Formal Methods for the Verification of Distributed Algorithms

Paul Gastin

Laboratoire Spécification et Vérification
ENS Cachan, CNRS & Inria

Joint work with C. Aiswarya & Benedikt Bollig

Infinity
December 15, 2015

Landscape & Objectives

i v
' N7 1'1 % . v v
1

|N N | T

distributed system specification

Landscape & Objectives

set of admissible
.............. traces

set of possible
traces e

Behavior

L(A)

model checking

L(A) € L(p)?

System model Specification

Landscape & Objectives

/L

Behavior

L(p)

Finite automata LTL specification

Models of Distributed Systems

Landscape & Objectives

=

for all n

System model Specification

Landscape & Objectives

System model Specification

Landscape & Objectives

¥

=
2

System model V Specification

Landscape & Objectives

l@l — SO
;\
T
System model | Specification

Several sources of infinity / unboundedness

Landscape & Objectives

Communicating automata
[Brand-Zafiropulo ’83]

— ¥

% [n]

System model | Specification

Several sources of infinity / unboundedness

Landscape & Objectives

Data automata
[Bojanczyk et al. ’06]
[Bjorklund-Schwentick '07]

¥

I\

System model | Specification

Several sources of infinity / unboundedness

Landscape & Objectives

/ |F|
[0 ; Y
\ [n]

System model | Specification

Several sources of infinity / unboundedness

D iStI’i bUted algorith ms Leader election [Franklin ’82]

arbitrary distribution
of process identifiers

5<19<23<...

elect process
with maximum id

Behavior

Distributed algorithm

D iStI’i bUted algorith ms Leader election [Franklin ’82]

Behavior

Distributed algorithm

round

D iStI’i bUted algorith ms Leader election [Franklin ’82]

Behavior

Distributed algorithm

D iStI’i bUted algorith ms Leader election [Franklin ’82]

Behavior

Distributed algorithm

D iStI’i bUted algorith ms Leader election [Franklin ’82]

Behavior

Distributed algorithm

D iStI’i bUted a|gO|’ith ms Leader election [Franklin ’82]

Behavior

leader

Distributed algorithm

D iStI’i bUted a|gO|’ith ms Leader election [Franklin ’82]

Behavior

leader

Distributed algorithm

D iStI’i bUted a|gO|’ith ms Leader election [Franklin ’82]

Behavior

leader

Distributed algorithm

Distributed algorithms

left

A

- |dentical finite-state

processes

- Number of processes is

unknown and unbounded

- Processes have unique

pids (integers —
unbounded data)

A formal model for distributed algorithms
An automata-like way of writing DA

Every process '~ ' can be described by:

e Set of states e Set of transitions

e |nitial state e send pids to neighbours

e receive pids from neighbours,
» Set of registers and store in registers

. stores pid e compare registers

e uUpdate registers

Leader Election Algorithms
Franklin82

states: active, passive
found
initial state: active

registers: id,r,rq, 79

t1 = (active: left!lid ; right!id ; left?ry ; right?ry ;r1 < id ;7o < id; goto active)
= (active: ;id < r1;goto passive)
= (active: . id < 19 ; goto passive)
= (active: id =11 ;7 = id ; goto found)
t5 = (passive: fwd ;left?r ; goto passive)

two unbounded
dimensions

Behaviors

Cylinders
Arbitrary length and width

leader —»

Labelled with data
from an infinite domain

Distributed algorithm

Specification language

Leader election [Franklin '82]

Behavior

el

Distributed algorithm Data Propositional Dynamic Logic
[Bojanczyk et al. "09; Figueira-Segoufin “11]

Leader election [Franklin '82]

Behavior

el

Distributed algorithm Data Propositional Dynamic Logic
[Bojanczyk et al. "09; Figueira-Segoufin “11]

D iStI’i bUted algorith ms Leader election [Franklin ’82]

Behavior

el

Distributed algorithm Data Propositional Dynamic Logic
[Bojanczyk et al. "09; Figueira-Segoufin “11]

DiStribUted a|gOritth Leader election [Franklin ’82]

Behavior

«At the end, there is a leader, and
the leader is the process with the maximum id.»

For all n, pid distributions, accepting runs, and processes:

(=" ((=) A (go-to-)
— A [I] (id < {go-to- Yid))

leader —»

goto- = (=)

Distributed algorithm Data Propositional Dynamic Logic
[Bojanczyk et al. '09; Figueira-Segoufin ‘“11]

DiStribUted a|gOritth Leader election [Franklin ’82]

Behavior

«At the end, there is a leader, and
the leader is the process with the maximum id.»

For all n, pid distributions, accepting runs, and processes:

(=" ((=) A (go-to-)
— A [V] (id < {go-to- Yid))

leader —»

goto- = (=)

Distributed algorithm Data Propositional Dynamic Logic
[Bojanczyk et al. '09; Figueira-Segoufin ‘“11]

DiStribUted a|gOritth Leader election [Franklin ’82]

Behavior

«At the end, the 'is a leader, and
the leader is the proce: with the maximum id.»

