
Reasoning about
Distributed Systems:

WYSIWYG
Paul Gastin

LSV, ENS Cachan, France
C. Aiswarya

Uppsala University, Sweden

Introduction

(p, on)(p, c2!)(p, off)(q2, c2?)(p, c1!)(q1, c1?)

(q2, c4!)(p, on)(p, c2!)(p, off)(r, c4?)(r, on)

(q1, c3!)(p, c1!)(q1, c1?)(q1, c3!)(q2, c2?)(q2, c4!)

(r, c4?)(r, on)(r, c3?)(r, off) · · ·

Introduction
(p, on)(p, c2!)(p, off)(q2, c2?)(p, c1!)(q1, c1?)

(q2, c4!)(p, on)(p, c2!)(p, off)(r, c4?)(r, on)

(q1, c3!)(p, c1!)(q1, c1?)(q1, c3!)(q2, c2?)(q2, c4!)

(r, c4?)(r, on)(r, c3?)(r, off) · · ·

p q

r

• Processes
• Data structures

• Stacks: recursive programs, multithreaded
• Queues: communication (FIFO)
• Bags: communication (unordered)

Constructive writesDestructive reads

System: Concurrent Processes with Data-Structures

• PDA: Pushdown automata
Recursive programs

Architectures: Special cases

q

• PDA: Pushdown automata
Recursive programs

Architectures: Special cases

• MPDA: Multi-pushdown automata
Multi-threaded recursive programs

q

• PDA: Pushdown automata
Recursive programs

Architectures: Special cases

• MPDA: Multi-pushdown automata
Multi-threaded recursive programs

• MPA: Message passing automata
Communicating finite state machines

p

q2

r

q1
c1 c3

c2 c4

• PDA: Pushdown automata
Recursive programs

Architectures: Special cases

• MPDA: Multi-pushdown automata
Multi-threaded recursive programs

• MPA: Message passing automata
Communicating finite state machines

• PN: Petri Nets
Only bags

p q

Remote on-off via 2 channels

p

q2

r

q1
c1 c3

c2 c4

System: Architecture + Boolean Programs

onoff
c1!ac1!b

c2!ac2!b

c1?ac1?b

c3!ac3!b

p

q2

r

q1
c1 c3

c2 c4

Operational semantics
Transition system TS

States (infinite)

locations of processes

contents of data structures

Transitions

Induced by the boolean programs

Linear traces: abstractions of runs of TS

Linear Traces

(p, on)(p, c2!)(p, off)(q2, c2?)(p, c1!)(q1, c1?)

(q2, c4!)(p, on)(p, c2!)(p, off)(r, c4?)(r, on)

(q1, c3!)(p, c1!)(q1, c1?)(q1, c3!)(q2, c2?)(q2, c4!)

(r, c4?)(r, on)(r, c3?)(r, off) · · ·

WYSIWYG:

Make visible what is important

(p, on)(p, c2!)(p, off)(q2, c2?)(p, c1!)(q1, c1?)

(q2, c4!)(p, on)(p, c2!)(p, off)(r, c4?)(r, on)

(q1, c3!)(p, c1!)(q1, c1?)(q1, c3!)(q2, c2?)(q2, c4!)

(r, c4?)(r, on)(r, c3?)(r, off) · · ·

Linear Traces vs. Graphs
Message Sequence Charts

ITU Standard

(p, on)(p, c2!)(p, off)(q2, c2?)(p, c1!)(q1, c1?)

(q2, c4!)(p, on)(p, c2!)(p, off)(r, c4?)(r, on)

(q1, c3!)(p, c1!)(q1, c1?)(q1, c3!)(q2, c2?)(q2, c4!)

