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A formal model for distributed algorithms
An automata-like way of writing DA

• Set of states

• Initial state

• Set of registers 
• stores pid

• Set of transitions
• send pids to neighbours

• receive pids from neighbours, 
and store in registers

• compare registers

• update registers

Every process          can be described by:5
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states: active, passive t1 = Èactive: left!id ; right!id ; left?r1 ; right?r2 ; r1 < id ; r2 < id ; goto activeÍ
found t2 = Èactive: ; id < r1 ; goto passiveÍ

initial state: active t3 = Èactive: ; id < r2 ; goto passiveÍ
registers: id, r, r1, r2 t4 = Èactive: ; id = r1 ; r := id ; goto foundÍ

t5 = Èpassive: fwd ; left?r ; goto passiveÍ

Figure 1 Franklin’s leader-election algorithm D
Franklin

states: active0, active1 t1 = Èactive0: right!r ; left?r

Õ ; goto active1Í
passive, found t2 = Èactive1: right!rÕ ; left?r

ÕÕ ; r

ÕÕ
< r

Õ ; r < r

Õ ; r := r

Õ ; goto active0Í
initial state: active0 t3 = Èactive1: ; r

Õ
< r ; goto passiveÍ

registers: id, r, r

Õ
, r

ÕÕ
t4 = Èactive1: ; r

Õ
< r

ÕÕ ; goto passiveÍ
t5 = Èactive1: ; r = r

Õ ; goto foundÍ
t6 = Èpassive: fwd ; left?r ; goto passiveÍ

Figure 2 Dolev-Klawe-Rodeh leader-election algorithm D
DKR

with r and r

Õ ranging over Reg. We require that

(1) in a rec statement of the form left?r ; right?r

Õ, we have r ”= r

Õ (actually, the order of the
two receive actions does not matter), and

(2) in an update statement, every register occurs at most once as a left-hand side.

In the following, occurrences of “skip ;” are omitted; this does not a�ect the semantics. C

Note that a guard r Æ r

Õ can be simulated in terms of guards r < r

Õ and r = r

Õ, using
several transitions. We separate < and = for convenience. They are actually quite di�erent
in nature, as we will see later in the proof of our main result.

At the beginning of an execution of an algorithm, every register contains the pid of the
respective process. We also assume, wlog., that there is a special register id œ Reg that
is never updated, i.e., no transition contains a command of the form left?id, right?id, or
id := r. A process can thus, at any time, access its own pid in terms of id.

In the semantics, we will suppose that all updates of a transition happen simultaneously,
i.e., after executing r := r

Õ ; r

Õ := r, the values previously stored in r and r

Õ will be swapped
(and do not necessarily coincide). As, moreover, the order of two sends and the order of
two receives within a transition do not matter, this will allow us to identify a transition
with the set of states, commands (apart from skip), and guards that it contains. For
example, t = Ès: left!r ; right!rÕ ; right?r

Õ ; r < r

Õ ; r := r

Õ ; goto s

ÕÍ is considered as the set
t = {s , left!r , right!rÕ

, right?r

Õ
, r < r

Õ
, r := r

Õ
, goto s

Õ}.
Before defining the semantics of a distributed algorithm, we will look at two examples.

Example 2 (Franklin’s Leader-Election Algorithm). Consider Franklin’s algorithm D
Franklin

to
determine a leader in a ring [14]. It is given in Figure 1. The goal is to assign leadership
to the process with the highest pid. To do so, every process sends its own pid to both
neighbors, receives the pids of its left and right neighbor, and stores them in registers r1 and
r2, respectively (transitions t1, . . . , t4). If a process is a local maximum, i.e., r1 < id and
r2 < id hold, it is still in the race for leadership and stays in state active. Otherwise, it has
to take t2 or t3 and goes into state passive. In passive, a process will just forward any pid
it receives and store the message coming from the left in r (transition t5). When an active
process receives its own pid (transition t4), it knows it is the only remaining active process.
It copies its own pid into r, which henceforth refers to the leader. We may say that a run is
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in Figure 3 (for the moment, we may ignore the blue and violet lines). A colored row forms
a configuration. The three pids in a cell refer to registers r, r

