥ 1

IOBeh(TS2):
(ε, ε)
(a, xy)
(a, x)
(an, xyz) for n ≥ 2
(an, xw) for n ≥ 2

Proposition

If TS1 ∼ioblock TS2, then TS1 ∼io TS2.

Proof

IOBeh(TS) = IOBlocks(TS) ∩ (Σ∗
i × Σ∗

o)

22/38

IO-block equivalence

Example

TS2
a

x

y

a

z

a

x

a

w
y

z

IOBlocks(TS2):
(ε, ε)
(a, xy)
(a, x)
(a, xy)(an, z) for n ≥ 1
(a, x)(an, w) for n ≥ 1
(an, xyz) for n ≥ 2
(an, xw) for n ≥ 2
(a, x)(an, yz) for n ≥ 1

IOBeh(TS2):
(ε, ε)
(a, xy)
(a, x)
(an, xyz) for n ≥ 2
(an, xw) for n ≥ 2

Proposition

If TS1 ∼ioblock TS2, then TS1 ∼io TS2.

Proof

IOBeh(TS) = IOBlocks(TS) ∩ (Σ∗
i × Σ∗

o)

23/38

Decidability of IO-block equivalence

Definition
A transition system is well-structured if every state either refuses Σi or refuses Σo.

Definition

A block observation α = (u1, v1) · · · (un, vn) is reduced if u1 = ε and uj ∈ Σi for
1 < j ≤ n.

redIOBlocks(TS) denotes the set of reduced block observations of TS.

Definition

Let α and β be block-observations. We say that α is finer than β, denoted α � β,
if β can be obtained from α by merging consecutive blocks.

Lemma

Let TS be well-structured. Then, IOBlocks(TS) = ↑redIOBlocks(TS)

where ↑ denotes the upward closure for �.

24/38

Decidability of IO-block equivalence

Theorem
For finite well structured transition systems, ∼ioblock is decidable.

Proof

For w = v1a2v2 · · · anvn ∈ Σ∗ with vj ∈ Σ∗
o and aj ∈ Σi, we define the reduced

block observation f(w) = (ε, v1)(a2, v2) · · · (an, vn).

Let Lδ(TS) be the language accepted by TS with quiescent states as final states.

For a ∈ Σi, let Lδ,a(TS) be the language accepted by TS with quiescent states
that refuse a as final states.

redIOBlocks(TS) = f
(

Lδ(TS) ∪
⋃

a∈Σi

Lδ,a(TS) · a · Σ∗
i

)

f−1(IOBlocks(TS)) = Lδ(TS) ∪
⋃

a∈Σi

Lδ,a(TS) · a · Σ∗
i

25/38

Outline

Introduction

Input/Output semantics

IO-Blocks semantics

4 Queue semantics (Tretman)

Conclusion

26/38

Queue semantics (Tretmans)

Definition

Let TS = (S, Σ, I, T) be a transition system. Define Q(TS) = (S′, Σ, I ′, T ′) by

◮ S′ = S × Σ∗
i × Σ∗

o: configurations of TS.

◮ I ′ = I × {ε} × {ε}: initial configurations

◮ Transitions of TS are broken up into two moves, one visible and one invisible
(labelled τ):

Input
(s, σi, σo)

a
−→ (s, σia, σo)

s
a
−→ s′

(s, aσi, σo)
τ
−→ (s′, σi, σo)

Output
s

x
−→ s′

(s, σi, σo)
τ
−→ (s′, σi, σox) (s, σi, xσo)

x
−→ (s, σi, σo)

◮ L(Q(TS)) is the set of traces of Q(TS).

27/38

Queue equivalence (Tretmans)

Definition

TS ∼Q TS′ def
= Q(TS) ∼syn Q(TS′).

Intuitively, synchronous testing equivalence ∼syn corresponds to failure semantics.

Definition

◮ w ∈ L(Q(TS)) is a quiescent trace if there is a run (r, ε, ε)
w
−→ (s, σi, ε) with

r ∈ I and (s, σi, ε) quiescent in Q(TS).

◮ We denote by Lδ(Q(TS)) the set of quiescent traces of Q(TS).

