Testing with asynchronous communication

Paul Gastin

LSV
ENS de Cachan & CNRS
Paul.Gastin@lsv.ens-cachan.fr

Joint work with Puneet Bhateja and Madhavan Mukund

October 29th, 2008

Outline

Introduction

Input/Output semantics

IO-Blocks semantics

Queue semantics (Tretman)

Conclusion

Introduction

Verification of software or hardware

- Proof
- Model checking
- Test

Synchronous testing

- The tester interacts synchronously with the system.
- The tester proposes an action which is either refused or accepted and executed by the system.
- The tester has an immediate feedback.

Asynchronous testing

- The tester communicate asynchronously with the system
- The tester provides inputs and observes outputs.
- The tester does not necessarily know whether its inputs have been used by the system or not.

Introduction

Static test generation – Input/Output semantics

- Tests are computed in advance and are sent as a whole stream to the system
- The tester then observes the output streams generated by the system

on the fly test generation – IO-Blocks semantics

- Inputs are supplied incrementally.
- The tester observes the outputs that are triggered by each block of input.

Test equivalence

- Equivalence of two systems for a given test semantics.
- We study the expressiveness and the decidability of some test equivalences.

Related work

- I. Castellani and M Hennessy: Testing Theories for Asynchronous Languages, *Proc. FSTTCS '98*, Springer Lecture Notes in Computer Science **1530** (1998) 90–101.
- R. de Nicola and M. Hennessy: Testing equivalences for processes, *Theoretical Computer Science*, **34** (1984) 83–133.
- A. Petrenko, N. Yevtushenko and J.L. Huo: Testing Transition Systems with Input and Output Testers, *Proc IFIP TC6/WG6.1 XV International Conference on Testing of Communicating Systems (TestCom 2003)*, Sophia Antipolis, France, (2003) 129–145.
- J. Tretmans: Test Generation with Inputs, Outputs and Repetitive Quiescence, *Software—Concepts and Tools*, **17**(3) (1996) 103–120.

Outline

Introduction

2 Input/Output semantics

IO-Blocks semantics

Queue semantics (Tretman)

Conclusion

The model

Labelled transition system

$$TS = (S, \Sigma, I, T)$$
 where

- ${ullet} S$ is the set of states
- $I \subseteq S$ is the set of initial states
 - $\Sigma = \Sigma_i \uplus \Sigma_o$ is the set of input/output actions
 - $T \subseteq S \times \Sigma \times S$ is the set of transitions

$$L(TS) = \{ w \in \Sigma^* \mid I \xrightarrow{w} \text{ in } TS \}.$$

 $s \in S$ is quiescent if it refuses all output actions: $s \stackrel{\Sigma_o}{\rightarrow}$.

Some further properties

- No infinite output-only behaviour.
- Receptiveness: $\forall s \in S$ quiescent, $\forall a \in \Sigma_i, s \xrightarrow{a}$
 - If this is not the case, we may
 - discard unexpected inputs
 - enter a dead state accepting all inputs and with no possible outputs.

Asynchronous IO-Behaviours

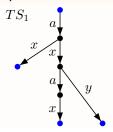
Intuition: Provide some test input $u \in \Sigma_i^*$ up front and observe the maximal outcome $v \in \Sigma_a^*$. Corresponds to static test generation.

Definition: IO-Behaviours

Let $TS = (S, \Sigma, I, T)$. IOBeh(TS) is the set of pairs $(u, v) \in \Sigma_i^* \times \Sigma_o^*$ such that there is a run $i \xrightarrow{w} s$ in TS with

- $i \in I$ and s quiescent
- $\pi_o(w) = v$, and
 - either $\pi_i(w) = u$ or there exists $a \in \Sigma_i$ such that $\pi_i(w)a \prec u$ and $s \stackrel{a}{\rightarrow}$.

Example



$$IOBeh(TS_1)$$
:
 $(\varepsilon, \varepsilon)$
 $(a, x), (a, xy)$
 $(a^2, x), (a^2, xy), (a^2, x^2)$
 $(a^n, x), (a^n, xy), (a^n, x^2)$ if $n \ge 2$.