(r, c4?)(r, on)(r, c3?)(r, off) · · ·

Obey the Latest Order

Graphs for Sequential Systems
q

Answer the correct client

for topmost requests

a↑ba↑c↑aa↓↑b↓a↓cb↑↑a↓↓a↑b↑cb↓a↓↓ab↑b↑aa↑↑↓↑↓↓↓↓b

WYSIWYG:

Make visible what is important

Graphs for Sequential Systems
q

Answer the correct client

for topmost requests

a↑ba↑c↑aa↓↑b↓a↓cb↑↑a↓↓a↑b↑cb↓a↓↓ab↑b↑aa↑↑↓↑↓↓↓↓b

Nested Words

Alur, Madhusudan, 2009WYSIWYG:

Make visible what is importantBehaviors should be graphs

Semantics of CPDS on Graphs

d, d1? a, d3!

a, d3!

b, d1!c, d2? 54

3
2 1 0

9

7

6

8

a, d2!

b, d4!

d, d4?

c, d3?

c, d3?

a a b c d

b a c d c

a a b c d

b a c d c
5 4

3

2

1

Semantics of CPDS on Graphs

d, d1? a, d3!

a, d3!

b, d1!c, d2? 54

3
2 1 0

9

7

6

8

a, d2!

b, d4!

d, d4?

c, d3?

c, d3?

a a b c d

b a c d c
5 4

3

2

1

Semantics of CPDS on Graphs

d, d1? a, d3!

a, d3!

b, d1!c, d2? 54

3
2 1 0

9

7

6

8

a, d2!

b, d4!

d, d4?

c, d3?

c, d3?

a a b c d

b a c d c
5 4

3

2

1

Semantics of CPDS on Graphs

d, d1? a, d3!

a, d3!

b, d1!c, d2? 54

3
2 1 0

9

7

6

8

a, d2!

b, d4!

d, d4?

c, d3?

c, d3?

Concurrent Processes with Data Structures

Behaviors as Graphs

Specifications

Verification with Graphs and under-approximations

Split-width and tree interpretation

Conclusion

Outline

Specification over Graphs

ϕ ::= false | a(x) | p(x) | x ≤ y | x ◃
d y | x → y

| x ∈ X | ϕ ∨ ϕ | ¬ϕ | ∃x ϕ | ∃X ϕ

p

q

a b

a

b

a b a a a b

b a

a b b a a b a b a b b a

d2 d2 d2d3

d1

d1 d1

d4

d4

d4

d4

MSO: Monadic Second Order Logic

Specification over Graphs
Obey the latest order

∀z (r(z) ∧ on(z)) ⇒ ∃y (p(y) ∧ y < z

∧ ∀x (x < z ∧ p(x) ⇒ x ≤ y)

∧ ∃x (x → y ∧ on(x)))

G(r ∧ on ⇒ Latestp Yp on)TL
FO

r

p

Specification over Linear Traces

Based on the word successor relation, and the word total order

LTL over words, MSO over words

LTL specification are not always meaningful
LTL \ X, Closure properties, …

Natural properties of graphs are difficult or impossible to express
on linear traces

(p, on)(p, c2!)(p, off)(q2, c2?)(p, c1!)(q1, c1?)

(q2, c4!)(p, on)(p, c2!)(p, off)(r, c4?)(r, on)

(q1, c3!)(p, c1!)(q1, c1?)(q1, c3!)(q2, c2?)(q2, c4!)

(r, c4?)(r, on)(r, c3?)(r, off) · · ·

Based on the word successor relation, and the word total order

LTL over words, MSO over words

LTL specification are not always meaningful
LTL \ X, Closure properties, …

Natural properties of graphs are difficult or impossible to express
on linear traces

Specification over Linear Traces
(p, on)(p, c2!)(p, off)(q2, c2?)(p, c1!)(q1, c1?)

(q2, c4!)(p, on)(p, c2!)(p, off)(r, c4?)(r, on)

(q1, c3!)(p, c1!)(q1, c1?)(q1, c3!)(q2, c2?)(q2, c4!)