Õ
, r

ÕÕ, respectively (we ignore id).
Moreover, a non-colored row forms, together with the states above and below, a transition
tuple. When looking at the step from C3 to C4, we have, for example, r

Õ@3 ⇢ r@4 and
r

Õ@3⇢ r

ÕÕ@6. Moreover, r

Õ@6⇢ r@7 and r

Õ@6⇢ r

ÕÕ@1 (recall that we are in a ring). Note
that the run conforms to the correctness property formulated in Example 3. In particular, in
the final configuration, all processes store the maximum pid in register r. C

3 The Specification Language

In Examples 2 and 3, we informally stated the correctness criterion for the presented
algorithms (e.g., “at the end, all processes store the maximal pid in register r”). Now, we
introduce a formal language to specify correctness properties. It is defined wrt. a given
distributed algorithm D = (S, s0, Reg, �), which we fix for the rest of this section.

Typically, one requires that a distributed algorithm is correct no matter what the
underlying ring is. Since we will bound the number of rounds, we moreover study a form of
partial correctness. Accordingly, a property is of the form ’

rings

’
runs

’
m

Ï, which has to be
read as “for all rings, all runs, and all processes m, we have Ï”. The marking m is used to
avoid to “get lost” in a ring when writing the property Ï. This is like placing a pebble in
the ring that can be retrieved at any time. Actually, Ï allows us to “navigate” back and
forth (ø and ¿) in a run, i.e., from one configuration to the previous or next one (similar
to a temporal logic with past operators). By means of Ω and æ, we may also navigate
horizontally within a configuration, i.e., from one process to a neighboring one.

Essentially, a sequence of configurations is interpreted as a cylinder (cf. Figure 3) that
can be explored using regular expressions fi over {‘, Ω, æ, ø, ¿} (where ‘ means “stay”). At
a given position/coordinate of the cylinder, we can check local (or positional) properties like
the state taken by a process, or whether we are on the marked process m. Such a property
can be combined with a regular expression fi: The formula [fi]Ï says that Ï holds at every
position that is reachable through a fi-path (a path matching fi). Dually, ÈfiÍÏ holds if there
is a fi-path to some position where Ï is satisfied. The most interesting construct in our logic
is ÈfiÍr ÛÙ ÈfiÕÍrÕ, where ÛÙ œ {=, ”=, <, Æ}, which has been used for reasoning about XML
documents [4,5,12]. It says that, from the current position, there are a fi-path and a fi

Õ-path
that lead to positions y and y

Õ, respectively, such that the pid stored in register r at y and
the pid stored in r

Õ at y

Õ satisfy the relation ÛÙ.
We will now introduce our logic in full generality. Later, we will restrict the use of <-

and Æ-guards to obtain positive results.

Definition 6. The logic DataPDL(D) is given by the following grammar:

� ::= ’
rings

’
runs

’
m

Ï

Ï, Ï

Õ ::= m | s | ¬Ï | Ï · Ï

Õ | Ï ∆ Ï

Õ | [fi]Ï | ÈfiÍr ÛÙ ÈfiÕÍrÕ

fi, fi

Õ ::= {Ï}? | d | fi + fi

Õ | fi · fi

Õ | fi

ú

where s œ S, r, r

Õ œ Reg, ÛÙ œ {=, ”=, <, Æ}, and d œ {‘, Ω, æ, ø, ¿}. C

We call Ï a local formula, and fi a path formula. We use common abbreviations such as
false = m · ¬m, ÈfiÍÏ = ¬[fi]¬Ï, and Ï ‚ Ï

Õ = ¬(¬Ï · ¬Ï

Õ), and we may write fifi

Õ instead
of fi · fi

Õ. Implication ∆ is included explicitly in view of the restriction defined below.
Next, we define the semantics. Consider a run ‰ = C0

t

1
 C1

t

2
 . . .

t

k

 C

k

of D where
C

j

= (sj

1, . . . , s

j

n

, fl

j

1, . . . , fl

j

n

), i.e., n is the number of processes in the underlying ring. A local
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can be expressed
in PDL with loop

r1 < r2

left!id
right!id

• Register updates
• Register equality check
• Register comparison

r’2 < r3

r’3 < r4



Distributed algorithm Data PDL

A '

