
Formal Methods for the Verification of Distributed Algorithms

Paul Gastin
Laboratoire Spécification et Vérification

ENS Cachan, CNRS & Inria

Joint work with C. Aiswarya & Benedikt Bollig

Infinity
December 15, 2015

Landscape & Objectives

distributed system

¬F

specification

Landscape & Objectives

SpecificationSystem model

Behavior L(')

'

L(A)

model checking

A

set of possible
traces

set of admissible
traces

L(A) ✓ L(') ?

|=

LTL specification

Behavior
L(')

'A A0

L(A) L(A0)\ = ;?

¬'

Finite automata

Landscape & Objectives

Models of Distributed Systems

47

23

19

71

5

42

Landscape & Objectives

SpecificationSystem model

Number of processes
• fixed & static
• non-fixed & unbounded

static (parameterized)

Topology
• tree, ring, star, …

…

n

1

0 '|=
for all n

Landscape & Objectives

SpecificationSystem model

Number of processes
• fixed & static
• non-fixed & unbounded

static (parameterized)
dynamic

Topology
• tree, ring, star, …

…

n

1

0
19

4

71

71 4 !6=

Identification
• (partly) indistinguishable
• unique process identifiers (pids)

test for equality
test for linear order

'|=
19 > 4 !

Landscape & Objectives

SpecificationSystem model

Number of processes
• fixed & static
• non-fixed & unbounded

static (parameterized)
dynamic

Communication
• broadcast
• shared variable
• point-to-point

rendez-vous
FIFO queues

Topology
• tree, ring, star, …

…

n

1

0

Identification
• (partly) indistinguishable
• unique process identifiers (pids)

test for equality
test for linear order

'|=

Landscape & Objectives

SpecificationSystem model

Number of processes
• fixed & static
• non-fixed & unbounded

static (parameterized)
dynamic

Communication
• broadcast
• shared variable
• point-to-point

rendez-vous
FIFO queues

Topology
• tree, ring, star, …

…

n

1

0

Identification
• (partly) indistinguishable
• unique process identifiers (pids)

test for equality
test for linear order

'|=

Several sources of infinity / unboundedness

Landscape & Objectives

SpecificationSystem model

Number of processes
• fixed & static
• non-fixed & unbounded

static (parameterized)
dynamic

Communication
• broadcast
• shared variable
• point-to-point

rendez-vous
FIFO queues

Topology
• tree, ring, star, …

…

n

1

0

Identification
• (partly) indistinguishable
• unique process identifiers (pids)

test for equality
test for linear order

'|=

Several sources of infinity / unboundedness

Communicating automata
[Brand-Zafiropulo ’83]

Landscape & Objectives

SpecificationSystem model

Number of processes
• fixed & static
• non-fixed & unbounded

static (parameterized)
dynamic

Communication
• broadcast
• shared variable
• point-to-point

rendez-vous
FIFO queues

Topology
• tree, ring, star, …

…

n

1

0

Identification
• (partly) indistinguishable
• unique process identifiers (pids)

test for equality
test for linear order

'|=

Several sources of infinity / unboundedness

Data automata
[Bojanczyk et al. ’06]

[Björklund-Schwentick ’07]

Landscape & Objectives

SpecificationSystem model

Number of processes
• fixed & static
• non-fixed & unbounded

static (parameterized)
dynamic

Communication
• broadcast
• shared variable
• point-to-point

rendez-vous
FIFO queues

Topology
• tree, ring, star, …

…

n

1

0

Identification
• (partly) indistinguishable
• unique process identifiers (pids)

test for equality
test for linear order

'|=

Several sources of infinity / unboundedness

Distributed
algorithms

71

42

19

23

47

Distributed algorithms

Behavior

Distributed algorithm

arbitrary distribution
of process identifiers

Leader election [Franklin ’82]

5 < 19 < 23 < …

elect process
with maximum id

5

71

42

19

23

47

Distributed algorithms

Behavior

Distributed algorithm

active

Leader election [Franklin ’82]

5

71

42

19

23

47

Distributed algorithms

Behavior

Distributed algorithm

left ! id right ! id
id > ?left
id > ?right

left ! id right ! id

active

passiveid < ?left
id < ?right_

^

Leader election [Franklin ’82]

|{z} round

5

71

42

19

23

47

Distributed algorithms

Behavior

Distributed algorithm

left ! id right ! id
id > ?left
id > ?right

left ! id right ! id

active

passive

fwd

id < ?left
id < ?right_

^

Leader election [Franklin ’82]