(r, c4?)(r, on)(r, c3?)(r, off) · · ·
Obey the latest order

not expressible

in MSO over Linear Traces

Graphs for Sequential Systems
q

Answer the correct client

for topmost requests

a↑ba↑c↑aa↓↑b↓a↓cb↑↑a↓↓a↑b↑cb↓a↓↓ab↑b↑aa↑↑↓↑↓↓↓↓b

∀x, y

(

a(x − 1) ∧ x ◃ y ∧
¬∃z, z′ (z ◃ z′ ∧ z < x < z′)

)

⇒ a(y + 1)

Graphs for Sequential Systems
q

Answer the correct client

for topmost requests

Not expressible in MSO over Linear Traces

without nesting relation

even with visible alphabet

a↑ba↑c↑aa↓↑b↓a↓cb↑↑a↓↓a↑b↑cb↓a↓↓ab↑b↑aa↑↑↓↑↓↓↓↓bSpecifications should be on graphs

Concurrent Processes with Data Structures

Behaviors as Graphs

Specifications

Verification with Graphs and under-approximations

Split-width and tree interpretation

Conclusion

Outline

Verification problems
Emptiness or Reachability

Inclusion or Universality

Satisfiability φ

Model Checking: S ⊨ φ

Temporal logics

Propositional dynamic logics

Monadic second order logic

Obey the latest order

G(r ∧ on ⇒ Latestp Yp on)

∀z (r(z) ∧ on(z)) ⇒ ∃y (p(y) ∧ y < z

∧ ∀x (x < z ∧ p(x) ⇒ x ≤ y)

∧ ∃x (x → y ∧ on(x)))

Model Checking vs Reachability
Reachability reduces to model checking

S ⊨ φ
AS A¬�

AS ∩ A¬� = ∅

… when specifications can be translated to automata
… this is not possible in general for graphs

Model checking reduces to Reachability …

Verification problems
Emptiness or Reachability

Inclusion or Universality

Satisfiability φ

Model Checking: S ⊨ φ

Temporal logics

Propositional dynamic logics

Monadic second order logic

Obey the latest order

G(r ∧ on ⇒ Latestp Yp on)

∀z (r(z) ∧ on(z)) ⇒ ∃y (p(y) ∧ y < z

∧ ∀x (x < z ∧ p(x) ⇒ x ≤ y)

∧ ∃x (x → y ∧ on(x)))

undecidable in general

Emptiness or Reachability

Inclusion or Universality

Satisfiability φ

Model Checking: S ⊨ φ

Temporal logics

Propositional dynamic logics

Monadic second order logic

Under-approximate Verification

undecidable

Bounded data structures

Existentially bounded [Genest et al.]

Acyclic Architectures [La Torre et al., Heußner et al. Clemente et al.]

Bounded context switching [Qadeer, Rehof], [LaTorre et al.], …

Bounded phase [LaTorre et al.]

Bounded scope [LaTorre et al.]

Priority ordering [Atig et al., Saivasan et al.]

Mainly for

reachability

Under-approximate Verification

C: class of
behaviors

Model checking problem: S ⊨C φ

S ⊨C φ iff φS ⇒ φ is valid in C

S: CPDS

φ: Specification

encyclopedia of mathematics and its applications

Graph Structure and
Monadic Second-Order Logic

A Language-Theoretic Approach

BRUNO COURCELLE

Université de Bordeaux

JOOST ENGELFRIET

Universiteit Leiden

Let C be a class of bounded degree MSO definable graphs.
TFAE
1. C has a decidable MSO theory
2. C can be interpreted in binary trees
3. C has bounded tree-width
4. C has bounded clique-width
5. C has bounded split-width (for CBMs)

Decidability of MSO theory

Reduction to the theory of

Tree Automata

Emptiness or Reachability

Inclusion or Universality

Satisfiability

Model Checking: S

Temporal logics

Propositional dynamic logics

Monadic second order logic

Under-approximate Verification

undecidable Mainly for

reachability

Bounded channel size

Existentially bounded [Genest et al.]

Acyclic Architectures [La Torre et al., Heußner et al.

Bounded context switching [Qadeer, Rehof], [LaTorre et al.], …

Bounded phase [LaTorre et al.]

Bounded scope [LaTorre et al.]

Priority ordering [Atig et al., Saivasan et al.]