PDL with loop (over finite alphabet)
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t1
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t2

t3 t3

t3 t3

t3 t3

t3 t3

t3

Data abstraction: symbolic runs + tracking data
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∧ [ *] (id ≤ ⟨go-to-    ⟩ id))

go-to-       =  (¬       )*

⟨    *⟩ ( ¬⟨    ⟩  ∧  ⟨go-to-    ⟩

«There is a leader, and the leader is the 
process with the maximum id.»

| {z }

For all n, pid distributions, accepting runs, and processes:

left ! id right ! id
id > ?left
id > ?right

left ! id right ! id

active

passive

id = ?left
leader

id < ?left
id < ?right_

^

left ! id right ! id

fwd

t1

t2

t4

t3

id

idt1

t2

t2

t2

t3

t3

t3

t3

t4

t3

t3

t3

t3

t3t1

t1

t2

t2

'
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∧ [ *] (id ≤ ⟨go-to-    ⟩ id))

go-to-       =  (¬       )*

⟨    *⟩ ( ¬⟨    ⟩  ∧  ⟨go-to-    ⟩

«There is a leader, and the leader is the 
process with the maximum id.»

left!id

id < ?right

id < ?right

| {z }

For all n, pid distributions, accepting runs, and processes:

left ! id right ! id
id > ?left
id > ?right

left ! id right ! id

active

passive

id = ?left
leader

id < ?left
id < ?right_

^

left ! id right ! id

fwd

t1

t2

t4

t3

id

idleft!idt1

t1

t2

t2

t2

t2

t1

t2
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t3

t3

t3

t4

t3

t3

t3

t3
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'
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Distributed algorithm Data PDL

∧ [ *] (id ≤ ⟨go-to-    ⟩ id))

go-to-       =  (¬       )*

⟨    *⟩ ( ¬⟨    ⟩  ∧  ⟨go-to-    ⟩

«There is a leader, and the leader is the 
process with the maximum id.»

left!id

id < ?right

id < ?right

| {z }

For all n, pid distributions, accepting runs, and processes:

left ! id right ! id
id > ?left
id > ?right

left ! id right ! id

active

passive

id = ?left
leader

id < ?left
id < ?right_

^

left ! id right ! id

fwd

t1

t2

t4

t3

id

idleft!idt1

t1

t2

t2

t2

t2

t1

t2

t3

t3

t3

t3

t4

t3

t3

t3

t3

t3

<-path

'
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∧ [ *] (id ≤ ⟨go-to-    ⟩ id))

go-to-       =  (¬       )*

⟨    *⟩ ( ¬⟨    ⟩  ∧  ⟨go-to-    ⟩

«There is a leader, and the leader is the 
process with the maximum id.»

left!id

id < ?right

id < ?right

| {z }

For all n, pid distributions, accepting runs, and processes:

left ! id right ! id
id > ?left
id > ?right

left ! id right ! id

active

passive

id = ?left
leader

id < ?left
id < ?right_

^

left ! id right ! id

fwd

t1

t2

t4

t3

id

idleft!idt1

t1

t2

t2

t2

t2

t1

t2

t3

t3

t3

t3

t4

t3

t3

t3

t3

t3

'

<-path
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∧ [ *] (id ≤ ⟨go-to-    ⟩ id))

go-to-       =  (¬       )*

⟨    *⟩ ( ¬⟨    ⟩  ∧  ⟨go-to-    ⟩

«There is a leader, and the leader is the 
process with the maximum id.»

left!id

id < ?right

id < ?right

| {z }

For all n, pid distributions, accepting runs, and processes:

left ! id right ! id
id > ?left
id > ?right

left ! id right ! id

active

passive

id = ?left
leader

id < ?left
id < ?right_

^

left ! id right ! id

fwd

t1

t2

t4

t3

id

idleft!idt1

t1

t2

t2

t2

t2

t1

t2

t3

t3

t3

t3

t4

t3

t3

t3

t3

t3

Loop ( π . (r,r’)-<-path . (π’)-1 )
h⇡ir  h⇡0ir0

go-to-     
—1

'

<-path
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∧ [ *] (id ≤ ⟨go-to-    ⟩ id))

go-to-       =  (¬       )*

⟨    *⟩ ( ¬⟨    ⟩  ∧  ⟨go-to-    ⟩

«There is a leader, and the leader is the 
process with the maximum id.»

