Testing with asynchronous communication

Paul Gastin

LSV ENS de Cachan & CNRS Paul.Gastin@lsv.ens-cachan.fr

Joint work with Puneet Bhateja and Madhavan Mukund

October 29th, 2008

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣 ◆ ○ ○ ○ ○ 1/38

Outline

1 Introduction

Input/Output semantics

IO-Blocks semantics

Queue semantics (Tretman)

Conclusion

<□ ▶ < @ ▶ < 差 ▶ < 差 ▶ 差 の Q @ 2/38

Verification of software or hardware

- Proof
- Model checking
- Test

Synchronous testing

- The tester interacts synchronously with the system.
- The tester proposes an action which is either refused or accepted and executed by the system.
 - The tester has an immediate feedback.

Asynchronous testing

- The tester communicate asynchronously with the system
- The tester provides inputs and observes outputs.
- The tester does not necessarily know whether its inputs have been used by the system or not.

Verification of software or hardware

- Proof
- Model checking
- Test

Synchronous testing

- The tester interacts synchronously with the system.
- The tester proposes an action which is either refused or accepted and executed by the system.
- The tester has an immediate feedback.

Asynchronous testing

- The tester communicate asynchronously with the system
- The tester provides inputs and observes outputs.
- The tester does not necessarily know whether its inputs have been used by the system or not.

Verification of software or hardware

- Proof
- Model checking
- Test

Synchronous testing

- The tester interacts synchronously with the system.
- The tester proposes an action which is either refused or accepted and executed by the system.
- The tester has an immediate feedback.

Asynchronous testing

- The tester communicate asynchronously with the system
- The tester provides inputs and observes outputs.
- The tester does not necessarily know whether its inputs have been used by the system or not.

Static test generation – Input/Output semantics

- Tests are computed in advance and are sent as a whole stream to the system
- The tester then observes the output streams generated by the system

on the fly test generation – IO-Blocks semantics

- Inputs are supplied incrementally.
- The tester observes the outputs that are triggered by each block of input.

Test equivalence

- Equivalence of two systems for a given test semantics.
- ▶ We study the expressiveness and the decidability of some test equivalences.

Static test generation – Input/Output semantics

- Tests are computed in advance and are sent as a whole stream to the system
- The tester then observes the output streams generated by the system

on the fly test generation - IO-Blocks semantics

- Inputs are supplied incrementally.
- The tester observes the outputs that are triggered by each block of input.

Test equivalence

- Equivalence of two systems for a given test semantics.
- ▶ We study the expressiveness and the decidability of some test equivalences.

Static test generation – Input/Output semantics

- Tests are computed in advance and are sent as a whole stream to the system
- The tester then observes the output streams generated by the system

on the fly test generation - IO-Blocks semantics

- Inputs are supplied incrementally.
- The tester observes the outputs that are triggered by each block of input.

Test equivalence

- Equivalence of two systems for a given test semantics.
- ▶ We study the expressiveness and the decidability of some test equivalences.

Related work

- I. Castellani and M Hennessy: Testing Theories for Asynchronous Languages, Proc. FSTTCS '98, Springer Lecture Notes in Computer Science 1530 (1998) 90–101.
- R. de Nicola and M. Hennessy: Testing equivalences for processes, Theoretical Computer Science, 34 (1984) 83–133.
- A. Petrenko, N. Yevtushenko and J.L. Huo: Testing Transition Systems with Input and Output Testers, Proc IFIP TC6/WG6.1 XV International Conference on Testing of Communicating Systems (TestCom 2003), Sophia Antipolis, France, (2003) 129–145.
- J. Tretmans: Test Generation with Inputs, Outputs and Repetitive Quiescence, *Software—Concepts and Tools*, **17**(3) (1996) 103–120.

Outline

Introduction

Input/Output semantics

IO-Blocks semantics

Queue semantics (Tretman)

Conclusion

◆□ ▶ < □ ▶ < 三 ▶ < 三 ▶ ○ ○ ○ ○ 6/38</p>

The model

Labelled transition system

- $TS = (S, \Sigma, I, T)$ where
 - S is the set of states
 - $I \subseteq S$ is the set of initial states
 - $\Sigma = \Sigma_i \uplus \Sigma_o$ is the set of input/output actions
 - $\blacktriangleright \ T \subseteq S \times \Sigma \times S$ is the set of transitions

$$L(TS) = \{ w \in \Sigma^* \mid I \xrightarrow{w} \text{ in } TS \}.$$

$s \in S$ is quiescent if it refuses all output actions: $s \stackrel{\Sigma_o}{\nrightarrow}$.

Some further properties

- ▶ No infinite output-only behaviour.
- ▶ Receptiveness: $\forall s \in S$ quiescent, $\forall a \in \Sigma_i$, $s \stackrel{a}{-}$ If this is not the case, we may
 - discard unexpected inputs
 - enter a dead state accepting all inputs and with no possible outputs.

The model

Labelled transition system

- $TS = (S, \Sigma, I, T)$ where
 - S is the set of states
 - $I \subseteq S$ is the set of initial states
 - $\Sigma = \Sigma_i \uplus \Sigma_o$ is the set of input/output actions
 - $\blacktriangleright \ T \subseteq S \times \Sigma \times S$ is the set of transitions

 $L(TS) = \{ w \in \Sigma^* \mid I \xrightarrow{w} \text{ in } TS \}.$

 $s \in S$ is quiescent if it refuses all output actions: $s \stackrel{\Sigma_o}{\not \to}$.

Some further properties

- No infinite output-only behaviour.
- ▶ Receptiveness: $\forall s \in S$ quiescent, $\forall a \in \Sigma_i$, $s \stackrel{a}{\rightarrow}$ If this is not the case, we may
 - discard unexpected inputs
 - enter a dead state accepting all inputs and with no possible outputs.

The model

Labelled transition system

- $TS = (S, \Sigma, I, T)$ where
 - S is the set of states
 - $I \subseteq S$ is the set of initial states
 - $\Sigma = \Sigma_i \uplus \Sigma_o$ is the set of input/output actions
 - $\blacktriangleright \ T \subseteq S \times \Sigma \times S$ is the set of transitions
- $L(TS) = \{ w \in \Sigma^* \mid I \xrightarrow{w} \text{ in } TS \}.$

 $s \in S$ is quiescent if it refuses all output actions: $s \stackrel{\Sigma_o}{\nrightarrow}$.

Some further properties

- No infinite output-only behaviour.
- ▶ Receptiveness: $\forall s \in S$ quiescent, $\forall a \in \Sigma_i, s \xrightarrow{a}$ If this is not the case, we may
 - discard unexpected inputs
 - enter a dead state accepting all inputs and with no possible outputs.

Asynchronous IO-Behaviours

Intuition: Provide some test input $u \in \Sigma_i^*$ up front and observe the maximal outcome $v \in \Sigma_o^*$. Corresponds to static test generation.