5

71 47

71

42

19

23

47

Distributed algorithms

Behavior

Distributed algorithm

left ! id right ! id
id > ?left
id > ?right

left ! id right ! id

active

passive

fwd

id < ?left
id < ?right_

^

Leader election [Franklin ’82]

5

71

42

19

23

47

Distributed algorithms

Behavior

Distributed algorithm

left ! id right ! id
id > ?left
id > ?right

left ! id right ! id

active

passive

fwd

id = ?left
leader

id < ?left
id < ?right_

^

left ! id right ! id

Leader election [Franklin ’82]

5

71

71

42

19

23

47

Distributed algorithms

Behavior

Distributed algorithm

left ! id right ! id
id > ?left
id > ?right

left ! id right ! id

active

passive

fwd

id = ?left
leader

id < ?left
id < ?right_

^

left ! id right ! id

Leader election [Franklin ’82]

5

71

42

19

23

47

Distributed algorithms

Behavior

Distributed algorithm

left ! id right ! id
id > ?left
id > ?right

left ! id right ! id

active

passive

fwd

id = ?left
leader

id < ?left
id < ?right_

^

left ! id right ! id

Leader election [Franklin ’82]

5

Distributed algorithms
• Identical finite-state

processes

• Number of processes is
unknown and unbounded

• Processes have unique
pids (integers —
unbounded data)

47

23

19
42

71

5

right

left

A formal model for distributed algorithms
An automata-like way of writing DA

• Set of states

• Initial state

• Set of registers
• stores pid

• Set of transitions
• send pids to neighbours

• receive pids from neighbours,
and store in registers

• compare registers

• update registers

Every process can be described by:5

47

23

19
42

71

5Leader Election Algorithms
Franklin82

states: active, passive t1 = Èactive: left!id ; right!id ; left?r1 ; right?r2 ; r1 < id ; r2 < id ; goto activeÍ
found t2 = Èactive: ; id < r1 ; goto passiveÍ

initial state: active t3 = Èactive: ; id < r2 ; goto passiveÍ
registers: id, r, r1, r2 t4 = Èactive: ; id = r1 ; r := id ; goto foundÍ

t5 = Èpassive: fwd ; left?r ; goto passiveÍ

Figure 1 Franklin’s leader-election algorithm D
Franklin

states: active0, active1 t1 = Èactive0: right!r ; left?r

Õ ; goto active1Í
passive, found t2 = Èactive1: right!rÕ ; left?r

ÕÕ ; r

ÕÕ
< r

Õ ; r < r

Õ ; r := r

Õ ; goto active0Í
initial state: active0 t3 = Èactive1: ; r

Õ
< r ; goto passiveÍ

registers: id, r, r

Õ
, r

ÕÕ
t4 = Èactive1: ; r

Õ
< r

ÕÕ ; goto passiveÍ
t5 = Èactive1: ; r = r

Õ ; goto foundÍ
t6 = Èpassive: fwd ; left?r ; goto passiveÍ

Figure 2 Dolev-Klawe-Rodeh leader-election algorithm D
DKR

with r and r

Õ ranging over Reg. We require that

(1) in a rec statement of the form left?r ; right?r

Õ, we have r ”= r

Õ (actually, the order of the
two receive actions does not matter), and

(2) in an update statement, every register occurs at most once as a left-hand side.

In the following, occurrences of “skip ;” are omitted; this does not a�ect the semantics. C

Note that a guard r Æ r

Õ can be simulated in terms of guards r < r

Õ and r = r

Õ, using
several transitions. We separate < and = for convenience. They are actually quite di�erent
in nature, as we will see later in the proof of our main result.

At the beginning of an execution of an algorithm, every register contains the pid of the
respective process. We also assume, wlog., that there is a special register id œ Reg that
is never updated, i.e., no transition contains a command of the form left?id, right?id, or
id := r. A process can thus, at any time, access its own pid in terms of id.