left!id

id < ?right

id < ?right

| {z }

For all n, pid distributions, accepting runs, and processes:

left ! id right ! id
id > ?left
id > ?right

left ! id right ! id

active

passive

id = ?left
leader

id < ?left
id < ?right_

^

left ! id right ! id

fwd

t1

t2

t4

t3

id

idleft!idt1
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t2

t2

t2

t1

t2

t3

t3
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Loop ( π . (r,r’)-<-path . (π’)-1 )
h⇡ir  h⇡0ir0

go-to-     
—1

'

there is loop

' holds here

)<-path
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∧ [ *] (id ≤ ⟨go-to-    ⟩ id))

go-to-       =  (¬       )*

⟨    *⟩ ( ¬⟨    ⟩  ∧  ⟨go-to-    ⟩

«There is a leader, and the leader is the 
process with the maximum id.»

left!id

id < ?right

id < ?right

| {z }

For all n, pid distributions, accepting runs, and processes:

left ! id right ! id
id > ?left
id > ?right

left ! id right ! id

active

passive

id = ?left
leader

id < ?left
id < ?right_

^

left ! id right ! id

fwd

t1

t2

t4

t3

id

idleft!idt1

t1

t2

t2

t2

t2

t1

t2

t3

t3

t3

t3

t4

t3

t3

t3

t3

t3

Loop ( π . (r,r’)-<-path . (π’)-1 )
h⇡ir  h⇡0ir0

go-to-     
—1

'

there is loop

' holds here

()

no loop

no evidence of

there are pids 
making       false

)

)
'

' <-path
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Data abstraction

Distributed algorithm Data PDL

A '

PDL with loop (over finite alphabet)
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t1

t1

t1 t4

t2

t2

t2

t2

t2

t3 t3

t3 t3

t3 t3

t3 t3

t3

() A |= '

^ ¬
unsatisfiable
over grids

UNDECIDABLE

two unbounded
dimensions



Under approximate verification

Distributed algorithm Data PDL

A '

PDL with loop (over finite alphabet)

() A |= '

^ ¬
unsatisfiable
over grids

undecidable

Behavior

1
2

3
k

…

restrict to bounded
number of rounds



Distributed algorithm Data PDL

A '

PDL with loop (over finite alphabet)

() A |= '

^ ¬
unsatisfiable
over grids

undecidable

restrict to bounded
number of rounds
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5

t1

t1

t1 t4

t2

t2

t2

t2

t2

t3 t3

t3 t3

t3 t3

t3 t3

t3

exponentially smaller than # of processes
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PDL with loop over bounded grids
➯

PDL with loop over words 

Bounded

Un
bo

un
de

d
Bounded

left/right moves up/down moves



PDL with loop over bounded grids
➯

PDL with loop over words 
➯

Alternating 2-way Automata
➯

PSPACE 
[Göller-Lohrey-Lutz ’08]   [Serre ’08]

Bounded

Un
bo

un
de

d
Bounded

left/right moves up/down moves



** unary encoding of # of rounds
* with registers, register guards, and register updates

Distributed algorithms exponentially smaller than # of processes

Theorem (Aiswarya-Bollig-Gastin; CONCUR ’15).
Round-bounded model checking distributed algorithms* against Data PDL is PSPACE-
complete**.



** unary encoding of # of rounds
* with registers, register guards, and register updatesSummary

‣ What is the right temporal logic?

‣ How to deal with data?

‣ How to deal with undecidability?

Use generic Data PDL.
Use symbolic technique.
Under-approximation.

Distributed algorithms exponentially smaller than # of processes

Theorem (Aiswarya-Bollig-Gastin; CONCUR ’15).
Round-bounded model checking distributed algorithms* against Data PDL is PSPACE-
complete**.



Conclusions
Getting rid of Data

Translation of Distributed 
Algorithms and DataPDL 
to PDL with loops over 

finitely labelled cylinders

Independent of the 
restriction to rings

Future work..

Independent of the 
number of rounds

• Other operations?
• Other topologies?
• Other restrictions?
• Other communications?



Thank you!