Definition: IO-Behaviours

Let $TS = (S, \Sigma, I, T)$. IOBeh(TS) is the set of pairs $(u, v) \in \Sigma_i^* \times \Sigma_o^*$ such that there is a run $i \xrightarrow{w} s$ in TS with

- $i \in I$ and s quiescent
- $\pi_o(w) = v$, and
- either $\pi_i(w) = u$ or there exists $a \in \Sigma_i$ such that $\pi_i(w)a \preceq u$ and $s \stackrel{a}{\not\rightarrow}$.

$$\begin{array}{l} IOBeh(TS_{1}):\\ (\varepsilon, \varepsilon)\\ (a, x), \ (a, xy)\\ (a^{2}, x), \ (a^{2}, xy), \ (a^{2}, x^{2})\\ (a^{n}, x), \ (a^{n}, xy), \ (a^{n}, x^{2}) \ \text{if} \ n \geq 2. \end{array}$$

Asynchronous IO-Behaviours

Intuition: Provide some test input $u \in \Sigma_i^*$ up front and observe the maximal outcome $v \in \Sigma_o^*$. Corresponds to static test generation.

Definition: IO-Behaviours

Let $TS = (S, \Sigma, I, T)$. IOBeh(TS) is the set of pairs $(u, v) \in \Sigma_i^* \times \Sigma_o^*$ such that there is a run $i \xrightarrow{w} s$ in TS with

- $i \in I$ and s quiescent
- $\pi_o(w) = v$, and
- either $\pi_i(w) = u$ or there exists $a \in \Sigma_i$ such that $\pi_i(w)a \preceq u$ and $s \stackrel{a}{\not\rightarrow}$.

Asynchronous IO-Behaviours

Intuition: Provide some test input $u \in \Sigma_i^*$ up front and observe the maximal outcome $v \in \Sigma_o^*$. Corresponds to static test generation.

Definition: IO-Behaviours

Let $TS = (S, \Sigma, I, T)$. IOBeh(TS) is the set of pairs $(u, v) \in \Sigma_i^* \times \Sigma_o^*$ such that there is a run $i \xrightarrow{w} s$ in TS with

- $i \in I$ and s quiescent
- $\pi_o(w) = v$, and
- either $\pi_i(w) = u$ or there exists $a \in \Sigma_i$ such that $\pi_i(w)a \preceq u$ and $s \stackrel{a}{\not\rightarrow}$.

Asynchronous testing equivalence (1)

IO-equivalence

Two transition systems TS and TS' are IO-equivalent, denoted $TS\sim_{io}TS'$ if

IOBeh(TS) = IOBeh(TS')

 $TS_1 \ \mathrm{and} \ TS_2$ are IO-equivalent.

IO-equivalence corresponds to the queued quiescent trace equivalence of

A. Petrenko, N. Yevtushenko and J.L. Huo: Testing Transition Systems with Input and Output Testers, *Proc of TestCom 2003*.

Asynchronous testing equivalence (1)

IO-equivalence

Two transition systems TS and TS' are IO-equivalent, denoted $TS\sim_{io}TS'$ if

IOBeh(TS) = IOBeh(TS')

 $TS_1 \ {\rm and} \ TS_2$ are IO-equivalent.

IO-equivalence corresponds to the queued quiescent trace equivalence of

A. Petrenko, N. Yevtushenko and J.L. Huo: Testing Transition Systems with Input and Output Testers, *Proc of TestCom 2003*.

Rational relations

Definition

Let A, B be two finite (and disjoint) alphabets. A rational relation over A and B is a rational subset R of the monoid $A^* \times B^*$.

Equivalently, $R \subseteq A^* \times B^*$ is a rational relation if there exists an automaton $\mathcal{A} = (S, A \cup B, I, F, T)$ such that

 $R = \{(u, v) \in A^* \times B^* \mid \exists i \xrightarrow{w} f \text{ in } \mathcal{A} \text{ with } i \in I, f \in F, \pi_A(w) = u, \pi_B(w) = v\}$

$$\mathcal{R}(\mathcal{A}) = \{(a,x), (a,xy), (a^2,x^2)\}$$

Rational relations

Definition

Let A, B be two finite (and disjoint) alphabets. A rational relation over A and B is a rational subset R of the monoid $A^* \times B^*$.

Equivalently, $R\subseteq A^*\times B^*$ is a rational relation if there exists an automaton $\mathcal{A}=(S,A\cup B,I,F,T)$ such that

 $R = \{(u,v) \in A^* \times B^* \mid \exists i \xrightarrow{w} f \text{ in } \mathcal{A} \text{ with } i \in I, f \in F, \pi_A(w) = u, \pi_B(w) = v\}$

$$\mathcal{R}(\mathcal{A}) = \{(a,x), (a,xy), (a^2,x^2)\}$$

Rational relations

Definition

Let A, B be two finite (and disjoint) alphabets. A rational relation over A and B is a rational subset R of the monoid $A^* \times B^*$.

Equivalently, $R\subseteq A^*\times B^*$ is a rational relation if there exists an automaton $\mathcal{A}=(S,A\cup B,I,F,T)$ such that

 $R = \{(u,v) \in A^* \times B^* \mid \exists i \xrightarrow{w} f \text{ in } \mathcal{A} \text{ with } i \in I, f \in F, \pi_A(w) = u, \pi_B(w) = v\}$

$$\mathcal{R}(\mathcal{A}) = \{(a, x), (a, xy), (a^2, x^2)\}$$

Proposition

From a transition system $TS = (S, \Sigma, I, T)$, we can construct an automaton A over $\Sigma = \Sigma_i \uplus \Sigma_o$ such that

 $IOBeh(TS) = \mathcal{R}(\mathcal{A})$

Proof. Intuition: transform quiescent states into final states

Let $D \subseteq S$ be the set of quiescent states of TS. Define $\mathcal{A} = (S', \Sigma, I', F', T')$

- $\blacktriangleright S' = S \uplus \overline{D} \uplus \{f\} \text{ where } \overline{D} \text{ is a copy of } D.$
- $\blacktriangleright \ I' = I \uplus \overline{I \cap D} \text{ and } F' = \overline{D} \uplus \{f\}$

$$T' = T \quad \cup \quad \{(r, a, \bar{s}) \mid (r, a, s) \in T \text{ and } s \in D\}$$

$$\cup \quad \{(\bar{s}, a, f) \mid a \in \Sigma_i \text{ and } s \xrightarrow{a}\}$$

$$\cup \quad \{(f, a, f) \mid a \in \Sigma_i\}$$

Let $(u, v) \in IOBeh(TS)$ and $i \xrightarrow{w} s$ in TS with $i \in I$, $s \in D$, $\pi_o(w) = v$ and $u = \pi_i(w)au'$ with $s \xrightarrow{a}$. Then, $i \xrightarrow{w} \bar{s} \xrightarrow{a} f \xrightarrow{u'} f$ in \mathcal{A} and $u = \pi_i(wau')$, $w = \pi_o(wau')$. Hence, $(u, v) \in \mathcal{R}(\mathcal{A})$.

Other cases are similar.