In the semantics, we will suppose that all updates of a transition happen simultaneously,
i.e., after executing r := r

Õ ; r

Õ := r, the values previously stored in r and r

Õ will be swapped
(and do not necessarily coincide). As, moreover, the order of two sends and the order of
two receives within a transition do not matter, this will allow us to identify a transition
with the set of states, commands (apart from skip), and guards that it contains. For
example, t = Ès: left!r ; right!rÕ ; right?r

Õ ; r < r

Õ ; r := r

Õ ; goto s

ÕÍ is considered as the set
t = {s , left!r , right!rÕ

, right?r

Õ
, r < r

Õ
, r := r

Õ
, goto s

Õ}.
Before defining the semantics of a distributed algorithm, we will look at two examples.

Example 2 (Franklin’s Leader-Election Algorithm). Consider Franklin’s algorithm D
Franklin

to
determine a leader in a ring [14]. It is given in Figure 1. The goal is to assign leadership
to the process with the highest pid. To do so, every process sends its own pid to both
neighbors, receives the pids of its left and right neighbor, and stores them in registers r1 and
r2, respectively (transitions t1, . . . , t4). If a process is a local maximum, i.e., r1 < id and
r2 < id hold, it is still in the race for leadership and stays in state active. Otherwise, it has
to take t2 or t3 and goes into state passive. In passive, a process will just forward any pid
it receives and store the message coming from the left in r (transition t5). When an active
process receives its own pid (transition t4), it knows it is the only remaining active process.
It copies its own pid into r, which henceforth refers to the leader. We may say that a run is

4

states: active, passive t1 = Èactive: left!id ; right!id ; left?r1 ; right?r2 ; r1 < id ; r2 < id ; goto activeÍ
found t2 = Èactive: ; id < r1 ; goto passiveÍ

initial state: active t3 = Èactive: ; id < r2 ; goto passiveÍ
registers: id, r, r1, r2 t4 = Èactive: ; id = r1 ; r := id ; goto foundÍ

t5 = Èpassive: fwd ; left?r ; goto passiveÍ

Figure 1 Franklin’s leader-election algorithm D
Franklin

states: active0, active1 t1 = Èactive0: right!r ; left?r

Õ ; goto active1Í
passive, found t2 = Èactive1: right!rÕ ; left?r

ÕÕ ; r

ÕÕ
< r

Õ ; r < r

Õ ; r := r

Õ ; goto active0Í
initial state: active0 t3 = Èactive1: ; r

Õ
< r ; goto passiveÍ

registers: id, r, r

Õ
, r

ÕÕ
t4 = Èactive1: ; r

Õ
< r

ÕÕ ; goto passiveÍ
t5 = Èactive1: ; r = r

Õ ; goto foundÍ
t6 = Èpassive: fwd ; left?r ; goto passiveÍ

Figure 2 Dolev-Klawe-Rodeh leader-election algorithm D
DKR

with r and r

Õ ranging over Reg. We require that

(1) in a rec statement of the form left?r ; right?r

Õ, we have r ”= r

Õ (actually, the order of the
two receive actions does not matter), and

(2) in an update statement, every register occurs at most once as a left-hand side.

In the following, occurrences of “skip ;” are omitted; this does not a�ect the semantics. C

Note that a guard r Æ r

Õ can be simulated in terms of guards r < r

Õ and r = r

Õ, using
several transitions. We separate < and = for convenience. They are actually quite di�erent
in nature, as we will see later in the proof of our main result.

At the beginning of an execution of an algorithm, every register contains the pid of the
respective process. We also assume, wlog., that there is a special register id œ Reg that
is never updated, i.e., no transition contains a command of the form left?id, right?id, or
id := r. A process can thus, at any time, access its own pid in terms of id.

In the semantics, we will suppose that all updates of a transition happen simultaneously,
i.e., after executing r := r

Õ ; r

Õ := r, the values previously stored in r and r

Õ will be swapped
(and do not necessarily coincide). As, moreover, the order of two sends and the order of
two receives within a transition do not matter, this will allow us to identify a transition
with the set of states, commands (apart from skip), and guards that it contains. For
example, t = Ès: left!r ; right!rÕ ; right?r

Õ ; r < r

Õ ; r := r

Õ ; goto s

ÕÍ is considered as the set
t = {s , left!r , right!rÕ

, right?r

Õ
, r < r

Õ
, r := r

Õ
, goto s

Õ}.
Before defining the semantics of a distributed algorithm, we will look at two examples.