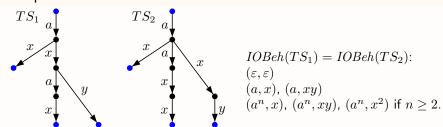
Asynchronous testing equivalence (1)

IO-equivalence

Two transition systems TS and TS^\prime are IO-equivalent, denoted $TS\sim_{io}TS^\prime$ if

$$IOBeh(TS) = IOBeh(TS')$$

Example



 TS_1 and TS_2 are IO-equivalent.

IO-equivalence corresponds to the queued quiescent trace equivalence of

Rational relations

Definition

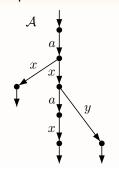
Let A, B be two finite (and disjoint) alphabets.

A rational relation over A and B is a rational subset R of the monoid $A^* \times B^*$.

Equivalently, $R \subseteq A^* \times B^*$ is a rational relation if there exists an automaton $\mathcal{A} = (S, A \cup B, I, F, T)$ such that

$$R = \{(u, v) \in A^* \times B^* \mid \exists i \xrightarrow{w} f \text{ in } \mathcal{A} \text{ with } i \in I, f \in F, \pi_A(w) = u, \pi_B(w) = v\}$$

Example



$$\mathcal{R}(\mathcal{A}) = \{(a, x), (a, xy), (a^2, x^2)\}\$$

From IO-behaviours to rational relations

Proposition

From a transition system $TS=(S,\Sigma,I,T)$, we can construct an automaton $\mathcal A$ over $\Sigma=\Sigma_i \uplus \Sigma_o$ such that

$$IOBeh(TS) = \mathcal{R}(\mathcal{A})$$

Proof. Intuition: transform quiescent states into final states

Let $D \subseteq S$ be the set of quiescent states of TS. Define $\mathcal{A} = (S', \Sigma, I', F', T')$

- $S' = S \uplus \overline{D} \uplus \{f\}$ where \overline{D} is a copy of D.
- $=I'=I\uplus\overline{I\cap D}\text{ and }F'=\overline{D}\uplus\{f\}$
 - $T' = T \quad \cup \quad \{(r, a, \bar{s}) \mid (r, a, s) \in T \text{ and } s \in D\}$ $\quad \cup \quad \{(\bar{s}, a, f) \mid a \in \Sigma_i \text{ and } s \xrightarrow{a}\}$ $\quad \cup \quad \{(f, a, f) \mid a \in \Sigma_i\}$

Let $(u,v) \in IOBeh(TS)$ and $i \xrightarrow{w} s$ in TS with $i \in I$, $s \in D$, $\pi_o(w) = v$ and $u = \pi_i(w)au'$ with $s \xrightarrow{a}$.

Then, $i \xrightarrow{w} \bar{s} \xrightarrow{a} f \xrightarrow{u'} f$ in \mathcal{A} and $u = \pi_i(wau')$, $w = \pi_o(wau')$.

Hence, $(u, v) \in \mathcal{R}(\mathcal{A})$.

Other cases are similar.

Decidability of IO-equivalence

Theorem

If |A| = |B| = 1 then equivalence of rational relations over A and B is decidable.

Corollary

If $|\Sigma_i| = |\Sigma_o| = 1$ then IO-equivalence is decidable.

From rational relations to IO-behaviours

Several problems:

- Final states may not be quiescent (easy to fix).
- Quiescent states may not be final (harder to fix).

Example

Same rational relation: $\mathcal{R}(\mathcal{A}_1) = \{(a^2, x^3)\} = \mathcal{R}(\mathcal{A}_2)$

But different IO-behaviours:

$$IOBeh(\mathcal{A}_1) = \{(\varepsilon, \varepsilon), (a, x^2)\} \cup \{(a^n, x^3) \mid n \ge 2\}$$

 $IOBeh(\mathcal{A}_2) = \{(\varepsilon, \varepsilon), (a, x)\} \cup \{(a^n, x^3) \mid n \ge 2\}$

From rational relations to IO-behaviours

Several problems:

- Final states may not be quiescent (easy to fix).
- Quiescent states may not be final (harder to fix).
- Discarded inputs should be taken care of.