Proposition

From a transition system $TS = (S, \Sigma, I, T)$, we can construct an automaton A over $\Sigma = \Sigma_i \uplus \Sigma_o$ such that

 $IOBeh(TS) = \mathcal{R}(\mathcal{A})$

Proof. Intuition: transform quiescent states into final states

Let $D \subseteq S$ be the set of quiescent states of TS. Define $\mathcal{A} = (S', \Sigma, I', F', T')$

- ▶ $S' = S \uplus \overline{D} \uplus \{f\}$ where \overline{D} is a copy of D.
- $\blacktriangleright \ I' = I \uplus \overline{I \cap D} \text{ and } F' = \overline{D} \uplus \{f\}$

$$\begin{array}{rcl} \bullet & T' = & T & \cup & \{(r, a, \bar{s}) \mid (r, a, s) \in T \text{ and } s \in D\} \\ & \cup & \{(\bar{s}, a, f) \mid a \in \Sigma_i \text{ and } s \xrightarrow{a} \} \\ & \cup & \{(f, a, f) \mid a \in \Sigma_i\} \end{array}$$

Let $(u, v) \in IOBeh(TS)$ and $i \xrightarrow{w} s$ in TS with $i \in I$, $s \in D$, $\pi_o(w) = v$ and $u = \pi_i(w)au'$ with $s \xrightarrow{a}$. Then, $i \xrightarrow{w} \bar{s} \xrightarrow{a} f \xrightarrow{u'} f$ in \mathcal{A} and $u = \pi_i(wau')$, $w = \pi_o(wau')$. Hence, $(u, v) \in \mathcal{R}(\mathcal{A})$. Other cases are similar.

Proposition

From a transition system $TS = (S, \Sigma, I, T)$, we can construct an automaton A over $\Sigma = \Sigma_i \uplus \Sigma_o$ such that

 $IOBeh(TS) = \mathcal{R}(\mathcal{A})$

Proof. Intuition: transform quiescent states into final states

Let $D \subseteq S$ be the set of quiescent states of TS. Define $\mathcal{A} = (S', \Sigma, I', F', T')$

- $S' = S \uplus \overline{D} \uplus \{f\}$ where \overline{D} is a copy of D.
- $\blacktriangleright \ I' = I \uplus \overline{I \cap D} \text{ and } F' = \overline{D} \uplus \{f\}$

$$\begin{array}{rcl} \bullet & T' = & T & \cup & \{(r, a, \bar{s}) \mid (r, a, s) \in T \text{ and } s \in D\} \\ & \cup & \{(\bar{s}, a, f) \mid a \in \Sigma_i \text{ and } s \xrightarrow{a}\} \\ & \cup & \{(f, a, f) \mid a \in \Sigma_i\} \end{array}$$

Let $(u, v) \in IOBeh(TS)$ and $i \xrightarrow{w} s$ in TS with $i \in I$, $s \in D$, $\pi_o(w) = v$ and $u = \pi_i(w)au'$ with $s \xrightarrow{a}$. Then, $i \xrightarrow{w} \bar{s} \xrightarrow{a} f \xrightarrow{u'} f$ in \mathcal{A} and $u = \pi_i(wau')$, $w = \pi_o(wau')$.

Hence, $(u, v) \in \mathcal{R}(\mathcal{A})$.

Other cases are similar.

Proposition

From a transition system $TS = (S, \Sigma, I, T)$, we can construct an automaton A over $\Sigma = \Sigma_i \uplus \Sigma_o$ such that

 $IOBeh(TS) = \mathcal{R}(\mathcal{A})$

Proof. Intuition: transform quiescent states into final states

Let $D \subseteq S$ be the set of quiescent states of TS. Define $\mathcal{A} = (S', \Sigma, I', F', T')$

- $S' = S \uplus \overline{D} \uplus \{f\}$ where \overline{D} is a copy of D.
- $\blacktriangleright \ I' = I \uplus \overline{I \cap D} \text{ and } F' = \overline{D} \uplus \{f\}$

$$\begin{array}{rcl} \bullet & T' = & T & \cup & \{(r, a, \bar{s}) \mid (r, a, s) \in T \text{ and } s \in D\} \\ & \cup & \{(\bar{s}, a, f) \mid a \in \Sigma_i \text{ and } s \xrightarrow{a}\} \\ & \cup & \{(f, a, f) \mid a \in \Sigma_i\} \end{array}$$

Let $(u, v) \in IOBeh(TS)$ and $i \xrightarrow{w} s$ in TS with $i \in I$, $s \in D$, $\pi_o(w) = v$ and $u = \pi_i(w)au'$ with $s \xrightarrow{a}$. Then, $i \xrightarrow{w} \overline{s} \xrightarrow{a} f \xrightarrow{u'} f$ in \mathcal{A} and $u = \pi_i(wau')$, $w = \pi_o(wau')$. Hence, $(u, v) \in \mathcal{R}(\mathcal{A})$.

Other cases are similar.

Decidability of IO-equivalence

Theorem

If |A| = |B| = 1 then equivalence of rational relations over A and B is decidable.

Corollary

If $|\Sigma_i| = |\Sigma_o| = 1$ then IO-equivalence is decidable.

Decidability of IO-equivalence

Theorem

If |A| = |B| = 1 then equivalence of rational relations over A and B is decidable.

Corollary

If $|\Sigma_i| = |\Sigma_o| = 1$ then IO-equivalence is decidable.

Several problems:

- Final states may not be quiescent (easy to fix).
- Quiescent states may not be final (harder to fix).

Example

Same rational relation: $\mathcal{R}(\mathcal{A}_1) = \{(a^2, x^3)\} = \mathcal{R}(\mathcal{A}_2)$ But different IO-behaviours:

 $IOBeh(\mathcal{A}_1) = \{(\varepsilon, \varepsilon), (a, x^2)\} \cup \{(a^n, x^3) \mid n \ge 2\}$ $IOBeh(\mathcal{A}_2) = \{(\varepsilon, \varepsilon), (a, x)\} \cup \{(a^n, x^3) \mid n \ge 2\}$

Several problems:

- Final states may not be quiescent (easy to fix).
- Quiescent states may not be final (harder to fix).

$$IOBeh(\mathcal{A}_2) = \{(\varepsilon, \varepsilon), (a, x)\} \cup \{(a^n, x^3) \mid n \ge 2\}$$

Several problems:

- Final states may not be quiescent (easy to fix).
- Quiescent states may not be final (harder to fix).
- Discarded inputs should be taken care of.

Example

Same IO-behaviours: $IOBeh(A_1) = \{(\varepsilon, \varepsilon)\} \cup \{(a^n, x) \mid n \ge 1\} = IOBeh(A_2)$ But different rational relations:

$$\mathcal{R}(\mathcal{A}_1) = \{(a, x)\}$$

$$\mathcal{R}(\mathcal{A}_2) = \{(a^n, x) \mid n \ge 1\}$$

Several problems:

- Final states may not be quiescent (easy to fix).
- Quiescent states may not be final (harder to fix).
- Discarded inputs should be taken care of.

Same IO-behaviours: $IOBeh(A_1) = \{(\varepsilon, \varepsilon)\} \cup \{(a^n, x) \mid n \ge 1\} = IOBeh(A_2)$ But different rational relations:

$$\mathcal{R}(\mathcal{A}_1) = \{(a, x)\}$$

$$\mathcal{R}(\mathcal{A}_2) = \{(a^n, x) \mid n \ge 1\}$$

$\operatorname{Rat}(B^*)$ -automata

Definition

A $\operatorname{Rat}(B^*)$ -automaton over A is a tuple $\mathcal{A} = (S, A, \lambda, \mu, \gamma)$ where

- S is the finite set of states
- $\blacktriangleright \ \lambda: S \to \operatorname{Rat}(B^*)$

A word in λ_s is emitted when entering \mathcal{A} in state s.

- $\mu: A \to (S \times S \to \operatorname{Rat}(B^*))$ A word in $\mu(a)_{r,s}$ is emitted when taking a transition from r to s labelled a.
- $\blacktriangleright \ \gamma: S \to \operatorname{Rat}(B^*)$

A word in γ_s is emitted when exiting \mathcal{A} in state s.