Example 2 (Franklin’s Leader-Election Algorithm). Consider Franklin’s algorithm D
Franklin

to
determine a leader in a ring [14]. It is given in Figure 1. The goal is to assign leadership
to the process with the highest pid. To do so, every process sends its own pid to both
neighbors, receives the pids of its left and right neighbor, and stores them in registers r1 and
r2, respectively (transitions t1, . . . , t4). If a process is a local maximum, i.e., r1 < id and
r2 < id hold, it is still in the race for leadership and stays in state active. Otherwise, it has
to take t2 or t3 and goes into state passive. In passive, a process will just forward any pid
it receives and store the message coming from the left in r (transition t5). When an active
process receives its own pid (transition t4), it knows it is the only remaining active process.
It copies its own pid into r, which henceforth refers to the leader. We may say that a run is

4

5 23

47

1942

71

71

42

19

23

47

Behaviors

Distributed algorithm

left ! id right ! id
id > ?left
id > ?right

left ! id right ! id

active

passive

fwd

id = ?left
leader

id < ?left
id < ?right_

^

left ! id right ! id

5

Cylinders
Arbitrary length and width

Labelled with data
from an infinite domain

Active
id = 47
r1 = 23
r2 = 19

two unbounded
dimensions

Specification language

47

23

19

71

5

42

71

42

19

23

47

Distributed algorithms

⟨ *⟩ (¬⟨ ⟩ ∧ ⟨go-to- ⟩

Behavior

Distributed algorithm

left ! id right ! id
id > ?left
id > ?right

left ! id right ! id

active

passive

fwd

id = ?left
leader

«At the end, there is a leader, and
the leader is the process with the maximum id.»

For all n, pid distributions, accepting runs, and processes:

Data Propositional Dynamic Logic

id < ?left
id < ?right_

^

left ! id right ! id

Leader election [Franklin ’82]

5

[Bojanczyk et al. ’09; Figueira-Segoufin ‘11]

|= ∧ [*] (id ≤ ⟨go-to- ⟩ id))

71

42

19

23

47

Distributed algorithms

⟨ *⟩ (¬⟨ ⟩ ∧ ⟨go-to- ⟩

Behavior

Distributed algorithm

left ! id right ! id
id > ?left
id > ?right

left ! id right ! id

active

passive

fwd

id = ?left
leader

«At the end, there is a leader, and
the leader is the process with the maximum id.»

For all n, pid distributions, accepting runs, and processes:

Data Propositional Dynamic Logic

id < ?left
id < ?right_

^

left ! id right ! id

Leader election [Franklin ’82]

5

[Bojanczyk et al. ’09; Figueira-Segoufin ‘11]

|= ∧ [*] (id ≤ ⟨go-to- ⟩ id))

71

42

19

23

47

Distributed algorithms

⟨ *⟩ (¬⟨ ⟩ ∧ ⟨go-to- ⟩

Behavior

Distributed algorithm

left ! id right ! id
id > ?left
id > ?right

left ! id right ! id

active

passive

fwd

id = ?left
leader

«At the end, there is a leader, and
the leader is the process with the maximum id.»

For all n, pid distributions, accepting runs, and processes:

Data Propositional Dynamic Logic

id < ?left
id < ?right_

^

left ! id right ! id

Leader election [Franklin ’82]

5

[Bojanczyk et al. ’09; Figueira-Segoufin ‘11]

|= ∧ [*] (id ≤ ⟨go-to- ⟩ id))

71

42

19

23

47

Distributed algorithms

go-to- = (¬)*

⟨ *⟩ (¬⟨ ⟩ ∧ ⟨go-to- ⟩

Behavior

Distributed algorithm

left ! id right ! id
id > ?left
id > ?right

left ! id right ! id

active

passive

fwd

id = ?left
leader

«At the end, there is a leader, and
the leader is the process with the maximum id.»

For all n, pid distributions, accepting runs, and processes:

Data Propositional Dynamic Logic

id < ?left
id < ?right_

^

left ! id right ! id

Leader election [Franklin ’82]

5

[Bojanczyk et al. ’09; Figueira-Segoufin ‘11]

|= ∧ [*] (id ≤ ⟨go-to- ⟩ id))

71

42

19

23

47

Distributed algorithms

go-to- = (¬)*

⟨ *⟩ (¬⟨ ⟩ ∧ ⟨go-to- ⟩

Behavior

Distributed algorithm

left ! id right ! id
id > ?left
id > ?right

left ! id right ! id

active

passive

fwd

id = ?left
leader

«At the end, there is a leader, and
the leader is the process with the maximum id.»