The Tree Width of Auxiliary Storage

P. Madhusudan
University of Illinois at Urbana-Champaign, USA

madhu@illinois.edu

Gennaro Parlato
LIAFA, CNRS and University of Paris Diderot, France.

gennaro@liafa.jussieu.fr

Abstract
We propose a generalization of results on the decidability of empti-
ness for several restricted classes of sequential and distributed au-
tomata with auxiliary storage (stacks, queues) that have recently
been proved. Our generalization relies on reducing emptiness of
these automata to finite-state graph automata (without storage)
restricted to monadic second-order (MSO) definable graphs of
bounded tree-width, where the graph structure encodes the mech-
anism provided by the auxiliary storage. Our results outline a uni-
form mechanism to derive emptiness algorithms for automata, ex-
plaining and simplifying several existing results, as well as proving
new decidability results.

Categories and Subject Descriptors F.1.1 [Theory of Computa-
tion]: Models of Computation: Automata; D.2.4 [Software Engi-
neering]: Software/Program Verification: Model checking; F.4.3
[Theory of Computation]: Formal Languages: Decision problems

General Terms Algorithms, Reliability, Theory, Verification

Keywords model checking, automata, decision procedures, bounded
tree-width

1. Introduction
Several classes of automata with auxiliary storage have been de-
fined over the years that have a decidable emptiness problem. Clas-
sic models like pushdown automata utilizing a stack have a decid-
able emptiness problem [14], and several new models like restricted
classes of multi-stack pushdown automata, automata with queues,
and automata with both stacks and queues, have been proved de-
cidable recently [8, 15, 17, 22].

The decidability of emptiness of these automata has often been
motivated for model-checking systems. Software models can be
captured using automata with auxiliary storage, as stacks can
model the control recursion in programs while queues model FIFO
communication between processes. In abstraction-based model-
checking, data domains get abstracted from programs, resulting in
automata models (e.g., the SLAM tool builds pushdown automata
models using predicate abstraction [7], and the GETAFIX tool
model-checks both single-stack and multi-stack automata mod-
els [18, 19]). The emptiness problem for these automata is the most
relevant problem as it directly corresponds to checking reachability
of an error state.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’11, January 26–28, 2011, Austin, Texas, USA.
Copyright c⃝ 2011 ACM 978-1-4503-0490-0/11/01. . . $10.00

However, the various identified decidable restrictions on these
automata are, for the most part, awkward in their definitions—
e.g. emptiness of multi-stack pushdown automata where pushes
to any stack is allowed at any time, but popping is restricted to
the first non-empty stack is decidable! [8]. Yet, relaxing these
definitions to more natural ones seems to either destroy decidability
or their power. It is hence natural to ask: why do these automata
have decidable emptiness problems? Is there a common underlying
principle that explains their decidability?

We propose, in this paper, a general criterion that uniformly
explains many such results— several restricted uses of auxiliary
storage are decidable because they can be simulated by graph
automata working on graphs that capture the storage as well as
their sequential or distributed nature, and are also of bounded tree-
width.

More precisely, we can show, using generalizations of known
results on the decidability of satisfiability of monadic second-order
logic (MSO) on bounded tree-width graphs [9, 23], that graph au-
tomata on MSO-definable graphs of bounded tree-width are decid-
able. Graph automata [24] are finite-state automata (without auxil-
iary storage) that accept or reject graphs using tilings of the graph
using states, where the restrictions on tiling determine the graphs
that get accepted. The general decidability of emptiness of graph
automata on MSO-definable graphs follows since the existence of
acceptable tilings is MSO-definable.

We proceed to show that several sequential/distributed automata
with an auxiliary storage (we consider stacks and queues only in
this paper), can be realized as graph automata working on single
or multiple directed paths augmented with special edges to capture
the mechanism of the storage. Intuitively, a symbol that gets stored
in a stack/queue and later gets retrieved can be simulated by a
graph automaton working on a graph where there is a special edge
between the point where the symbol gets stored to the point where
it gets retrieved. A graph automaton can retrieve the symbol at the
retrieval point by using an appropriate tiling of this special edge.

The idea of converting automata with storage to graph automata
without storage but working on specialized graphs is that it allows
us to examine the complexity of storage using the structure of
the graph that simulates it. We show that many automata with a
tractable emptiness problem can be converted to graph automata
working on MSO definable graphs of bounded tree-width, from
which decidability of their emptiness follows.