Then, $(u, v) \in \mathcal{R}(\mathcal{A})$ if there is a path $P = s_0 \xrightarrow{a_1} s_1 \cdots s_{n-1} \xrightarrow{a_n} s_n$ in \mathcal{A} with

- $\blacktriangleright u = a_1 \cdots a_n$
- $v \in \lambda_{s_0} \mu(a_1)_{s_0, s_1} \cdots \mu(a_n)_{s_{n-1}, s_n} \gamma_{s_n}$

$\operatorname{Rat}(B^*)$ -automata

Definition

A $\operatorname{Rat}(B^*)$ -automaton over A is a tuple $\mathcal{A} = (S, A, \lambda, \mu, \gamma)$ where

- S is the finite set of states
- $\blacktriangleright \ \lambda: S \to \operatorname{Rat}(B^*)$

 $\blacktriangleright u = a_1 \cdots a_n$

A word in λ_s is emitted when entering \mathcal{A} in state s.

- $\mu: A \to (S \times S \to \operatorname{Rat}(B^*))$ A word in $\mu(a)_{r,s}$ is emitted when taking a transition from r to s labelled a.
- $\blacktriangleright \ \gamma: S \to \operatorname{Rat}(B^*)$

A word in γ_s is emitted when exiting \mathcal{A} in state s.

Then, $(u, v) \in \mathcal{R}(\mathcal{A})$ if there is a path $P = s_0 \xrightarrow{a_1} s_1 \cdots s_{n-1} \xrightarrow{a_n} s_n$ in \mathcal{A} with

 $v \in \lambda_{s_0} \mu(a_1)_{s_0, s_1} \cdots \mu(a_n)_{s_{n-1}, s_n} \gamma_{s_n}.$

$\operatorname{Rat}(B^*)$ -automata and rational relations

Theorem

A relation $R \subseteq A^* \times B^*$ is rational iff there exists a $\operatorname{Rat}(B^*)$ -automaton \mathcal{A} with $R = \mathcal{R}(\mathcal{A})$.

Theorem

If $|A| \geq 2$ then equivalence is undecidable for $\operatorname{Rat}(B^*)\text{-}{\rm automata}$ over A. This holds even if

 $\bullet ||B|| = 1$

- We use only finite languages: $\mathcal{P}_{fin}(B^*)$ -automata
- There is no output when entering the automaton: $\lambda_s \neq \emptyset$ implies $\lambda_s = \{\varepsilon\}$
- ▶ There is no output when exiting the automaton: $\gamma_s \neq \emptyset$ implies $\gamma_s = \{\varepsilon\}$
- All transitions are visible: $\varepsilon \notin \mu(a)_{r,s}$

$\operatorname{Rat}(B^*)$ -automata and rational relations

Theorem

A relation $R \subseteq A^* \times B^*$ is rational iff there exists a $\operatorname{Rat}(B^*)$ -automaton \mathcal{A} with $R = \mathcal{R}(\mathcal{A})$.

Theorem

If $|A| \ge 2$ then equivalence is undecidable for $\operatorname{Rat}(B^*)$ -automata over A. This holds even if

- ▶ |B| = 1
- We use only finite languages: $\mathcal{P}_{\mathsf{fin}}(B^*)$ -automata
- There is no output when entering the automaton: $\lambda_s \neq \emptyset$ implies $\lambda_s = \{\varepsilon\}$
- There is no output when exiting the automaton: $\gamma_s \neq \emptyset$ implies $\gamma_s = \{\varepsilon\}$
- All transitions are visible: $\varepsilon \notin \mu(a)_{r,s}$

Undecidability of IO-equivalence

Theorem

IO-equivalence is undecidable if $|\Sigma_i| \ge 2$ and $|\Sigma_o| \ge 2$.

Proof

Let $\mathcal{A} = (S, A, \lambda, \mu, \gamma)$ be a $\mathcal{P}_{fin}(B^+)$ -automaton with |A| = 2 and |B| = 1. Define $\mathcal{A}' = (S', \Sigma, I', T')$ by

- $\blacktriangleright \ \Sigma_i = A, \ \Sigma_o = B \uplus \{\#\} \text{ and } I' = \{s \in I \mid \lambda_s \neq \emptyset \text{ (i.e., } \lambda_s = \{\varepsilon\})\}$
- ▶ transitions $r \xrightarrow{a / \mu(a)_{r,s}} s$ of \mathcal{A} are replaced in \mathcal{A}' by

Note that quiescent states of \mathcal{A}' are exactly the states of \mathcal{A} .

Claim: $(u, v) \in IOBeh(\mathcal{A}')$ iff there is a path $s_0 \xrightarrow{a_1} s_1 \cdots s_{n-1} \xrightarrow{a_n} s_n$ in \mathcal{A} with $\lambda_{s_0} = \{\varepsilon\}, v \in \mu(a_1)_{s_0, s_1} \cdots \mu(a_n)_{s_{n-1}, s_n}$, and $u = a_1 \cdots a_n$ or $u = a_1 \cdots a_n au'$ with $\mu(a)_{s_n, s} = \emptyset$ for all $s \in S$.
Theorem

IO-equivalence is undecidable if $|\Sigma_i| \ge 2$ and $|\Sigma_o| \ge 2$.

Proof

Let $\mathcal{A} = (S, A, \lambda, \mu, \gamma)$ be a $\mathcal{P}_{fin}(B^+)$ -automaton with |A| = 2 and |B| = 1. Define $\mathcal{A}' = (S', \Sigma, I', T')$ by

- $\blacktriangleright \ \Sigma_i = A, \ \Sigma_o = B \uplus \{\#\} \text{ and } I' = \{s \in I \mid \lambda_s \neq \emptyset \text{ (i.e., } \lambda_s = \{\varepsilon\})\}$
- ▶ transitions $r \xrightarrow{a / \mu(a)_{r,s}} s$ of \mathcal{A} are replaced in \mathcal{A}' by

Note that quiescent states of \mathcal{A}' are exactly the states of \mathcal{A} .

Claim: $(u, v) \in IOBeh(\mathcal{A}')$ iff there is a path $s_0 \xrightarrow{a_1} s_1 \cdots s_{n-1} \xrightarrow{a_n} s_n$ in \mathcal{A} with $\lambda_{s_0} = \{\varepsilon\}, v \in \mu(a_1)_{s_0, s_1} \cdots \mu(a_n)_{s_{n-1}, s_n}$, and $u = a_1 \cdots a_n$ or $u = a_1 \cdots a_n au'$ with $\mu(a)_{s_n, s} = \emptyset$ for all $s \in S$.

Theorem

IO-equivalence is undecidable if $|\Sigma_i| \ge 2$ and $|\Sigma_o| \ge 2$.

Proof continued

Define $\mathcal{A}'' = (S'', \Sigma, I', T'')$ by adding to \mathcal{A}' when $\gamma_s = \{\varepsilon\}$:

Note that quiescent states of \mathcal{A}' are exactly the states in $S \uplus \{f'\}$.

Lemma $IOBeh(\mathcal{A}'') = IOBeh(\mathcal{A}') \cup \mathcal{R}(\mathcal{A}) \cdot \{(x, \#^{1+|x|}) \mid x \in A^*\}.$

Lemma $\mathcal{A}' \uplus \mathcal{B}'' \sim_{io} \mathcal{A}'' \uplus \mathcal{B}'$ if and only if $\mathcal{R}(\mathcal{A}) = \mathcal{R}(\mathcal{B})$.