Proposition (Tretmans)

TS ∼Q TS′ iff L(Q(TS)) = L(Q(TS′)) and Lδ(Q(TS)) = Lδ(Q(TS′))

Pb: characterization of ∼Q on TS instead of Q(TS).

27/38

Queue equivalence (Tretmans)

Definition

TS ∼Q TS′ def
= Q(TS) ∼syn Q(TS′).

Intuitively, synchronous testing equivalence ∼syn corresponds to failure semantics.

Definition

◮ w ∈ L(Q(TS)) is a quiescent trace if there is a run (r, ε, ε)
w
−→ (s, σi, ε) with

r ∈ I and (s, σi, ε) quiescent in Q(TS).

◮ We denote by Lδ(Q(TS)) the set of quiescent traces of Q(TS).

Proposition (Tretmans)

TS ∼Q TS′ iff L(Q(TS)) = L(Q(TS′)) and Lδ(Q(TS)) = Lδ(Q(TS′))

Pb: characterization of ∼Q on TS instead of Q(TS).

27/38

Queue equivalence (Tretmans)

Definition

TS ∼Q TS′ def
= Q(TS) ∼syn Q(TS′).

Intuitively, synchronous testing equivalence ∼syn corresponds to failure semantics.

Definition

◮ w ∈ L(Q(TS)) is a quiescent trace if there is a run (r, ε, ε)
w
−→ (s, σi, ε) with

r ∈ I and (s, σi, ε) quiescent in Q(TS).

◮ We denote by Lδ(Q(TS)) the set of quiescent traces of Q(TS).

Proposition (Tretmans)

TS ∼Q TS′ iff L(Q(TS)) = L(Q(TS′)) and Lδ(Q(TS)) = Lδ(Q(TS′))

Pb: characterization of ∼Q on TS instead of Q(TS).

28/38

Ape relation (Tretmans)

Ape relation for the queue semantics

◮ Output actions may always be postponed: w1xaw2 @ w1axw2

For x ∈ Σo and a ∈ Σi, we have

w1xaw2 ∈ L(Q(TS)) implies w1axw2 ∈ L(Q(TS)).

◮ Input actions may always be added: w @ wa

For a ∈ Σi, we have

w ∈ L(Q(TS)) implies wa ∈ L(Q(TS)).

◮ We denote @ the reflexive and transitive closure of the relations
postponing an output action: w1xaw2 @ w1axw2

or adding an input action: w @ wa.

◮ Tracks(TS) is the set of @-minimal words in L(Q(TS)).

@-minimal: no trailing input, outputs as early as possible.

◮ L(Q(TS)) is the @-upward closure of Tracks(TS).

◮ Tracks(TS) ⊆ L(TS).

◮ L(Q(TS)) = L(Q(TS′)) iff Tracks(TS) = Tracks(TS′).

28/38

Ape relation (Tretmans)

Ape relation for the queue semantics

◮ Output actions may always be postponed: w1xaw2 @ w1axw2

For x ∈ Σo and a ∈ Σi, we have

w1xaw2 ∈ L(Q(TS)) implies w1axw2 ∈ L(Q(TS)).

◮ Input actions may always be added: w @ wa

For a ∈ Σi, we have

w ∈ L(Q(TS)) implies wa ∈ L(Q(TS)).

◮ We denote @ the reflexive and transitive closure of the relations
postponing an output action: w1xaw2 @ w1axw2

or adding an input action: w @ wa.

◮ Tracks(TS) is the set of @-minimal words in L(Q(TS)).

@-minimal: no trailing input, outputs as early as possible.

◮ L(Q(TS)) is the @-upward closure of Tracks(TS).

◮ Tracks(TS) ⊆ L(TS).

◮ L(Q(TS)) = L(Q(TS′)) iff Tracks(TS) = Tracks(TS′).

28/38

Ape relation (Tretmans)

Ape relation for the queue semantics

◮ Output actions may always be postponed: w1xaw2 @ w1axw2

For x ∈ Σo and a ∈ Σi, we have

w1xaw2 ∈ L(Q(TS)) implies w1axw2 ∈ L(Q(TS)).

◮ Input actions may always be added: w @ wa

For a ∈ Σi, we have

w ∈ L(Q(TS)) implies wa ∈ L(Q(TS)).