Example

$$A_1 \xrightarrow{a} \xrightarrow{a} \xrightarrow{a}$$

$$A_2 \xrightarrow{a} \xrightarrow{a} \xrightarrow{a}$$

Same IO-behaviours: $IOBeh(\mathcal{A}_1) = \{(\varepsilon, \varepsilon)\} \cup \{(a^n, x) \mid n \geq 1\} = IOBeh(\mathcal{A}_2)$

But different rational relations:

$$\mathcal{R}(\mathcal{A}_1) = \{(a, x)\}$$

$$\mathcal{R}(\mathcal{A}_2) = \{(a^n, x) \mid n \ge 1\}$$

$Rat(B^*)$ -automata

Definition

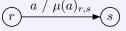
A $\operatorname{Rat}(B^*)$ -automaton over A is a tuple $\mathcal{A} = (S, A, \lambda, \mu, \gamma)$ where

- S is the finite set of states
- $\lambda: S \to \operatorname{Rat}(B^*)$

$$\frac{\lambda_s}{}$$
 s

A word in λ_s is emitted when entering \mathcal{A} in state s.

 $\mu:A\to (S\times S\to \mathrm{Rat}(B^*))$



A word in $\mu(a)_{r,s}$ is emitted when taking a transition from r to s labelled a.

 $\gamma: S \to \operatorname{Rat}(B^*)$

A word in γ_s is emitted when exiting \mathcal{A} in state s.

Then, $(u,v) \in \mathcal{R}(\mathcal{A})$ if there is a path $P = s_0 \xrightarrow{a_1} s_1 \cdots s_{n-1} \xrightarrow{a_n} s_n$ in \mathcal{A} with

- $u = a_1 \cdots a_n$
- $v \in \lambda_{s_0} \mu(a_1)_{s_0, s_1} \cdots \mu(a_n)_{s_{n-1}, s_n} \gamma_{s_n}$

$Rat(B^*)$ -automata and rational relations

Theorem

A relation $R \subseteq A^* \times B^*$ is rational iff there exists a $\operatorname{Rat}(B^*)$ -automaton $\mathcal A$ with $R = \mathcal R(\mathcal A)$.

Theorem

If $|A| \ge 2$ then equivalence is undecidable for $\operatorname{Rat}(B^*)$ -automata over A. This holds even if

$$|B| = 1$$

We use only finite languages: $\mathcal{P}_{fin}(B^*)$ -automata

There is no output when entering the automaton: $\lambda_s \neq \emptyset$ implies $\lambda_s = \{\varepsilon\}$

There is no output when exiting the automaton: $\gamma_s \neq \emptyset$ implies $\gamma_s = \{\varepsilon\}$

All transitions are visible: $\varepsilon \notin \mu(a)_{r,s}$

Undecidability of IO-equivalence

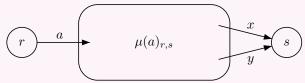
Theorem

IO-equivalence is undecidable if $|\Sigma_i| \geq 2$ and $|\Sigma_o| \geq 2$.

Proof

Let $\mathcal{A}=(S,A,\lambda,\mu,\gamma)$ be a $\mathcal{P}_{\mathsf{fin}}(B^+)$ -automaton with |A|=2 and |B|=1. Define $\mathcal{A}'=(S',\Sigma,I',T')$ by

- $\Sigma_i = A, \ \Sigma_o = B \uplus \{\#\} \ \text{and} \ I' = \{s \in I \mid \lambda_s \neq \emptyset \ \text{(i.e., } \lambda_s = \{\varepsilon\})\}$
 - transitions $r \xrightarrow{a / \mu(a)_{r,s}} s$ of \mathcal{A} are replaced in \mathcal{A}' by



Note that quiescent states of A' are exactly the states of A.

Claim: $(u,v) \in IOBeh(\mathcal{A}')$ iff there is a path $s_0 \xrightarrow{a_1} s_1 \cdots s_{n-1} \xrightarrow{a_n} s_n$ in \mathcal{A} with $\lambda_{s_0} = \{\varepsilon\}, \ v \in \mu(a_1)_{s_0,s_1} \cdots \mu(a_n)_{s_{n-1},s_n}$, and $u = a_1 \cdots a_n$ or $u = a_1 \cdots a_n au'$ with $\mu(a)_{s_n,s} = \emptyset$ for all $s \in S$.