We prove the simulation of the following classes of automata
with auxiliary storage by graph automata working on MSO-
definable bounded tree-width graphs:

- Multi-stack pushdown automata with bounded context-switching:
This is the class of multi-stack automata where each computa-

tion of the automaton can be divided into k stages, where in each
stage the automaton touches only one stack (proved decidable first
in [22]). We show that they can be simulated by graph automata on
graphs of tree-width O(k).

Concurrent Processes with Data Structures

Behaviors as Graphs

Specifications

Verification with Graphs and under-approximations

Split-width and tree interpretation

Conclusion joint work with

C. Aiswarya

K. Narayan Kumar

Outline

Width: split vs tree vs clique

Let C be a class of bounded degree MSO definable graphs.
TFAE
1. C has a decidable MSO theory
2. C can be interpreted in binary trees
3. C has bounded tree-width
4. C has bounded clique-width
5. C has bounded split-width (for CBMs)

Split-Width k

Tree-Width t Clique-Width c

t ≤ 2(k + |Procs|) - 1 c ≤ 2(k + |Procs|) + 1

Let C be a class of bounded degree MSO definable graphs.
TFAE
1. C has a decidable MSO theory
2. C can be interpreted in binary trees
3. C has bounded tree-width
4. C has bounded clique-width
5. C has bounded split-width (for CBMs)

Split-Width k

Tree-Width t Clique-Width c

k ≤ 120(t + 1) k ≤ 2c - 3

Width: split vs tree vs clique

a a b c d

b a c d c

SPLIT DECOMPOSITION OF CBMs

BUDGET

b c d

a

a a

b c d c

a a b c d

b a c d c

SPLIT DECOMPOSITION OF CBMs

b c d

a

a a

b c d c

SPLIT DECOMPOSITION OF CBMs

b c d

a

a a

b c d c

SPLIT DECOMPOSITION OF CBMs

b c d

a

a a

b c d c

SPLIT DECOMPOSITION OF CBMs

BUDGET

b c d

a

a a

b c d c

BUDGET

SPLIT DECOMPOSITION OF CBMs

b c d

a

SPLIT DECOMPOSITION OF CBMs

b c d

a

b dc

a

SPLIT DECOMPOSITION OF CBMs

b dc

a

SPLIT DECOMPOSITION OF CBMs

b dc

a

SPLIT DECOMPOSITION OF CBMs

a a

b c d c

SPLIT DECOMPOSITION OF CBMs

a

b c d

a

c

a a

b c d c

SPLIT DECOMPOSITION OF CBMs

a

b c d

a

c

SPLIT DECOMPOSITION OF CBMs

a

b c d

a

c

SPLIT DECOMPOSITION OF CBMs

a

b c d

a

c

SPLIT DECOMPOSITION OF CBMs

a

b c d

SPLIT DECOMPOSITION OF CBMs

b d

a

c

a

b c d

SPLIT DECOMPOSITION OF CBMs

b d

a

c

SPLIT DECOMPOSITION OF CBMs

b d

a

c

SPLIT DECOMPOSITION OF CBMs

C. Aiswarya, and P. Gastin 13

M

p

q

a a b c d

b a c d c

M′

p

q

a a b c d

b a c d c

M1

p

q

a a

b c d c

M′

1

p

q

a a

b c d c

M3

a

b c d

M′

3

a

b c d

a

c b d

a

c

M2

b c d

a

M′

2

b c d

a

c

a

b d

Figure 4 A split decomposition of width 3.

split-!

div-ÛÛ

split-!

div-ÛÛ

split-!

div-ÛÛ

Bd2

a c

Bd3

b d

Bd2

a c

split-!

div-ÛÛ

Bd4

a c

Bd1

b d

(n) split-!
(m, mm)

(nÕ) div-ÛÛ
(¸r, ¸r¸)

(n1) split-!
(m, im)

(nÕ
1) div-ÛÛ

(¸r, ¸¸r)

(n3) split-!
(Á, im)

(nÕ
3) div-ÛÛ

(¸, r¸r)

Bd2

(¸, r)

(n4) a, p c, q

Bd3

(Á, ¸r)

b, q d, q

Bd2

(¸, r)

(n5) a, p c, q

(n2) split-!
(mm, Á)

(nÕ
2) div-ÛÛ

(r¸r, ¸)

Bd4

(r, ¸)

a, q c, p

Bd1

(¸r, Á)

b, p d, p

Figure 5 A split term s (left) and a labelled term t (right) corresponding to Figure 4.