◮ We denote @ the reflexive and transitive closure of the relations
postponing an output action: w1xaw2 @ w1axw2

or adding an input action: w @ wa.

◮ Tracks(TS) is the set of @-minimal words in L(Q(TS)).

@-minimal: no trailing input, outputs as early as possible.

◮ L(Q(TS)) is the @-upward closure of Tracks(TS).

◮ Tracks(TS) ⊆ L(TS).

◮ L(Q(TS)) = L(Q(TS′)) iff Tracks(TS) = Tracks(TS′).

28/38

Ape relation (Tretmans)

Ape relation for the queue semantics

◮ Output actions may always be postponed: w1xaw2 @ w1axw2

For x ∈ Σo and a ∈ Σi, we have

w1xaw2 ∈ L(Q(TS)) implies w1axw2 ∈ L(Q(TS)).

◮ Input actions may always be added: w @ wa

For a ∈ Σi, we have

w ∈ L(Q(TS)) implies wa ∈ L(Q(TS)).

◮ We denote @ the reflexive and transitive closure of the relations
postponing an output action: w1xaw2 @ w1axw2

or adding an input action: w @ wa.

◮ Tracks(TS) is the set of @-minimal words in L(Q(TS)).

@-minimal: no trailing input, outputs as early as possible.

◮ L(Q(TS)) is the @-upward closure of Tracks(TS).

◮ Tracks(TS) ⊆ L(TS).

◮ L(Q(TS)) = L(Q(TS′)) iff Tracks(TS) = Tracks(TS′).

28/38

Ape relation (Tretmans)

Ape relation for the queue semantics

◮ Output actions may always be postponed: w1xaw2 @ w1axw2

For x ∈ Σo and a ∈ Σi, we have

w1xaw2 ∈ L(Q(TS)) implies w1axw2 ∈ L(Q(TS)).

◮ Input actions may always be added: w @ wa

For a ∈ Σi, we have

w ∈ L(Q(TS)) implies wa ∈ L(Q(TS)).

◮ We denote @ the reflexive and transitive closure of the relations
postponing an output action: w1xaw2 @ w1axw2

or adding an input action: w @ wa.

◮ Tracks(TS) is the set of @-minimal words in L(Q(TS)).

@-minimal: no trailing input, outputs as early as possible.

◮ L(Q(TS)) is the @-upward closure of Tracks(TS).

◮ Tracks(TS) ⊆ L(TS).

◮ L(Q(TS)) = L(Q(TS′)) iff Tracks(TS) = Tracks(TS′).

29/38

Tracks (Tretmans)

Example

TS

a

x

y

a

z

a

x

a

y

z

w

Tracks(TS):
ε
ax
axy
axyaz
axaw
not axayz

L(Q(TS)):
a∗

a+xa∗

a+xa∗ya∗

a+xa+ya∗za∗

a+xa∗ya+za∗

a+xa+wa∗

30/38

Comparing the equivalences

Proposition

If TS1 ∼Q TS2, then TS1 ∼io TS2.

The converse does not hold

TS1

a

x

a

x

x

a

x

a

x

x

Tracks(TS1):
ε
ax
axx
axaxx

IOBeh(TS1):
(ε, ε)
(an, x) for n ≥ 1
(an, x2) for n ≥ 1
(an, x3) for n ≥ 2

30/38

Comparing the equivalences

Proposition

If TS1 ∼Q TS2, then TS1 ∼io TS2.

The converse does not hold

TS2

a

x

a

x

x

a

x

x

a

x

Tracks(TS2):
ε
ax
axx
axxax

axxax @ axaxx

IOBeh(TS2):
(ε, ε)
(an, x) for n ≥ 1
(an, x2) for n ≥ 1
(an, x3) for n ≥ 2

31/38

Quiescent traces (Tretmans)

Empty and blocked quiescent traces

◮ w ∈ L(Q(TS)) is an empty quiescent trace if there is a run

(r, ε, ε)
w
−→ (s, ε, ε) with r ∈ I and s quiescent in TS.

We denote by Lempty
δ (Q(TS)) the empty quiescent traces of Q(TS).

◮ w ∈ L(Q(TS)) is a blocked quiescent trace if there is a run

(r, ε, ε)
w
−→ (s, aσi, ε) with r ∈ I and in TS, s quiescent and s

a
9.