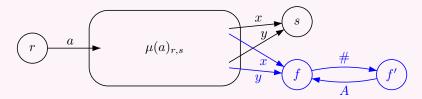
Undecidability of IO-equivalence

Theorem

IO-equivalence is undecidable if $|\Sigma_i| \geq 2$ and $|\Sigma_o| \geq 2$.

Proof continued

Define $\mathcal{A}'' = (S'', \Sigma, I', T'')$ by adding to \mathcal{A}' when $\gamma_s = \{\varepsilon\}$:



Note that quiescent states of \mathcal{A}' are exactly the states in $S \uplus \{f'\}$.

Lemma
$$IOBeh(\mathcal{A}'') = IOBeh(\mathcal{A}') \cup \mathcal{R}(\mathcal{A}) \cdot \{(x, \#^{1+|x|}) \mid x \in A^*\}.$$

Lemma $\mathcal{A}' \uplus \mathcal{B}'' \sim_{io} \mathcal{A}'' \uplus \mathcal{B}'$ if and only if $\mathcal{R}(\mathcal{A}) = \mathcal{R}(\mathcal{B})$.

Outline

Introduction

Input/Output semantics

IO-Blocks semantics

Queue semantics (Tretman)

Conclusion

Asynchronous IO-blocks semantics

Definition

A block observation of $TS=(S,\Sigma,I,T)$ is a sequence $(u_1,v_1)\cdots(u_n,v_n)$ where

- $u_1 \in \Sigma_i^*$ and $u_j \in \Sigma_i^+$ for $1 < j \le n$,
- $v_k \in \Sigma_o^*$ for $1 \le k \le n$

and there is a run $s_0 \xrightarrow{w_1} s_1 \cdots \xrightarrow{w_k} s_k$ with $s_0 \in I$, $1 \le k \le n$ and:

- s_1, s_2, \ldots, s_k are quiescent.
- $\pi_o(w_j) = v_j$ for $1 \le j \le k$ and $v_j = \varepsilon$ for $k < j \le n$.
- $\pi_i(w_j) = u_j \text{ for } 0 \le j < k.$
- Either k=n and $\pi_i(w_n)=u_n$ or there exists $a\in \Sigma_i$ with $\pi_i(w_k)a\preceq u_k$ and $s_k\overset{a}{\nrightarrow}$.

Let IOBlocks(TS) denote the set of block observations of TS.

IO-block equivalence

IO-block equivalence

Two transition systems TS and TS^\prime are IO-block equivalent if

$$IOBlocks(TS) = IOBlocks(TS')$$

This equivalence is denoted $TS \sim_{ioblock} TS'$.

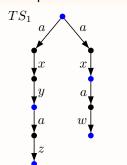
Remark

IO-block equivalence corresponds to the queued suspension trace equivalence of

A. Petrenko, N. Yevtushenko and J.L. Huo: Testing Transition Systems with Input and Output Testers, *Proc of TestCom 2003*.

IO-block equivalence

Example

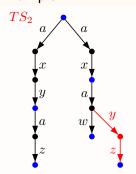


```
IOBlocks(TS_1):
(\varepsilon, \varepsilon)
(a, xy)
(a,x)
(a, xy)(a^n, z) for n \ge 1
(a,x)(a^n,w) for n \ge 1
(a^n, xyz) for n \ge 2
(a^n, xw) for n \geq 2
```

$$IOBeh(TS_1)$$
:
 $(\varepsilon, \varepsilon)$
 (a, xy)
 (a, x)
 (a^n, xyz) for $n \ge 2$
 (a^n, xw) for $n \ge 2$

IO-block equivalence

Example



```
IOBlocks(TS_2):
(\varepsilon, \varepsilon)
(a, xy)
(a,x)
(a, xy)(a^n, z) for n \ge 1 (a^n, xyz) for n \ge 2
(a,x)(a^n,w) for n \ge 1 (a^n,xw) for n \ge 2
(a^n, xyz) for n \geq 2
(a^n, xw) for n \geq 2
(a,x)(a^n,yz) for n \ge 1
```

```
IOBeh(TS_2):
(\varepsilon, \varepsilon)
(a, xy)
(a,x)
```

Proposition

If $TS_1 \sim_{ioblock} TS_2$, then $TS_1 \sim_{io} TS_2$.