1
SPLIT TREE

OF THE FULL DECOMPOSITION

b d

b d

a ca c

a c

Tree interpretation in
Abstract Tree Decomposition

C. Aiswarya, and P. Gastin 13

M

p

q

a a b c d

b a c d c

M′

p

q

a a b c d

b a c d c

M1

p

q

a a

b c d c

M′

1

p

q

a a

b c d c

M3

a

b c d

M′

3

a

b c d

a

c b d

a

c

M2

b c d

a

M′

2

b c d

a

c

a

b d

Figure 4 A split decomposition of width 3.

split-!

div-ÛÛ

split-!

div-ÛÛ

split-!

div-ÛÛ

Bd2

a c

Bd3

b d

Bd2

a c

split-!

div-ÛÛ

Bd4

a c

Bd1

b d

(n) split-!
(m, mm)

(nÕ) div-ÛÛ
(¸r, ¸r¸)

(n1) split-!
(m, im)

(nÕ
1) div-ÛÛ

(¸r, ¸¸r)

(n3) split-!
(Á, im)

(nÕ
3) div-ÛÛ

(¸, r¸r)

Bd2

(¸, r)

(n4) a, p c, q

Bd3

(Á, ¸r)

b, q d, q

Bd2

(¸, r)

(n5) a, p c, q

(n2) split-!
(mm, Á)

(nÕ
2) div-ÛÛ

(r¸r, ¸)

Bd4

(r, ¸)

a, q c, p

Bd1

(¸r, Á)

b, p d, p

Figure 5 A split term s (left) and a labelled term t (right) corresponding to Figure 4.

1

b da ca c

a c b d

b d

b d

a ca c

a c

Tree interpretation in
Abstract Tree Decomposition

C. Aiswarya, and P. Gastin 13

M

p

q

a a b c d

b a c d c

M′

p

q

a a b c d

b a c d c

M1

p

q

a a

b c d c

M′

1

p

q

a a

b c d c

M3

a

b c d

M′

3

a

b c d

a

c b d

a

c

M2

b c d

a

M′

2

b c d

a

c

a

b d

Figure 4 A split decomposition of width 3.

split-!

div-ÛÛ

split-!

div-ÛÛ

split-!

div-ÛÛ

Bd2

a c

Bd3

b d

Bd2

a c

split-!

div-ÛÛ

Bd4

a c

Bd1

b d

(n) split-!
(m, mm)

(nÕ) div-ÛÛ
(¸r, ¸r¸)

(n1) split-!
(m, im)

(nÕ
1) div-ÛÛ

(¸r, ¸¸r)

(n3) split-!
(Á, im)

(nÕ
3) div-ÛÛ

(¸, r¸r)

Bd2

(¸, r)

(n4) a, p c, q

Bd3

(Á, ¸r)

b, q d, q

Bd2

(¸, r)

(n5) a, p c, q

(n2) split-!
(mm, Á)

(nÕ
2) div-ÛÛ

(r¸r, ¸)

Bd4

(r, ¸)

a, q c, p

Bd1

(¸r, Á)

b, p d, p

Figure 5 A split term s (left) and a labelled term t (right) corresponding to Figure 4.