For all n, pid distributions, accepting runs, and processes:

Data Propositional Dynamic Logic

id < ?left
id < ?right_

^

left ! id right ! id

Leader election [Franklin ’82]

5

[Bojanczyk et al. ’09; Figueira-Segoufin ‘11]

|= ∧ [*] (id ≤ ⟨go-to- ⟩ id))

71

42

19

23

47

Distributed algorithms

go-to- = (¬)*

⟨ *⟩ (¬⟨ ⟩ ∧ ⟨go-to- ⟩

Behavior

Distributed algorithm

left ! id right ! id
id > ?left
id > ?right

left ! id right ! id

active

passive

fwd

id = ?left
leader

«At the end, there is a leader, and
the leader is the process with the maximum id.»

For all n, pid distributions, accepting runs, and processes:

Data Propositional Dynamic Logic

id < ?left
id < ?right_

^

left ! id right ! id

Leader election [Franklin ’82]

5

[Bojanczyk et al. ’09; Figueira-Segoufin ‘11]

|= ∧ [*] (id ≤ ⟨go-to- ⟩ id))

in Figure 3 (for the moment, we may ignore the blue and violet lines). A colored row forms
a configuration. The three pids in a cell refer to registers r, r

Õ
, r

ÕÕ, respectively (we ignore id).
Moreover, a non-colored row forms, together with the states above and below, a transition
tuple. When looking at the step from C3 to C4, we have, for example, r

Õ@3 ⇢ r@4 and
r

Õ@3⇢ r

ÕÕ@6. Moreover, r

Õ@6⇢ r@7 and r

Õ@6⇢ r

ÕÕ@1 (recall that we are in a ring). Note
that the run conforms to the correctness property formulated in Example 3. In particular, in
the final configuration, all processes store the maximum pid in register r. C

3 The Specification Language

In Examples 2 and 3, we informally stated the correctness criterion for the presented
algorithms (e.g., “at the end, all processes store the maximal pid in register r”). Now, we
introduce a formal language to specify correctness properties. It is defined wrt. a given
distributed algorithm D = (S, s0, Reg, �), which we fix for the rest of this section.

Typically, one requires that a distributed algorithm is correct no matter what the
underlying ring is. Since we will bound the number of rounds, we moreover study a form of
partial correctness. Accordingly, a property is of the form ’

rings

’
runs

’
m

Ï, which has to be
read as “for all rings, all runs, and all processes m, we have Ï”. The marking m is used to
avoid to “get lost” in a ring when writing the property Ï. This is like placing a pebble in
the ring that can be retrieved at any time. Actually, Ï allows us to “navigate” back and
forth (ø and ¿) in a run, i.e., from one configuration to the previous or next one (similar
to a temporal logic with past operators). By means of Ω and æ, we may also navigate
horizontally within a configuration, i.e., from one process to a neighboring one.

Essentially, a sequence of configurations is interpreted as a cylinder (cf. Figure 3) that
can be explored using regular expressions fi over {‘, Ω, æ, ø, ¿} (where ‘ means “stay”). At
a given position/coordinate of the cylinder, we can check local (or positional) properties like
the state taken by a process, or whether we are on the marked process m. Such a property
can be combined with a regular expression fi: The formula [fi]Ï says that Ï holds at every
position that is reachable through a fi-path (a path matching fi). Dually, ÈfiÍÏ holds if there
is a fi-path to some position where Ï is satisfied. The most interesting construct in our logic
is ÈfiÍr ÛÙ ÈfiÕÍrÕ, where ÛÙ œ {=, ”=, <, Æ}, which has been used for reasoning about XML
documents [4,5,12]. It says that, from the current position, there are a fi-path and a fi

Õ-path
that lead to positions y and y

Õ, respectively, such that the pid stored in register r at y and
the pid stored in r

Õ at y

Õ satisfy the relation ÛÙ.
We will now introduce our logic in full generality. Later, we will restrict the use of <-

and Æ-guards to obtain positive results.