Proof

 $IOBeh(TS) = IOBlocks(TS) \cap (\Sigma_i^* \times \Sigma_o^*)$

Decidability of IO-block equivalence

Definition

A transition system is well-structured if every state either refuses Σ_i or refuses Σ_o .

Definition

A block observation $\alpha = (u_1, v_1) \cdots (u_n, v_n)$ is reduced if $u_1 = \varepsilon$ and $u_j \in \Sigma_i$ for $1 < j \le n$.

redIOBlocks(TS) denotes the set of reduced block observations of TS.

Definition

Let α and β be block-observations. We say that α is *finer than* β , denoted $\alpha \leq \beta$, if β can be obtained from α by merging consecutive blocks.

Lemma

Let TS be well-structured. Then, $IOBlocks(TS) = \uparrow redIOBlocks(TS)$ where \uparrow denotes the upward closure for \prec .

Decidability of IO-block equivalence

Theorem

For finite well structured transition systems, $\sim_{ioblock}$ is decidable.

Proof

For $w = v_1 a_2 v_2 \cdots a_n v_n \in \Sigma^*$ with $v_j \in \Sigma_o^*$ and $a_j \in \Sigma_i$, we define the reduced block observation $f(w) = (\varepsilon, v_1)(a_2, v_2) \cdots (a_n, v_n)$.

Let $L_{\delta}(TS)$ be the language accepted by TS with quiescent states as final states.

For $a \in \Sigma_i$, let $L_{\delta,a}(TS)$ be the language accepted by TS with quiescent states that refuse a as final states.

$$redIOBlocks(TS) = f\left(L_{\delta}(TS) \cup \bigcup_{a \in \Sigma_{i}} L_{\delta,a}(TS) \cdot a \cdot \Sigma_{i}^{*}\right)$$
$$f^{-1}(IOBlocks(TS)) = L_{\delta}(TS) \cup \bigcup_{a \in \Sigma_{i}} L_{\delta,a}(TS) \cdot a \cdot \Sigma_{i}^{*}$$

Outline

Introduction

Input/Output semantics

IO-Blocks semantics

4 Queue semantics (Tretman)

Conclusion

Queue semantics (Tretmans)

Definition

Let $TS = (S, \Sigma, I, T)$ be a transition system. Define $Q(TS) = (S', \Sigma, I', T')$ by

- $S' = S \times \Sigma_i^* \times \Sigma_o^*$: configurations of TS.
- $I' = I \times \{\varepsilon\} \times \{\varepsilon\}$: initial configurations
- Transitions of TS are broken up into two moves, one visible and one invisible (labelled τ):

Input
$$\frac{s \xrightarrow{a} s'}{(s, \sigma_i, \sigma_o) \xrightarrow{a} (s, \sigma_i a, \sigma_o)}$$

$$\frac{s \xrightarrow{a} s'}{(s, a\sigma_i, \sigma_o) \xrightarrow{\tau} (s', \sigma_i, \sigma_o)}$$
Output
$$\frac{s \xrightarrow{x} s'}{(s, \sigma_i, \sigma_o) \xrightarrow{\tau} (s', \sigma_i, \sigma_o x)}$$

$$\frac{(s, \sigma_i, \sigma_o) \xrightarrow{\tau} (s, \sigma_i, \sigma_o)}{(s, \sigma_i, x\sigma_o) \xrightarrow{x} (s, \sigma_i, \sigma_o)}$$

• L(Q(TS)) is the set of traces of Q(TS).

Queue equivalence (Tretmans)

Definition

$$TS \sim_Q TS' \stackrel{\mathsf{def}}{=} Q(TS) \sim_{syn} Q(TS').$$

Intuitively, synchronous testing equivalence \sim_{syn} corresponds to failure semantics.

Definition

- $w \in L(Q(TS))$ is a quiescent trace if there is a run $(r, \varepsilon, \varepsilon) \xrightarrow{w} (s, \sigma_i, \varepsilon)$ with $r \in I$ and $(s, \sigma_i, \varepsilon)$ quiescent in Q(TS).
- We denote by $L_{\delta}(Q(TS))$ the set of quiescent traces of Q(TS).