1

Vertices are leaves

b da ca c

a c b d

b d

b d

a ca c

a c

Tree interpretation in
Abstract Tree Decomposition

C. Aiswarya, and P. Gastin 13

M

p

q

a a b c d

b a c d c

M′

p

q

a a b c d

b a c d c

M1

p

q

a a

b c d c

M′

1

p

q

a a

b c d c

M3

a

b c d

M′

3

a

b c d

a

c b d

a

c

M2

b c d

a

M′

2

b c d

a

c

a

b d

Figure 4 A split decomposition of width 3.

split-!

div-ÛÛ

split-!

div-ÛÛ

split-!

div-ÛÛ

Bd2

a c

Bd3

b d

Bd2

a c

split-!

div-ÛÛ

Bd4

a c

Bd1

b d

(n) split-!
(m, mm)

(nÕ) div-ÛÛ
(¸r, ¸r¸)

(n1) split-!
(m, im)

(nÕ
1) div-ÛÛ

(¸r, ¸¸r)

(n3) split-!
(Á, im)

(nÕ
3) div-ÛÛ

(¸, r¸r)

Bd2

(¸, r)

(n4) a, p c, q

Bd3

(Á, ¸r)

b, q d, q

Bd2

(¸, r)

(n5) a, p c, q

(n2) split-!
(mm, Á)

(nÕ
2) div-ÛÛ

(r¸r, ¸)

Bd4

(r, ¸)

a, q c, p

Bd1

(¸r, Á)

b, p d, p

Figure 5 A split term s (left) and a labelled term t (right) corresponding to Figure 4.

1

1

Data edges

1

b da ca c

a c b d

b d

b d

a ca c

a c

Tree interpretation in
Abstract Tree Decomposition

C. Aiswarya, and P. Gastin 13

M

p

q

a a b c d

b a c d c

M′

p

q

a a b c d

b a c d c

M1

p

q

a a

b c d c

M′

1

p

q

a a

b c d c

M3

a

b c d

M′

3

a

b c d

a

c b d

a

c

M2

b c d

a

M′

2

b c d

a

c

a

b d

Figure 4 A split decomposition of width 3.

split-!

div-ÛÛ

split-!

div-ÛÛ

split-!

div-ÛÛ

Bd2

a c

Bd3

b d

Bd2

a c

split-!

div-ÛÛ

Bd4

a c

Bd1

b d

(n) split-!
(m, mm)

(nÕ) div-ÛÛ
(¸r, ¸r¸)

(n1) split-!
(m, im)

(nÕ
1) div-ÛÛ

(¸r, ¸¸r)

(n3) split-!
(Á, im)

(nÕ
3) div-ÛÛ

(¸, r¸r)

Bd2

(¸, r)

(n4) a, p c, q

Bd3

(Á, ¸r)

b, q d, q

Bd2

(¸, r)

(n5) a, p c, q

(n2) split-!
(mm, Á)

(nÕ
2) div-ÛÛ

(r¸r, ¸)

Bd4

(r, ¸)

a, q c, p

Bd1

(¸r, Á)

b, p d, p

Figure 5 A split term s (left) and a labelled term t (right) corresponding to Figure 4.

1

Process edges

Nested Words: split-width ≤ 2

w :: = w w w

Split-width: under-approximations

Constant

Bound + 2

2Bound

Words

Nested Words

Acyclic Architectures

Bounded channel size

Existentially bounded

Bounded context switching

Bounded scope

Bounded phase

Priority ordering

Split-width: parametrized verification
C. Aiswarya, and P. Gastin 17

Problem
Complexity

bound on split-width
part of the input (in
unary)

bound on split-width
fixed

CPDS emptiness ExpTime-Complete PTime-Complete
CPDS inclusion or universality 2ExpTime ExpTime-Complete
LTL / CPDL satisfiability or model checking ExpTime-Complete
ICPDL satisfiability or model checking 2ExpTime -Complete
MSO satisfiability or model checking Non-elementary
Table 2 Summary of the complexities for bounded split-width verification.

Now, let Ï be a sentence in MSO(A, �). Using the MSO interpretation (�
valid

, �
vertex

,

(�a)aœ�

, (�p)pœProcs

, (�d)dœDS

, �æ) for k-bounded split-width, we can construct a formula Ï

k

from Ï such that for all trees t œ STk
valid

, we have t |= Ï

k if and only if cbm(t) |= Ï. By [31],
from the MSO formula Ï

k we can construct an equivalent tree automaton Ak
Ï. Therefore, the

satisfiability problem for the MSO formula Ï restricted to CBMk
split

reduces to the emptiness
problem of the tree automaton Ak

valid

fl Ak
Ï.