Definition 6. The logic DataPDL(D) is given by the following grammar:

� ::= ’
rings

’
runs

’
m

Ï

Ï, Ï

Õ ::= m | s | ¬Ï | Ï · Ï

Õ | Ï ∆ Ï

Õ | [fi]Ï | ÈfiÍr ÛÙ ÈfiÕÍrÕ

fi, fi

Õ ::= {Ï}? | d | fi + fi

Õ | fi · fi

Õ | fi

ú

where s œ S, r, r

Õ œ Reg, ÛÙ œ {=, ”=, <, Æ}, and d œ {‘, Ω, æ, ø, ¿}. C

We call Ï a local formula, and fi a path formula. We use common abbreviations such as
false = m · ¬m, ÈfiÍÏ = ¬[fi]¬Ï, and Ï ‚ Ï

Õ = ¬(¬Ï · ¬Ï

Õ), and we may write fifi

Õ instead
of fi · fi

Õ. Implication ∆ is included explicitly in view of the restriction defined below.
Next, we define the semantics. Consider a run ‰ = C0

t

1
 C1

t

2
 . . .

t

k

 C

k

of D where
C

j

= (sj

1, . . . , s

j

n

, fl

j

1, . . . , fl

j

n

), i.e., n is the number of processes in the underlying ring. A local

7

in Figure 3 (for the moment, we may ignore the blue and violet lines). A colored row forms
a configuration. The three pids in a cell refer to registers r, r

Õ
, r

ÕÕ, respectively (we ignore id).
Moreover, a non-colored row forms, together with the states above and below, a transition
tuple. When looking at the step from C3 to C4, we have, for example, r

Õ@3 ⇢ r@4 and
r

Õ@3⇢ r

ÕÕ@6. Moreover, r

Õ@6⇢ r@7 and r

Õ@6⇢ r

ÕÕ@1 (recall that we are in a ring). Note
that the run conforms to the correctness property formulated in Example 3. In particular, in
the final configuration, all processes store the maximum pid in register r. C

3 The Specification Language

In Examples 2 and 3, we informally stated the correctness criterion for the presented
algorithms (e.g., “at the end, all processes store the maximal pid in register r”). Now, we
introduce a formal language to specify correctness properties. It is defined wrt. a given
distributed algorithm D = (S, s0, Reg, �), which we fix for the rest of this section.

Typically, one requires that a distributed algorithm is correct no matter what the
underlying ring is. Since we will bound the number of rounds, we moreover study a form of
partial correctness. Accordingly, a property is of the form ’

rings

’
runs

’
m

Ï, which has to be
read as “for all rings, all runs, and all processes m, we have Ï”. The marking m is used to
avoid to “get lost” in a ring when writing the property Ï. This is like placing a pebble in
the ring that can be retrieved at any time. Actually, Ï allows us to “navigate” back and
forth (ø and ¿) in a run, i.e., from one configuration to the previous or next one (similar
to a temporal logic with past operators). By means of Ω and æ, we may also navigate
horizontally within a configuration, i.e., from one process to a neighboring one.

Essentially, a sequence of configurations is interpreted as a cylinder (cf. Figure 3) that
can be explored using regular expressions fi over {‘, Ω, æ, ø, ¿} (where ‘ means “stay”). At
a given position/coordinate of the cylinder, we can check local (or positional) properties like
the state taken by a process, or whether we are on the marked process m. Such a property
can be combined with a regular expression fi: The formula [fi]Ï says that Ï holds at every
position that is reachable through a fi-path (a path matching fi). Dually, ÈfiÍÏ holds if there
is a fi-path to some position where Ï is satisfied. The most interesting construct in our logic
is ÈfiÍr ÛÙ ÈfiÕÍrÕ, where ÛÙ œ {=, ”=, <, Æ}, which has been used for reasoning about XML
documents [4,5,12]. It says that, from the current position, there are a fi-path and a fi

Õ-path
that lead to positions y and y

Õ, respectively, such that the pid stored in register r at y and
the pid stored in r

Õ at y

Õ satisfy the relation ÛÙ.
We will now introduce our logic in full generality. Later, we will restrict the use of <-

and Æ-guards to obtain positive results.