Proposition (Tretmans)

$$TS \sim_Q TS' \qquad \text{iff} \qquad L(Q(TS)) = L(Q(TS')) \text{ and } L_{\delta}(Q(TS)) = L_{\delta}(Q(TS'))$$

Pb: characterization of \sim_Q on TS instead of Q(TS).

Ape relation (Tretmans)

Ape relation for the queue semantics

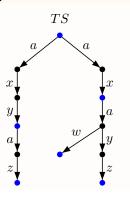
- Output actions may always be postponed: $w_1xaw_2 @ w_1axw_2$ For $x \in \Sigma_o$ and $a \in \Sigma_i$, we have $w_1xaw_2 \in L(Q(TS))$ implies $w_1axw_2 \in L(Q(TS))$.
- Input actions may always be added: w @ waFor $a \in \Sigma_i$, we have

```
w \in L(Q(TS)) implies wa \in L(Q(TS)).
```

- We denote @ the reflexive and transitive closure of the relations postponing an output action: w_1xaw_2 @ w_1axw_2 or adding an input action: w @ wa.
- Tracks(TS) is the set of @-minimal words in L(Q(TS)). @-minimal: no trailing input, outputs as early as possible.
- L(Q(TS)) is the @-upward closure of Tracks(TS).
- $-\operatorname{Tracks}(TS) \subseteq L(TS).$
- L(Q(TS)) = L(Q(TS')) iff Tracks(TS) = Tracks(TS').

Tracks (Tretmans)

Example



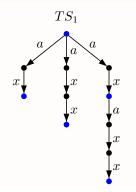
 $\begin{array}{lll} \operatorname{Tracks}(TS) \colon & L(Q(TS)) \colon \\ \varepsilon & a^* \\ ax & a^+xa^* \\ axy & a^+xa^*ya^* \\ axyaz & a^+xa^+ya^*za^* \\ axaw & a^+xa^*ya^+za^* \\ \operatorname{not} axayz & a^+xa^+wa^* \end{array}$

Comparing the equivalences

Proposition

If $TS_1 \sim_Q TS_2$, then $TS_1 \sim_{io} TS_2$.

The converse does not hold



Tracks (TS_1) : ε ax axx axaxx

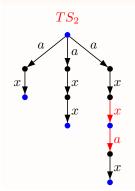
 $IOBeh(TS_1)$: $(\varepsilon, \varepsilon)$ (a^n, x) for $n \ge 1$ (a^n, x^2) for $n \ge 1$ (a^n, x^3) for $n \ge 2$

Comparing the equivalences

Proposition

If $TS_1 \sim_Q TS_2$, then $TS_1 \sim_{io} TS_2$.

The converse does not hold



Tracks (TS_2) : ε ax axx axxax

axxax @ axaxx

 $IOBeh(TS_2)$: $(\varepsilon, \varepsilon)$ (a^n, x) for $n \ge 1$ (a^n, x^2) for $n \ge 1$ (a^n, x^3) for $n \ge 2$

Quiescent traces (Tretmans)

Empty and blocked quiescent traces

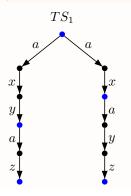
- $\begin{array}{l} w\in L(Q(TS)) \text{ is an empty quiescent trace if there is a run} \\ (r,\varepsilon,\varepsilon)\xrightarrow{w}(s,\varepsilon,\varepsilon) \text{ with } r\in I \text{ and } s \text{ quiescent in } TS. \\ \text{We denote by } L_{\delta}^{\text{empty}}(Q(TS)) \text{ the empty quiescent traces of } Q(TS). \end{array}$
- $w \in L(Q(TS))$ is a blocked quiescent trace if there is a run $(r, \varepsilon, \varepsilon) \xrightarrow{w} (s, a\sigma_i, \varepsilon)$ with $r \in I$ and in TS, s quiescent and $s \xrightarrow{a}$. We denote by $L_{\delta}^{\text{block}}(Q(TS))$ the blocked quiescent traces of Q(TS).