For all n, pid distributions, acce ng runs, and processes:

(=" ((=) <(go-to-)
= A [¥] (id < {go-to-|)id))

leader —»

goto- = (=)

Distributed algorithm Data Propositional Dynamic Logic
[Bojanczyk et al. '09; Figueira-Segoufin ‘“11]

Specifications
Data PDL

WMWWmumw
"\ \

m|s|p|one | o=¢ | [rle | (mrva ()
{o}? | d | w4+ 7 | e T

seS, rr e Reg, x € {=,#<,<},and d € {e,+,—,1,]}

P,

/.
T, T

M. Bojanczyk, A. Muscholl, T. Schwentick, and L. Segoufin. Two-variable logic on data trees and XML reasoning. J. ACM, 56(3), 2009.

D. Figueira and L. Segoufin. Bottom-up automata on data trees and vertical XPath. In STACS’11, volume 9 of LIPIcs, pages 93—104, 2011.

Specifications
Data PDL

WMWWmumw
"\ \

o, n=m s | o[oA [o= | [r]e | (m)rva(r)r
= {p}? |d|7+x" | 7.7 | 7F

seS, rr e Reg, x € {=,#<,<},and d € {e,+,—,1,]}

M. Bojanczyk, A. Muscholl, T. Schwentick, and L. Segoufin. Two-variable logic on data trees and XML reasoning. J. ACM, 56(3), 2009.

D. Figueira and L. Segoufin. Bottom-up automata on data trees and vertical XPath. In STACS’11, volume 9 of LIPIcs, pages 93—104, 2011.

Specifications
Data PDL

WMWWmumw
"\ \

For rings of all sizes, all pid distributions,
all accepting runs, and all starting process (m)

/

o, n=m s oo [oA [=" | [r]e | (m)ra(r)r
= {p}? |d|7+x" | 7.7 | 7F

seS, rr e Reg, x € {=,#<,<},and d € {e,+,—,1,]}

M. Bojanczyk, A. Muscholl, T. Schwentick, and L. Segoufin. Two-variable logic on data trees and XML reasoning. J. ACM, 56(3), 2009.

D. Figueira and L. Segoufin. Bottom-up automata on data trees and vertical XPath. In STACS’11, volume 9 of LIPIcs, pages 93—104, 2011.

Model Checking

Model Checking Distributed algorithms

UNDECIDABLE
/\/\/\\

Cylinders of arbitrary width and length
Data from an infinite domain

Register automata with data comparisons
Data PDL with data comparisons

Reduction to automata?

(] O I L J
A A’ R 2
\ 4
™~ We do not know ~
\ /
— how to translate Data PDL -
_ to automata ~——

L
Distributed algorithm /\/\/\\ Data PDL

Data abstraction

Distributed algorithm PDL with loop (over finite alphabet) Data PDL

Data abstraction: symbolic runs + tracking data

leader

Distributed algorithm

Data abstraction: symbolic runs + tracking data

leader

Distributed algorithm

Data abstraction: symbolic runs + tracking data

Distributed algorithm

Data abstraction: symbolic runs + tracking data

Distributed algorithm

Data abstraction: symbolic runs + tracking data

Distributed algorithm

Data abstraction: symbolic runs + tracking data

Distributed algorithm

Data abstraction: symbolic runs + tracking data

Distributed algorithm

Data abstraction: symbolic runs + tracking data

Distributed algorithm

Data abstraction: symbolic runs + tracking data

Distributed algorithm

Data abstraction: symbolic runs + tracking data

left!r2
P r2=2eit-sImrsw e

leftlid fi-d

r1="right ~__

right!ri

r1=?right V!/

(r1,id)-path

* Register updates e —————————
4 j j

can be expressed in PDL

——

Distributed algorithm

Data abstraction: symbolic runs + tracking data

Distributed algorithm

Data abstraction: symbolic runs + tracking data

* Register updates

* Register equality check

Distributed algorithm

:(r1,id)-path
TR:(ro,id)-path

Data abstraction: symbolic runs + tracking data

* Register updates

e Register equality check

Distributed algorithm

i

. N
4 :
5 =
L\
g ‘
R
B

>

m:(r1,id)-path
TR:(r2,id)-path
loop(T4 T)

can be expressed

in PDL with loop

Data abstraction: symbolic runs + tracking data

Distributed algorithm

Data abstraction: symbolic runs + tracking data

Distributed algorithm

Data abstraction: symbolic runs + tracking data

If there is a loop, no pids assignment can turn the
symbolic cylinder into a valid run.

If no such loops, then there are pids that allow a
valid realization of the abstract grid

Data abstraction: symbolic runs + tracking data

No loop of the form

rio<ri1; (ri1,ri2)-path; rio<ris; (ris,ris)-path; ... ; rin<rio
B hes—— —— ——

If there is a loop, no pids assignment can turn the
symbolic cylinder into a valid run.