Theorem

IO-equivalence is undecidable if $|\Sigma_i| \ge 2$ and $|\Sigma_o| \ge 2$.

Proof continued

Define $\mathcal{A}'' = (S'', \Sigma, I', T'')$ by adding to \mathcal{A}' when $\gamma_s = \{\varepsilon\}$:

Note that quiescent states of \mathcal{A}' are exactly the states in $S \uplus \{f'\}$.

Lemma $IOBeh(\mathcal{A}'') = IOBeh(\mathcal{A}') \cup \mathcal{R}(\mathcal{A}) \cdot \{(x, \#^{1+|x|}) \mid x \in A^*\}.$

 $\textbf{Lemma} \quad \mathcal{A}' \uplus \mathcal{B}'' \sim_{io} \mathcal{A}'' \uplus \mathcal{B}' \text{ if and only if } \mathcal{R}(\mathcal{A}) = \mathcal{R}(\mathcal{B}).$

Theorem

IO-equivalence is undecidable if $|\Sigma_i| \ge 2$ and $|\Sigma_o| \ge 2$.

Proof continued

Define $\mathcal{A}'' = (S'', \Sigma, I', T'')$ by adding to \mathcal{A}' when $\gamma_s = \{\varepsilon\}$:

Note that quiescent states of \mathcal{A}' are exactly the states in $S \uplus \{f'\}$.

 $\mbox{Lemma} \quad IOBeh(\mathcal{A}'') = IOBeh(\mathcal{A}') \cup \mathcal{R}(\mathcal{A}) \cdot \{(x, \#^{1+|x|}) \mid x \in A^*\}.$

Lemma $\mathcal{A}' \uplus \mathcal{B}'' \sim_{io} \mathcal{A}'' \uplus \mathcal{B}'$ if and only if $\mathcal{R}(\mathcal{A}) = \mathcal{R}(\mathcal{B})$.

Outline

Introduction

Input/Output semantics

IO-Blocks semantics

Queue semantics (Tretman)

Conclusion

<□ ▶ < □ ▶ < 臣 ▶ < 臣 ▶ 三 の Q ○ 19/38

Asynchronous IO-blocks semantics

Definition

A block observation of $TS = (S, \Sigma, I, T)$ is a sequence $(u_1, v_1) \cdots (u_n, v_n)$ where

- $u_1 \in \Sigma_i^*$ and $u_j \in \Sigma_i^+$ for $1 < j \le n$,
- $v_k \in \Sigma_o^*$ for $1 \le k \le n$

and there is a run $s_0 \xrightarrow{w_1} s_1 \cdots \xrightarrow{w_k} s_k$ with $s_0 \in I$, $1 \le k \le n$ and:

- ▶ s₁, s₂, ..., s_k are quiescent.
- $\pi_o(w_j) = v_j$ for $1 \le j \le k$ and $v_j = \varepsilon$ for $k < j \le n$.
- $\pi_i(w_j) = u_j$ for $0 \le j < k$.
- Either k = n and $\pi_i(w_n) = u_n$ or there exists $a \in \Sigma_i$ with $\pi_i(w_k)a \preceq u_k$ and $s_k \xrightarrow{a}$.

Let IOBlocks(TS) denote the set of block observations of TS.

IO-block equivalence

Two transition systems TS and TS' are IO-block equivalent if

IOBlocks(TS) = IOBlocks(TS')

This equivalence is denoted $TS \sim_{ioblock} TS'$.

Remark

IO-block equivalence corresponds to the queued suspension trace equivalence of

A. Petrenko, N. Yevtushenko and J.L. Huo: Testing Transition Systems with Input and Output Testers, *Proc of TestCom 2003*.

IO-block equivalence

Two transition systems TS and TS' are IO-block equivalent if

IOBlocks(TS) = IOBlocks(TS')

This equivalence is denoted $TS \sim_{ioblock} TS'$.

Remark

IO-block equivalence corresponds to the queued suspension trace equivalence of

A. Petrenko, N. Yevtushenko and J.L. Huo: Testing Transition Systems with Input and Output Testers, *Proc of TestCom 2003*.

Proposition

If $TS_1 \sim_{ioblock} TS_2$, then $TS_1 \sim_{io} TS_2$.

Proof

 $IOBeh(TS) = IOBlocks(TS) \cap (\Sigma_i^* \times \Sigma_o^*)$

$$\begin{split} &IOBlocks(TS_2):\\ &(\varepsilon,\varepsilon)\\ &(a,xy)\\ &(a,x)\\ &(a,xy)(a^n,z) \text{ for } n\geq 1\\ &(a,x)(a^n,w) \text{ for } n\geq 1\\ &(a^n,xyz) \text{ for } n\geq 2\\ &(a^n,xw) \text{ for } n\geq 2\\ &(a,x)(a^n,yz) \text{ for } n\geq 1 \end{split}$$

$$\begin{split} &IOBeh(TS_2):\\ &(\varepsilon,\varepsilon)\\ &(a,xy)\\ &(a,x)\\ &(a^n,xyz) \text{ for } n\geq 2\\ &(a^n,xw) \text{ for } n\geq 2 \end{split}$$

Proposition

If $TS_1 \sim_{ioblock} TS_2$, then $TS_1 \sim_{io} TS_2$.

Proof

 $IOBeh(TS) = IOBlocks(TS) \cap (\Sigma_i^* \times \Sigma_o^*)$

 $IOBlocks(TS_2)$: $(\varepsilon, \varepsilon)$ (a, xy)(a, x) $(a, xy)(a^n, z)$ for $n \ge 1$ (a^n, xyz) for $n \ge 2$ $(a, x)(a^n, w)$ for $n \ge 1$ (a^n, xw) for $n \ge 2$ (a^n, xyz) for $n \geq 2$ (a^n, xw) for $n \ge 2$ $(a, x)(a^n, yz)$ for $n \ge 1$

 $IOBeh(TS_2)$: $(\varepsilon, \varepsilon)$ (a, xy)(a, x)

Proposition

If $TS_1 \sim_{ioblock} TS_2$, then $TS_1 \sim_{io} TS_2$.

Proof

$$IOBeh(TS) = IOBlocks(TS) \cap (\Sigma_i^* \times \Sigma_o^*)$$

Decidability of IO-block equivalence

Definition

A transition system is well-structured if every state either refuses Σ_i or refuses Σ_o .

Definition

A block observation $\alpha = (u_1, v_1) \cdots (u_n, v_n)$ is reduced if $u_1 = \varepsilon$ and $u_j \in \Sigma_i$ for $1 < j \le n$.

redIOBlocks(TS) denotes the set of reduced block observations of TS.

Definition

Let α and β be block-observations. We say that α is *finer than* β , denoted $\alpha \preceq \beta$, if β can be obtained from α by merging consecutive blocks.

Lemma

Let TS be well-structured. Then, $IOBlocks(TS) = \uparrow redIOBlocks(TS)$ where \uparrow denotes the upward closure for \preceq .

Decidability of IO-block equivalence

Theorem

For finite well structured transition systems, $\sim_{ioblock}$ is decidable.

