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Communicating automata
[Brand-Zafiropulo ’83]
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Data automata
[Bojanczyk et al. ’06]
[Bjorklund-Schwentick '07]
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A formal model for distributed algorithms
An automata-like way of writing DA

Every process '~ ' can be described by:

e Set of states e Set of transitions

e |nitial state e send pids to neighbours

e receive pids from neighbours,
» Set of registers and store in registers

. stores pid e compare registers

e uUpdate registers



Leader Election Algorithms
Franklin82

states: active, passive
found
initial state: active

registers: id,r,rq, 79

t1 = (active: left!lid ; right!id ; left?ry ; right?ry ;r1 < id ;7o < id; goto active)
= (active: ;id < r1;goto passive)
= (active: . id < 19 ; goto passive)
= (active: id =11 ;7 = id ; goto found)
t5 = (passive: fwd ;left?r ; goto passive)



two unbounded
dimensions

Behaviors

Cylinders
Arbitrary length and width

leader —»

Labelled with data
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Behavior

«At the end, there is a leader, and
the leader is the process with the maximum id.»

For all n, pid distributions, accepting runs, and processes:
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Model Checking Distributed algorithms
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Cylinders of arbitrary width and length
Data from an infinite domain

Register automata with data comparisons
Data PDL with data comparisons




Reduction to automata?
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Data abstraction

Distributed algorithm PDL with loop (over finite alphabet) Data PDL
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Data abstraction: symbolic runs + tracking data

left!r2
P r2=2eit-sImrsw e

leftlid fi-d

r1="right ~__

right!ri

r1=?right V!/

(r1,id)-path

* Register updates e —————————
4 j j

can be expressed in PDL

——

Distributed algorithm



Data abstraction: symbolic runs + tracking data

Distributed algorithm



Data abstraction: symbolic runs + tracking data

* Register updates

* Register equality check

Distributed algorithm
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Data abstraction: symbolic runs + tracking data

* Register updates

e Register equality check

Distributed algorithm
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m:(r1,id)-path
TR:(r2,id)-path
loop( T4 T )

can be expressed

in PDL with loop
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Data abstraction: symbolic runs + tracking data

If there is a loop, no pids assignment can turn the
symbolic cylinder into a valid run.

If no such loops, then there are pids that allow a
valid realization of the abstract grid




Data abstraction: symbolic runs + tracking data

No loop of the form

rio<ri1; (ri1,ri2)-path; rio<ris; (ris,ris)-path; ... ; rin<rio
B hes—— —— ——

If there is a loop, no pids assignment can turn the
symbolic cylinder into a valid run.

If no such loops, then there are pids that allow a
i valid realization of the abstract grid




Data abstraction: symbolic runs + tracking data

~| rightlid
~ 1 leftlid

No loop of the form

rio<ti1; (ri1,ri2)-path; rie<riz; (ris,ria)-path; ... ; rin<fio
T

e Register equality check

* Register comparison
can be expressed

in PDL with loop

Distributed algorithm
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Data abstraction

Distributed algorithm PDL with loop (over finite alphabet) Data PDL




dimensions

Data abstraction two unbounded

Distributed algorithm PDL with loop (over finite alphabet) Data PDL




Under approximate verification
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* restrict to bounded
number of rounds

Distributed algorithm PDL with loop (over finite alphabet) Data PDL



l exponentially smaller than # of processes .

undecidable

Distributed algorithm PDL with loop (over finite alphabet) Data PDL
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PDL with loop over words
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Alternating 2-way Automata
=

PSPACE

[Goller-Lohrey-Lutz '08] [Serre '08]
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Theorem (Aiswarya-Bollig-Gastin; CONCUR ’15).

Round-bounded model checking distributed algorithms™* against Data PDL is PSPACE-

complete™”.
N J

* with registers, register guards, and register updates
** unary encoding of # of rounds
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Conclusions

Getting rid of Data Independent of the
Translation of Distributed restriction to rings

Algorithms and DataPDL

to PDL with loops over Independent of the
finitely labelled cylinders number of rounds

Future work..

Other operations”
Other topologies?

Other restrictions?
Other communications?
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