We denote by Lblock
δ (Q(TS)) the blocked quiescent traces of Q(TS).

Proposition

Lδ(Q(TS)) = Lempty
δ (Q(TS)) ∪ Lblock

δ (Q(TS))

31/38

Quiescent traces (Tretmans)

Empty and blocked quiescent traces

◮ w ∈ L(Q(TS)) is an empty quiescent trace if there is a run

(r, ε, ε)
w
−→ (s, ε, ε) with r ∈ I and s quiescent in TS.

We denote by Lempty
δ (Q(TS)) the empty quiescent traces of Q(TS).

◮ w ∈ L(Q(TS)) is a blocked quiescent trace if there is a run

(r, ε, ε)
w
−→ (s, aσi, ε) with r ∈ I and in TS, s quiescent and s

a
9.

We denote by Lblock
δ (Q(TS)) the blocked quiescent traces of Q(TS).

Proposition

Lδ(Q(TS)) = Lempty
δ (Q(TS)) ∪ Lblock

δ (Q(TS))

32/38

Quiescent traces (Tretmans)

Example

TS1

a

x

y

a

z

a

x

a

y

z

Lempty
δ (TS1):

ε
ax
axy
axayz
axyaz
aaxyz

Lblock
δ (TS1):

a+xya+za+

a+xa+yza+

aa+xyza+

a+xa+ya+za∗

. . .

@-upper closure of
axyaza

Lemma

Lblock
δ (Q(TS)) = {w ∈ Σ∗ | ∃ r

w′

−→ s in TS with r ∈ I, s quiescent, and

∃ a ∈ Σi such that s
a
9 and w′a @ w}.

32/38

Quiescent traces (Tretmans)

Example

TS1

a

x

y

a

z

a

x

a

y

z

Lempty
δ (TS1):

ε
ax
axy
axayz
axyaz
aaxyz

Lblock
δ (TS1):

a+xya+za+

a+xa+yza+

aa+xyza+

a+xa+ya+za∗

. . .

@-upper closure of
axyaza

Lemma

Lblock
δ (Q(TS)) = {w ∈ Σ∗ | ∃ r

w′

−→ s in TS with r ∈ I, s quiescent, and

∃ a ∈ Σi such that s
a
9 and w′a @ w}.

32/38

Quiescent traces (Tretmans)

Example

TS1

a

x

y

a

z

a

x

a

y

z

Lempty
δ (TS1):

ε
ax
axy
axayz
axyaz
aaxyz

Lblock
δ (TS1):

a+xya+za+

a+xa+yza+

aa+xyza+

a+xa+ya+za∗

. . .

@-upper closure of
axyaza

Lemma

Lblock
δ (Q(TS)) = {w ∈ Σ∗ | ∃ r

w′

−→ s in TS with r ∈ I, s quiescent, and

∃ a ∈ Σi such that s
a
9 and w′a @ w}.

32/38

Quiescent traces (Tretmans)

Example

TS1

a

x

y

a

z

a

x

a

y

z

Lempty
δ (TS1):

ε
ax
axy
axayz
axyaz
aaxyz

Lblock
δ (TS1):

a+xya+za+

a+xa+yza+

aa+xyza+

a+xa+ya+za∗

. . .

@-upper closure of
axyaza

Lemma

Lblock
δ (Q(TS)) = {w ∈ Σ∗ | ∃ r

w′

−→ s in TS with r ∈ I, s quiescent, and

∃ a ∈ Σi such that s
a
9 and w′a @ w}.

33/38

Strict ape relation (Tretmans)
Strict ape relation for the queue semantics

We denote |@| the reflexive and transitive closure of the relation
postponing an output action: w1xaw2 @ w1axw2.

Lemma

Lempty
δ (Q(TS)) = {w ∈ Σ∗ | ∃ r

w′

−→ s in TS with r ∈ I, s quiescent, w′ |@| w}

Example

TS1

a

x

y

a

z

a

x

a

y

z

Lempty
δ (TS1):

|@|-upper closure of
ε
ax
axy
axyaz

axyaz |@| axayz
axyaz |@| aaxyz

Lblock
δ (TS1):

@-upper closure of
axyaza

33/38

Strict ape relation (Tretmans)
Strict ape relation for the queue semantics

We denote |@| the reflexive and transitive closure of the relation
postponing an output action: w1xaw2 @ w1axw2.