Proof

For $w = v_1 a_2 v_2 \cdots a_n v_n \in \Sigma^*$ with $v_j \in \Sigma_o^*$ and $a_j \in \Sigma_i$, we define the reduced block observation $f(w) = (\varepsilon, v_1)(a_2, v_2) \cdots (a_n, v_n)$.

Let $L_{\delta}(TS)$ be the language accepted by TS with quiescent states as final states. For $a \in \Sigma_i$, let $L_{\delta,a}(TS)$ be the language accepted by TS with quiescent states that refuse a as final states.

 $redIOBlocks(TS) = f\left(L_{\delta}(TS) \cup \bigcup_{a \in \Sigma_{i}} L_{\delta,a}(TS) \cdot a \cdot \Sigma_{i}^{*}\right)$ $f^{-1}(IOBlocks(TS)) = L_{\delta}(TS) \cup \bigcup_{a \in \Sigma_{i}} L_{\delta,a}(TS) \cdot a \cdot \Sigma_{i}^{*}$

Outline

Introduction

Input/Output semantics

IO-Blocks semantics

Queue semantics (Tretman)

Conclusion

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ● ● ● ● 25/38

Queue semantics (Tretmans)

Definition

Let $TS = (S, \Sigma, I, T)$ be a transition system. Define $Q(TS) = (S', \Sigma, I', T')$ by

- $S' = S \times \Sigma_i^* \times \Sigma_o^*$: configurations of TS.
- $I' = I \times \{\varepsilon\} \times \{\varepsilon\}$: initial configurations
- Transitions of TS are broken up into two moves, one visible and one invisible (labelled τ):

Input
$$\frac{s \xrightarrow{a} s'}{(s, \sigma_i, \sigma_o) \xrightarrow{a} (s, \sigma_i a, \sigma_o)} \qquad \frac{s \xrightarrow{a} s'}{(s, a\sigma_i, \sigma_o) \xrightarrow{\tau} (s', \sigma_i, \sigma_o)}$$
Output
$$\frac{s \xrightarrow{x} s'}{(s, \sigma_i, \sigma_o) \xrightarrow{\tau} (s', \sigma_i, \sigma_o x)} \qquad \overline{(s, \sigma_i, x\sigma_o) \xrightarrow{x} (s, \sigma_i, \sigma_o)}$$

• L(Q(TS)) is the set of traces of Q(TS).

Queue equivalence (Tretmans)

Definition

$$TS \sim_Q TS' \quad \stackrel{\rm def}{=} \quad Q(TS) \sim_{syn} Q(TS').$$

Intuitively, synchronous testing equivalence \sim_{syn} corresponds to failure semantics.

Definition

- $w \in L(Q(TS))$ is a quiescent trace if there is a run $(r, \varepsilon, \varepsilon) \xrightarrow{w} (s, \sigma_i, \varepsilon)$ with $r \in I$ and $(s, \sigma_i, \varepsilon)$ quiescent in Q(TS).
- We denote by $L_{\delta}(Q(TS))$ the set of quiescent traces of Q(TS).

Proposition (Tretmans)

 $TS \sim_Q TS'$ iff L(Q(TS)) = L(Q(TS')) and $L_{\delta}(Q(TS)) = L_{\delta}(Q(TS'))$

Pb: characterization of \sim_Q on TS instead of Q(TS).

Queue equivalence (Tretmans)

Definition

$$TS \sim_Q TS' \quad \stackrel{\rm def}{=} \quad Q(TS) \sim_{syn} Q(TS').$$

Intuitively, synchronous testing equivalence \sim_{syn} corresponds to failure semantics.

Definition

- ▶ $w \in L(Q(TS))$ is a quiescent trace if there is a run $(r, \varepsilon, \varepsilon) \xrightarrow{w} (s, \sigma_i, \varepsilon)$ with $r \in I$ and $(s, \sigma_i, \varepsilon)$ quiescent in Q(TS).
- We denote by $L_{\delta}(Q(TS))$ the set of quiescent traces of Q(TS).

Proposition (Tretmans)

 $TS \sim_Q TS' \quad \text{ iff } \quad L(Q(TS)) = L(Q(TS')) \text{ and } L_{\delta}(Q(TS)) = L_{\delta}(Q(TS'))$

Pb: characterization of \sim_Q on TS instead of Q(TS).

Queue equivalence (Tretmans)

Definition

$$TS \sim_Q TS' \quad \stackrel{\rm def}{=} \quad Q(TS) \sim_{syn} Q(TS').$$

Intuitively, synchronous testing equivalence \sim_{syn} corresponds to failure semantics.

Definition

- $w \in L(Q(TS))$ is a quiescent trace if there is a run $(r, \varepsilon, \varepsilon) \xrightarrow{w} (s, \sigma_i, \varepsilon)$ with $r \in I$ and $(s, \sigma_i, \varepsilon)$ quiescent in Q(TS).
- We denote by $L_{\delta}(Q(TS))$ the set of quiescent traces of Q(TS).

Proposition (Tretmans)

 $TS \sim_Q TS' \quad \text{ iff } \quad L(Q(TS)) = L(Q(TS')) \text{ and } L_{\delta}(Q(TS)) = L_{\delta}(Q(TS'))$

Pb: characterization of \sim_Q on TS instead of Q(TS).

Ape relation for the queue semantics

- Output actions may always be postponed: w₁xaw₂ @ w₁axw₂
 For x ∈ Σ_o and a ∈ Σ_i, we have w₁xaw₂ ∈ L(Q(TS)) implies w₁axw₂ ∈ L(Q(TS)).
- Input actions may always be added: w @ waFor $a \in \Sigma_i$, we have

- ▶ We denote @ the reflexive and transitive closure of the relations postponing an output action: w₁xaw₂ @ w₁axw₂ or adding an input action: w @ wa.
- Tracks(TS) is the set of @-minimal words in L(Q(TS)).
 @-minimal: no trailing input, outputs as early as possible.
- L(Q(TS)) is the @-upward closure of Tracks(TS).
- Tracks $(TS) \subseteq L(TS)$.
- ► L(Q(TS)) = L(Q(TS')) iff Tracks(TS) = Tracks(TS').

Ape relation for the queue semantics

- Output actions may always be postponed: w₁xaw₂ @ w₁axw₂
 For x ∈ Σ_o and a ∈ Σ_i, we have w₁xaw₂ ∈ L(Q(TS)) implies w₁axw₂ ∈ L(Q(TS)).
- ▶ Input actions may always be added: w @ waFor $a \in \Sigma_i$, we have

- ▶ We denote @ the reflexive and transitive closure of the relations postponing an output action: w₁xaw₂ @ w₁axw₂ or adding an input action: w @ wa.
- Tracks(TS) is the set of @-minimal words in L(Q(TS)).
 @-minimal: no trailing input, outputs as early as possible.
- L(Q(TS)) is the @-upward closure of Tracks(TS).
- Tracks $(TS) \subseteq L(TS)$.
- ► L(Q(TS)) = L(Q(TS')) iff Tracks(TS) = Tracks(TS').