If no such loops, then there are pids that allow a
i valid realization of the abstract grid

Data abstraction: symbolic runs + tracking data

~| rightlid
~ 1 leftlid

No loop of the form

rio<ti1; (ri1,ri2)-path; rie<riz; (ris,ria)-path; ... ; rin<fio
T

e Register equality check

* Register comparison
can be expressed

in PDL with loop

Distributed algorithm

Data abstraction: symbolic runs + tracking data

Distributed algorithm PDL with loop (over finite alphabet) Data PDL

Distributed algorithms

Behavior

leader

Distributed algorithm Data PDL

Distributed algorithms

Behavior

leader

Distributed algorithm Data PDL

Distributed algorithms

] id < ?right

o
Y,

N

Behavior

leftlid right!id «There is a leader, and the leader is the

process with the maximum id.»
id > ?left

{1
A id > ?right For all n, pid distributions, accepting runs, and processes:
_— (=" ((=) A {goto-)
‘ left!id right!id oader . : _
! id = ?left A [l] (ld < <go—to—D>ld))
fwd 3 ©

a<7en goto- | = (= W)

id < ?left
2 id<ight \’“

Distributed algorithm Data PDL

Distributed algorithms

] id < ?right

o
Y,

-,

Behavior

leftlid right!id «There is a leader, and the leader is the

process with the maximum id.»
id > ?left

{1
A id > ?right For all n, pid distributions, accepting runs, and processes:
_— (=" ((=) A {goto-)
‘ left!id right!id oader . : _
! id = ?left A [l] (ld < <go—to—D>ld))
fwd 3 ©

a<7en goto- | = (= W)

id < ?left
2 id<ight \’“

Distributed algorithm Data PDL

Distributed algorithms

—1
go-to-
Behavior
4y leftlid rightlid roess with the maxmam i
/ / For all n, pid distributions, accepting runs, and processes:
< ()
<7T>7° >\)T (=" (—{¢—=>) A {(go-to-)
Loop (1. (r,r)-<-path . (1)) A [1¥] (id < (go-to-|)id))
! ¥

o <o — D goto | = (< D)

Distributed algorithm Data PDL

Distributed algorithms

there is loop

— 1
= go-to- |

Behavior
4y leftlid rightlid roess with the maxmam i
/ / For all n, pid distributions, accepting runs, and processes:
< ()
<7T>7° >\)T (=" (—{¢—=>) A {(go-to-)
Loop (1. (r,r')-<-path . (1)) A [1¥] (id < (go-to-|)id))
¥

o <o — D goto | = (< D)

Distributed algorithm Data PDL

Distributed algorithms
e N

,
no loop ' '
— there is loop .
no evidence of ¢ ' <- path — go—to—@
—

there are pids \ d<2 L holds here

- leftlid
making o false .
- / 5 tz’ |
| id < ?righ ﬁ E
_/

Behavior
4y leftlid rightlid roess with the maxmam i
/ / For all n, pid distributions, accepting runs, and processes:
< ()
<7T>7° >\)T (=" (—{¢—=>) A {(go-to-)
Loop (1. (r,r)-<-path . (iT)") A [1] (id < (go-to-{ Did))
! ¥

o <o — D goto | = (< D)

Distributed algorithm Data PDL

Data abstraction

Distributed algorithm PDL with loop (over finite alphabet) Data PDL

dimensions

Data abstraction two unbounded

Distributed algorithm PDL with loop (over finite alphabet) Data PDL

Under approximate verification

o O

Behavior

undecidable

— AFEoy

* restrict to bounded
number of rounds

Distributed algorithm PDL with loop (over finite alphabet) Data PDL

l exponentially smaller than # of processes .

undecidable

Distributed algorithm PDL with loop (over finite alphabet) Data PDL

Bounded

e
)
O
cC
35
®)
Q
c
D)

PDL with loop over bounded grids

Bounded

Unbounded

PDL with loop over bounded grids
=

PDL with loop over words

Bounded

Unbounded

left/right moves

PDL with loop over bounded grids
=

PDL with loop over words

Bounded

I

Unbounded

left/right moves up/down moves

_H___Q__

§ounaea

PDL with loop over bounded grids
=

PDL with loop over words

Bounded

O

D

| I
-

D)

@)

=

= <+

left/right moves up/down moves

_H___Q__

§ounaea

PDL with loop over bounded grids
=

PDL with loop over words
=

Alternating 2-way Automata
=

PSPACE

[Goller-Lohrey-Lutz '08] [Serre '08]

D | St” b uted alg O rlth m S . exponentially smaller than # of processes l

Theorem (Aiswarya-Bollig-Gastin; CONCUR ’15).

Round-bounded model checking distributed algorithms™* against Data PDL is PSPACE-

complete™”.
N J

* with registers, register guards, and register updates
** unary encoding of # of rounds

D | St r| b uted a I g O rlth m S . exponentially smaller than # of processes l

Theorem (Aiswarya-Bollig-Gastin; CONCUR ’15).

Round-bounded model checking distributed algorithms™* against Data PDL is PSPACE-

complete™”.
N J

Conclusions

Getting rid of Data Independent of the
Translation of Distributed restriction to rings

Algorithms and DataPDL

to PDL with loops over Independent of the
finitely labelled cylinders number of rounds

Future work..

Other operations”
Other topologies?

Other restrictions?
Other communications?

Thank you!