Proposition

$$L_{\delta}(Q(TS)) = L_{\delta}^{\mathsf{empty}}(Q(TS)) \cup L_{\delta}^{\mathsf{block}}(Q(TS))$$

Quiescent traces (Tretmans)

Example



```
\begin{array}{lll} L_{\delta}^{\mathsf{empty}}(TS_1) \colon & L_{\delta}^{\mathsf{block}}(TS_1) \colon \\ \varepsilon & a^+xya^+za^+ \\ ax & a^+xa^+yza^+ \\ axy & aa^+xyza^+ \\ axayz & a^+xa^+ya^+za^* \\ axyaz & \dots \\ aaxyz & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &
```

@-upper closure of axyaza

Lemma

 $L^{\mathsf{block}}_{\delta}(Q(TS)) = \{ w \in \Sigma^* \mid \exists \ r \xrightarrow{w'} s \text{ in } TS \text{ with } r \in I, s \text{ quiescent, and} \\ \exists \ a \in \Sigma_i \text{ such that } s \xrightarrow{a} \text{ and } w'a @ w \}.$

Strict ape relation (Tretmans)

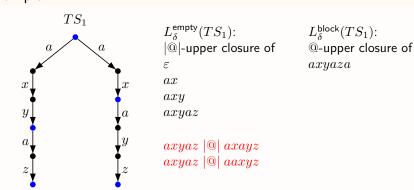
Strict ape relation for the queue semantics

We denote |@| the reflexive and transitive closure of the relation postponing an output action: $w_1xaw_2 @ w_1axw_2$.

Lemma

$$L^{\mathsf{empty}}_{\delta}(Q(TS)) = \{w \in \Sigma^* \mid \exists \ r \xrightarrow{w'} s \text{ in } TS \text{ with } r \in I, s \text{ quiescent}, w' \mid @ \mid w \}$$

Example



į

Undecidability of \sim_Q

Theorem

 $\sim_{\mathcal{Q}}$ is undecidable

Proof

Reduction from the PCP problem.

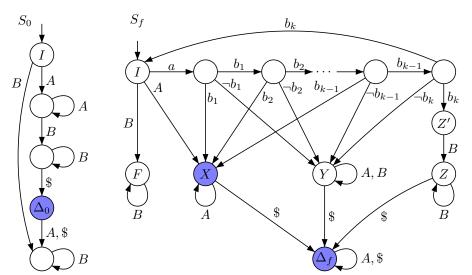
A PCP instance consists in two morphisms $f,g:A^+\to B^+$ where A,B are finite alphabets.

The PCP instance f,g has a solution if there exists $u\in A^+$ such that f(u)=g(u).

We construct two systems M_1 and M_2 such that the PCP instance (f,g) has no solution iff $M_1 \sim_Q M_2$.

Reduction from the PCP problem

Let $f, g: A^+ \to B^+$ be a PCP instance. We define



Reduction from the PCP problem

We want to compare the following two systems:

- $M_1 = S_0 + S_f + S_g$
- $M_2 = S_f + S_g$

Lemma

 $L_{\delta}^{\mathsf{block}}(M_1) = L_{\delta}^{\mathsf{block}}(M_2) = \emptyset.$

Lemma

 $\operatorname{Tracks}(M_1) = \operatorname{Tracks}(M_2) = \operatorname{Tracks}(S_f) = B^*.$

Lemma

- $L_{\delta}^{\text{empty}}(S_0)$ is the |@|-upper closure of A^+B^+ \$.
- Let $u \in A^+$ and $v \in B^+$. Then, $uv\$ \in L^{\mathsf{empty}}_{\delta}(S_f)$ if and only if $v \neq f(u)$.

Theorem

 $M_1 \sim_Q M_2$ iff the PCP instance (f,g) has no solution.

Outline

Introduction

Input/Output semantics

IO-Blocks semantics

Queue semantics (Tretman)

Conclusion

Conclusion

Summary

- We have investigated 3 asynchronous testing equivalences.
- We have shown that \sim_{io} is strictly weaker than \sim_Q and $\sim_{ioblock}$, but \sim_Q and $\sim_{ioblock}$ are incomparable.
- $\sim_{ioblock}$ is decidable, while \sim_{io} and \sim_Q are undecidable.

Open problems

- Construct test suites based on the IO-Blocks semantics.
- Investigate distributed testing.
- See e.g. C. Jard: Synthesis of distributed testers from true-concurrency models of reactive systems, Information & Software Technology, 2003.