Lemma

Lempty
δ (Q(TS)) = {w ∈ Σ∗ | ∃ r

w′

−→ s in TS with r ∈ I, s quiescent, w′ |@| w}

Example

TS1

a

x

y

a

z

a

x

a

y

z

Lempty
δ (TS1):

|@|-upper closure of
ε
ax
axy
axyaz

axyaz |@| axayz
axyaz |@| aaxyz

Lblock
δ (TS1):

@-upper closure of
axyaza

33/38

Strict ape relation (Tretmans)
Strict ape relation for the queue semantics

We denote |@| the reflexive and transitive closure of the relation
postponing an output action: w1xaw2 @ w1axw2.

Lemma

Lempty
δ (Q(TS)) = {w ∈ Σ∗ | ∃ r

w′

−→ s in TS with r ∈ I, s quiescent, w′ |@| w}

Example

TS1

a

x

y

a

z

a

x

a

y

z

Lempty
δ (TS1):

|@|-upper closure of
ε
ax
axy
axyaz

axyaz |@| axayz
axyaz |@| aaxyz

Lblock
δ (TS1):

@-upper closure of
axyaza

34/38

Undecidability of ∼Q

Theorem

∼Q is undecidable

Proof

Reduction from the PCP problem.

A PCP instance consists in two morphisms f, g : A+ → B+ where A, B are finite
alphabets.

The PCP instance f, g has a solution if there exists u ∈ A+ such that f(u) = g(u).

We construct two systems M1 and M2 such that the PCP instance (f, g) has no
solution iff M1 ∼Q M2.

35/38

Reduction from the PCP problem
Let f, g : A+ → B+ be a PCP instance. We define

S0

I

∆0

A

A

B

B

$

A, $

B

B

Sf

I · · ·

X Y

Z ′

Z

∆f

F

a b1 b2 bk−1

bk

A
b1 b2

bk−1¬b1 ¬b2 ¬bk−1 ¬bk bk

B

A

A, B

B$ $ $

A, $

B

B

36/38

Reduction from the PCP problem
We want to compare the following two systems:

◮ M1 = S0 + Sf + Sg

◮ M2 = Sf + Sg

Lemma

Lblock
δ (M1) = Lblock

δ (M2) = ∅.

Lemma

Tracks(M1) = Tracks(M2) = Tracks(Sf) = B∗.

Lemma

◮ Lempty
δ (S0) is the |@|-upper closure of A+B+$.

◮ Let u ∈ A+ and v ∈ B+. Then, uv$ ∈ Lempty
δ (Sf) if and only if v 6= f(u).

Theorem

M1 ∼Q M2 iff the PCP instance (f, g) has no solution.

37/38

Outline

Introduction

Input/Output semantics

IO-Blocks semantics

Queue semantics (Tretman)

5 Conclusion

38/38

Conclusion

Summary
◮ We have investigated 3 asynchronous testing equivalences.

◮ We have shown that ∼io is strictly weaker than ∼Q and ∼ioblock , but ∼Q

and ∼ioblock are incomparable.

◮ ∼ioblock is decidable, while ∼io and ∼Q are undecidable.

Open problems
◮ Construct test suites based on the IO-Blocks semantics.

◮ Investigate distributed testing.
See e.g. C. Jard: Synthesis of distributed testers from true-concurrency
models of reactive systems, Information & Software Technology, 2003.

38/38

Conclusion

Summary
◮ We have investigated 3 asynchronous testing equivalences.

◮ We have shown that ∼io is strictly weaker than ∼Q and ∼ioblock , but ∼Q

and ∼ioblock are incomparable.

◮ ∼ioblock is decidable, while ∼io and ∼Q are undecidable.

Open problems
◮ Construct test suites based on the IO-Blocks semantics.

◮ Investigate distributed testing.
See e.g. C. Jard: Synthesis of distributed testers from true-concurrency
models of reactive systems, Information & Software Technology, 2003.

	Introduction
	Input/Output semantics
	IO-Blocks semantics
	Queue semantics (Tretman)
	Conclusion