Finally, we deduce easily that L
cbm

(S) fl CBMk
split

™ L
cbm

(Ï) if and only if for all trees t

accepted by Ak
S we have t |= Ï

k. Therefore, the model checking problem S |= Ï restricted to
CBMk

split

reduces to the emptiness problem for the tree automaton Ak
valid

fl Ak
S fl Ak

¬Ï.
We have described above uniform decision procedures for an array of verification problems.

We refer to [2, 15,16] for more details and we summarise the computational complexities of
these procedures in Table 2.

Verification procedures for other under-approximation classes. Our approach is generic in
yet another sense. Under-approximation classes which admit a bound on split-width also
may benefit from the uniform decision procedures described above, provided these classes
correspond to regular sets of split-terms.

More precisely, let Cm be an under-approximation class with Cm ™ CBMk
split

. For instance,
we have seen that existentially m-bounded CBMs have split-width at most k = m + 1 (Ex. 6)
and m-bounded phase MNWs have split-width at most k = 2m (Ex. 7). Assume that we can
construct3 a tree automaton Ak

Cm
which accepts a tree t œ STk

valid

if and only if cbm(t) œ Cm.
Then, the decision procedures can be restricted to the class Cm with a further intersection
with the tree automaton Ak

Cm
. For instance, the emptiness problem for S restricted to Cm

reduces to the emptiness problem of Ak
valid

fl Ak
Cm

fl Ak
S . The model checking problem S |= Ï

restricted to Cm reduces to the emptiness problem of Ak
valid

fl Ak
Cm

fl Ak
S fl Ak

¬Ï.
Clearly, the bound k on split-width in terms of m as well as the size of Ak

Cm
will impact

on the complexity of the decision procedures. We give below several examples.
First, nested words have split-width bounded by a constant 2, and the set of nested words

can be recognised by a trivial 1-state CPDS. Hence the complexities of various problems
follow the right-most column of Table 2. Notice that already for this simple case, the
complexities match the corresponding lower bounds for all problems.

3 One way to obtain Ak
Cm

is to provide a CPDS Sm which accepts the class Cm, then the automaton Ak
Sm

serves as Ak
Cm

. Similarly, if there is a formula Ïm in MSO(A, �) characterising the under-approximation
then the automaton Ak

Ïm
serves as Ak

Cm
.

C. Aiswarya, P.G, K. Narayan Kumar
MSO decidability of multi-pushdown systems via split-width. In CONCUR 2012.
Verifying Communicating Multi-pushdown Systems via Split-width. In ATVA 2014.

Concurrent Processes with Data Structures

Behaviors as Graphs

Specifications

Verification with Graphs and under-approximations

Split-width

Conclusion

Outline

WYSIWYG

Linear Traces Graphs (CBMs)

• Interleaved sequence of events.
Interactions are obfuscated and
very difficult to recover.

• Successor relation not meaningful
• Combinatorial explosion

single distributed behavior results
in a huge number of linear traces

• Visual description of behavior
• Interactions are visible
• no combinatorial explosion

Understanding Behaviors

WYSIWYG

Linear Traces Graphs (CBMs)

• Too weak for many natural
specifications

• Requires syntactical or semantical
restrictions to be meaningful

• Powerful specifications
• Interactions are built-in
• Meaningful

Expressiveness of Specifications

WYSIWYG

Linear Traces Graphs (CBMs)

• Undecidable in general
• Decidable under restrictions
• Reductions to word automata
• Good space complexity
• Many tools available

• Undecidable in general
• Decidable under more lenient

restrictions
• Reductions to tree automata

via tree-interpretations
• Good time complexity
• Tools to be developed

Efficiency of Algorithms

Conclusion

Use graphs to reason about behaviors of systems
distributed or sequential

Exploit graph theory
Logics, decompositions, tree interpretations

Split-width: convenient decomposition technique
as powerful as tree-width or clique-width for CBMs
yields optimal algorithms

Perspectives
Extensions

Timed systems
Dynamic creation of processes
Read from many
Infinite behaviors
…

Tools

THANK YOU