Ape relation for the queue semantics

- Output actions may always be postponed: w₁xaw₂ @ w₁axw₂
 For x ∈ Σ_o and a ∈ Σ_i, we have w₁xaw₂ ∈ L(Q(TS)) implies w₁axw₂ ∈ L(Q(TS)).
- ▶ Input actions may always be added: w @ waFor $a \in \Sigma_i$, we have

- ▶ We denote @ the reflexive and transitive closure of the relations postponing an output action: w₁xaw₂ @ w₁axw₂ or adding an input action: w @ wa.
- Tracks(TS) is the set of @-minimal words in L(Q(TS)).
 @-minimal: no trailing input, outputs as early as possible.
- L(Q(TS)) is the @-upward closure of Tracks(TS).
- Tracks $(TS) \subseteq L(TS)$.
- $\blacktriangleright \ L(Q(TS)) = L(Q(TS')) \text{ iff } \operatorname{Tracks}(TS) = \operatorname{Tracks}(TS').$

Ape relation for the queue semantics

- Output actions may always be postponed: w₁xaw₂ @ w₁axw₂
 For x ∈ Σ_o and a ∈ Σ_i, we have w₁xaw₂ ∈ L(Q(TS)) implies w₁axw₂ ∈ L(Q(TS)).
- Input actions may always be added: w @ waFor $a \in \Sigma_i$, we have

- ▶ We denote @ the reflexive and transitive closure of the relations postponing an output action: w₁xaw₂ @ w₁axw₂ or adding an input action: w @ wa.
- ► Tracks(TS) is the set of @-minimal words in L(Q(TS)). @-minimal: no trailing input, outputs as early as possible.
- L(Q(TS)) is the @-upward closure of Tracks(TS).
- Tracks $(TS) \subseteq L(TS)$.
- L(Q(TS)) = L(Q(TS')) iff Tracks(TS) = Tracks(TS').

Ape relation for the queue semantics

- Output actions may always be postponed: w₁xaw₂ @ w₁axw₂
 For x ∈ Σ_o and a ∈ Σ_i, we have w₁xaw₂ ∈ L(Q(TS)) implies w₁axw₂ ∈ L(Q(TS)).
- Input actions may always be added: w @ waFor $a \in \Sigma_i$, we have

- ▶ We denote @ the reflexive and transitive closure of the relations postponing an output action: w₁xaw₂ @ w₁axw₂ or adding an input action: w @ wa.
- ► Tracks(TS) is the set of @-minimal words in L(Q(TS)). @-minimal: no trailing input, outputs as early as possible.
- L(Q(TS)) is the @-upward closure of Tracks(TS).
- Tracks $(TS) \subseteq L(TS)$.
- L(Q(TS)) = L(Q(TS')) iff Tracks(TS) = Tracks(TS').

Tracks (Tretmans)

Example

 $\begin{array}{l} {\rm Tracks}(TS):\\ \varepsilon\\ ax\\ axy\\ axyaz\\ axaw\\ {\rm not}\ axayz \end{array}$

L(Q(TS)): a^* a^+xa^* $a^+xa^*ya^*$ $a^+xa^+ya^*za^*$ $a^+xa^+ya^+za^*$ $a^+xa^+wa^*$

◆□ ▶ ◆ □ ▶ ◆ 三 ▶ ◆ 三 ◆ ○ へ ○ 29/38

Comparing the equivalences

Proposition

If $TS_1 \sim_Q TS_2$, then $TS_1 \sim_{io} TS_2$.

The converse does not hold

$\operatorname{Tracks}(TS_1)$
ε
ax
axx
axaxx

$$IOBeh(TS_1):$$

$$(\varepsilon, \varepsilon)$$

$$(a^n, x) \text{ for } n \ge 1$$

$$(a^n, x^2) \text{ for } n \ge 1$$

$$(a^n, x^3) \text{ for } n \ge 2$$

Comparing the equivalences

Proposition

If $TS_1 \sim_Q TS_2$, then $TS_1 \sim_{io} TS_2$.

The converse does not hold

$\operatorname{Tracks}(TS_2)$
ε
ax
axx
axxax

axxax @ axaxx

 $\begin{array}{l} IOBeh(TS_2):\\ (\varepsilon, \varepsilon)\\ (a^n, x) \text{ for } n \geq 1\\ (a^n, x^2) \text{ for } n \geq 1\\ (a^n, x^3) \text{ for } n \geq 2 \end{array}$

Empty and blocked quiescent traces

- w ∈ L(Q(TS)) is an empty quiescent trace if there is a run (r, ε, ε) → (s, ε, ε) with r ∈ I and s quiescent in TS.
 We denote by L^{empty}_δ(Q(TS)) the empty quiescent traces of Q(TS).
- ▶ $w \in L(Q(TS))$ is a blocked quiescent trace if there is a run $(r, \varepsilon, \varepsilon) \xrightarrow{w} (s, a\sigma_i, \varepsilon)$ with $r \in I$ and in TS, s quiescent and $s \xrightarrow{a}$. We denote by $L^{\text{block}}_{\delta}(Q(TS))$ the blocked quiescent traces of Q(TS)

Proposition

 $L_{\delta}(Q(TS)) = L_{\delta}^{\mathsf{empty}}(Q(TS)) \cup L_{\delta}^{\mathsf{block}}(Q(TS))$

◆□▶◆□▶◆≧▶◆≧▶ ≧ ∽�� 31/38

Empty and blocked quiescent traces

- w ∈ L(Q(TS)) is an empty quiescent trace if there is a run (r, ε, ε) → (s, ε, ε) with r ∈ I and s quiescent in TS.
 We denote by L_δ^{empty}(Q(TS)) the empty quiescent traces of Q(TS).
- ▶ $w \in L(Q(TS))$ is a blocked quiescent trace if there is a run $(r, \varepsilon, \varepsilon) \xrightarrow{w} (s, a\sigma_i, \varepsilon)$ with $r \in I$ and in TS, s quiescent and $s \xrightarrow{a}$. We denote by $L_{\delta}^{\text{block}}(Q(TS))$ the blocked quiescent traces of Q(TS).

Proposition

$$L_{\delta}(Q(TS)) = L^{\mathsf{empty}}_{\delta}(Q(TS)) \cup L^{\mathsf{block}}_{\delta}(Q(TS))$$

◆□▶◆□▶◆≧▶◆≧▶ ≧ のへで 31/38

Example

 $\begin{array}{l} L^{\rm block}_{\delta}(TS_1) &: \\ a^+xya^+za^+ \\ a^+xa^+yza^+ \\ aa^+xyza^+ \\ a^+xa^+ya^+za^* \end{array}$

@-upper closure of axyaza

Lemma

$$\begin{split} L^{\mathsf{block}}_{\delta}(Q(TS)) = \{ w \in \Sigma^* \mid \exists \ r \xrightarrow{w'} s \text{ in } TS \text{ with } r \in I, s \text{ quiescent, and} \\ \exists \ a \in \Sigma_i \text{ such that } s \xrightarrow{a} \text{ and } w'a @ w \} \end{split}$$

Example

$L^{empty}_{\delta}(TS_1)$
ε
ax
axy
axayz
axyaz
aaxyz

 $\begin{array}{l} L^{\rm block}_{\delta}(TS_1) {\rm :} \\ a^+ xya^+ za^+ \\ a^+ xa^+ yza^+ \\ aa^+ xyza^+ \\ a^+ xa^+ ya^+ za^* \end{array}$

. . .

@-upper closure of axyaza

Lemma

$$\begin{split} L^{\mathsf{block}}_{\delta}(Q(TS)) = \{ w \in \Sigma^* \mid \exists \ r \xrightarrow{w'} s \text{ in } TS \text{ with } r \in I, s \text{ quiescent, and} \\ \exists \ a \in \Sigma_i \text{ such that } s \xrightarrow{a} \text{ and } w'a @ w \} \end{split}$$

<□ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 の < ⊙ _{32/38}

Example

$L^{empty}_{\delta}(TS_1)$:
ε
ax
axy
axayz
axyaz
aaxyz

 $\begin{array}{c} L^{\text{block}}_{\delta}(TS_1):\\ a^+xya^+za^+\\ a^+xa^+yza^+\\ aa^+xyza^+\\ a^+xa^+ya^+za^*\\ \cdots \end{array}$

@-upper closure of *axyaza*

Lemma

$$\begin{split} L^{\mathsf{block}}_{\delta}(Q(TS)) = \{ w \in \Sigma^* \mid \exists \ r \xrightarrow{w'} s \text{ in } TS \text{ with } r \in I, s \text{ quiescent, and} \\ \exists \ a \in \Sigma_i \text{ such that } s \xrightarrow{a} \text{ and } w'a @ w \} \end{split}$$

Example

 $\begin{array}{l} L^{\rm empty}_{\delta}(TS_1) \\ \varepsilon \\ ax \\ axy \\ axayz \\ axyz \\ axyaz \\ aaxyz \end{array}$

 $L_{\delta}^{\text{block}}(TS_{1}):$ $a^{+}xya^{+}za^{+}$ $a^{+}xa^{+}yza^{+}$ $aa^{+}xyza^{+}$ $a^{+}xa^{+}ya^{+}za^{*}$...

@-upper closure of *axyaza*

Lemma

$$\begin{split} L^{\mathsf{block}}_{\delta}(Q(TS)) &= \{ w \in \Sigma^* \mid \exists \ r \xrightarrow{w'} s \text{ in } TS \text{ with } r \in I, s \text{ quiescent, and} \\ \exists \ a \in \Sigma_i \text{ such that } s \xrightarrow{a} \text{ and } w'a @ w \}. \end{split}$$

Strict ape relation (Tretmans)

Strict ape relation for the queue semantics

We denote |@| the reflexive and transitive closure of the relation postponing an output action: $w_1xaw_2 @ w_1axw_2$.

Lemma

$$L^{\mathsf{empty}}_{\delta}(Q(TS)) = \{ w \in \Sigma^* \mid \exists \ r \xrightarrow{w'} s \text{ in } TS \text{ with } r \in I, s \text{ quiescent}, w' \mid @\mid w \}$$

Example

 $\begin{array}{l} L^{\rm empty}_{\delta}(TS_1):\\ |@|-{\rm upper\ closure\ of}\\ \varepsilon\\ ax\\ axy\\ axyyaz \end{array}$

axyaz |@| axayzaxyaz |@| aaxyz $L_{\delta}^{\mathsf{block}}(TS_1)$: @-upper closure of axyaza

Strict ape relation (Tretmans)

Strict ape relation for the queue semantics

We denote |@| the reflexive and transitive closure of the relation postponing an output action: $w_1xaw_2 @ w_1axw_2$.

Lemma

$$L^{\mathsf{empty}}_{\delta}(Q(TS)) = \{ w \in \Sigma^* \mid \exists \ r \xrightarrow{w'} s \text{ in } TS \text{ with } r \in I, s \text{ quiescent}, w' \mid @\mid w \}$$

Example

 $L_{s}^{\mathsf{empty}}(TS_{1})$: ε axaxyaxyazaxyaz |@| axayzaxyaz |@| aaxyz

Strict ape relation (Tretmans)

Strict ape relation for the queue semantics

We denote |@| the reflexive and transitive closure of the relation postponing an output action: $w_1xaw_2 @ w_1axw_2$.

Lemma

$$L^{\mathsf{empty}}_{\delta}(Q(TS)) = \{ w \in \Sigma^* \mid \exists \ r \xrightarrow{w'} s \text{ in } TS \text{ with } r \in I, s \text{ quiescent}, w' \mid @\mid w \}$$

Example

 $\begin{array}{c} L^{\text{empty}}_{\delta}(TS_1): \\ |@|-\text{upper closure of} \\ \varepsilon \\ ax \\ axy \\ axyaz \\ axyaz \\ axyaz \\ axyaz \\ axyaz \\ |@| \ axayz \\ axyz \\ axyz \\ |@| \ aaxyz \\ axyz \\ axyz \\ |@| \ aaxyz \\ axyz \\ |@| \ aaxyz \\ axyz \\ |@| \ aaxyz \\ |&| \ aaxyz \\ |&| \ aaxyz \\ |&| \ aaxyz \\$

 $L_{\delta}^{\text{block}}(TS_1)$: @-upper closure of axyaza

Undecidability of \sim_Q

Theorem

 \sim_Q is undecidable

Proof

Reduction from the PCP problem.

A PCP instance consists in two morphisms $f,g:A^+\to B^+$ where A,B are finite alphabets.

The PCP instance f, g has a solution if there exists $u \in A^+$ such that f(u) = g(u). We construct two systems M_1 and M_2 such that the PCP instance (f,g) has no solution iff $M_1 \sim_Q M_2$.
Reduction from the PCP problem

Let $f, g: A^+ \to B^+$ be a PCP instance. We define

Reduction from the PCP problem

We want to compare the following two systems:

- $\blacktriangleright M_1 = S_0 + S_f + S_g$
- $\blacktriangleright M_2 = S_f + S_g$

Lemma

$$L^{\mathsf{block}}_{\delta}(M_1) = L^{\mathsf{block}}_{\delta}(M_2) = \emptyset.$$

Lemma

$$\operatorname{Tracks}(M_1) = \operatorname{Tracks}(M_2) = \operatorname{Tracks}(S_f) = B^*.$$

Lemma

- $L_{\delta}^{\text{empty}}(S_0)$ is the |@|-upper closure of A^+B^+ \$.
- ▶ Let $u \in A^+$ and $v \in B^+$. Then, uv\$ $\in L^{\text{empty}}_{\delta}(S_f)$ if and only if $v \neq f(u)$.

Theorem

 $M_1 \sim_Q M_2$ iff the PCP instance (f,g) has no solution.

Outline

Introduction

Input/Output semantics

IO-Blocks semantics

Queue semantics (Tretman)

<□ > < □ > < □ > < Ξ > < Ξ > Ξ の < ⊙ 37/38

Conclusion

Summary

- We have investigated 3 asynchronous testing equivalences.
- We have shown that \sim_{io} is strictly weaker than \sim_Q and $\sim_{ioblock}$, but \sim_Q and $\sim_{ioblock}$ are incomparable.
- $\sim_{ioblock}$ is decidable, while \sim_{io} and \sim_Q are undecidable.

Open problems

- Construct test suites based on the IO-Blocks semantics.
- Investigate distributed testing.
 See e.g. C. Jard: Synthesis of distributed testers from true-concurrency models of reactive systems, Information & Software Technology, 2003.

Conclusion

Summary

- We have investigated 3 asynchronous testing equivalences.
- We have shown that \sim_{io} is strictly weaker than \sim_Q and $\sim_{ioblock}$, but \sim_Q and $\sim_{ioblock}$ are incomparable.
- $\sim_{ioblock}$ is decidable, while \sim_{io} and \sim_Q are undecidable.

Open problems

- Construct test suites based on the IO-Blocks semantics.
- Investigate distributed testing.
 See e.g. C. Jard: Synthesis of distributed testers from true-concurrency models of reactive systems, Information & Software Technology, 2003.