Definition 6. The logic DataPDL(D) is given by the following grammar:

� ::= ’
rings

’
runs

’
m

Ï

Ï, Ï

Õ ::= m | s | ¬Ï | Ï · Ï

Õ | Ï ∆ Ï

Õ | [fi]Ï | ÈfiÍr ÛÙ ÈfiÕÍrÕ

fi, fi

Õ ::= {Ï}? | d | fi + fi

Õ | fi · fi

Õ | fi

ú

where s œ S, r, r

Õ œ Reg, ÛÙ œ {=, ”=, <, Æ}, and d œ {‘, Ω, æ, ø, ¿}. C

We call Ï a local formula, and fi a path formula. We use common abbreviations such as
false = m · ¬m, ÈfiÍÏ = ¬[fi]¬Ï, and Ï ‚ Ï

Õ = ¬(¬Ï · ¬Ï

Õ), and we may write fifi

Õ instead
of fi · fi

Õ. Implication ∆ is included explicitly in view of the restriction defined below.
Next, we define the semantics. Consider a run ‰ = C0

t

1
 C1

t

2
 . . .

t

k

 C

k

of D where
C

j

= (sj

1, . . . , s

j

n

, fl

j

1, . . . , fl

j

n

), i.e., n is the number of processes in the underlying ring. A local

7

M. Bojanczyk, A. Muscholl, T. Schwentick, and L. Segoufin. Two-variable logic on data trees and XML reasoning. J. ACM, 56(3), 2009.

D. Figueira and L. Segoufin. Bottom-up automata on data trees and vertical XPath. In STACS’11, volume 9 of LIPIcs, pages 93–104, 2011.

Specifications
Data PDL

[π]!

π π
π

!
!!

in Figure 3 (for the moment, we may ignore the blue and violet lines). A colored row forms
a configuration. The three pids in a cell refer to registers r, r

Õ
, r

ÕÕ, respectively (we ignore id).
Moreover, a non-colored row forms, together with the states above and below, a transition
tuple. When looking at the step from C3 to C4, we have, for example, r

Õ@3 ⇢ r@4 and
r

Õ@3⇢ r

ÕÕ@6. Moreover, r

Õ@6⇢ r@7 and r

Õ@6⇢ r

ÕÕ@1 (recall that we are in a ring). Note
that the run conforms to the correctness property formulated in Example 3. In particular, in
the final configuration, all processes store the maximum pid in register r. C

3 The Specification Language

In Examples 2 and 3, we informally stated the correctness criterion for the presented
algorithms (e.g., “at the end, all processes store the maximal pid in register r”). Now, we
introduce a formal language to specify correctness properties. It is defined wrt. a given
distributed algorithm D = (S, s0, Reg, �), which we fix for the rest of this section.

Typically, one requires that a distributed algorithm is correct no matter what the
underlying ring is. Since we will bound the number of rounds, we moreover study a form of
partial correctness. Accordingly, a property is of the form ’

rings

’
runs

’
m

Ï, which has to be
read as “for all rings, all runs, and all processes m, we have Ï”. The marking m is used to
avoid to “get lost” in a ring when writing the property Ï. This is like placing a pebble in
the ring that can be retrieved at any time. Actually, Ï allows us to “navigate” back and
forth (ø and ¿) in a run, i.e., from one configuration to the previous or next one (similar
to a temporal logic with past operators). By means of Ω and æ, we may also navigate
horizontally within a configuration, i.e., from one process to a neighboring one.

Essentially, a sequence of configurations is interpreted as a cylinder (cf. Figure 3) that
can be explored using regular expressions fi over {‘, Ω, æ, ø, ¿} (where ‘ means “stay”). At
a given position/coordinate of the cylinder, we can check local (or positional) properties like
the state taken by a process, or whether we are on the marked process m. Such a property
can be combined with a regular expression fi: The formula [fi]Ï says that Ï holds at every
position that is reachable through a fi-path (a path matching fi). Dually, ÈfiÍÏ holds if there
is a fi-path to some position where Ï is satisfied. The most interesting construct in our logic
is ÈfiÍr ÛÙ ÈfiÕÍrÕ, where ÛÙ œ {=, ”=, <, Æ}, which has been used for reasoning about XML
documents [4,5,12]. It says that, from the current position, there are a fi-path and a fi

Õ-path
that lead to positions y and y

Õ, respectively, such that the pid stored in register r at y and
the pid stored in r

Õ at y

Õ satisfy the relation ÛÙ.
We will now introduce our logic in full generality. Later, we will restrict the use of <-

and Æ-guards to obtain positive results.

Definition 6. The logic DataPDL(D) is given by the following grammar:

� ::= ’
rings

’
runs

’
m

Ï

Ï, Ï

Õ ::= m | s | ¬Ï | Ï · Ï

Õ | Ï ∆ Ï

Õ | [fi]Ï | ÈfiÍr ÛÙ ÈfiÕÍrÕ

fi, fi

Õ ::= {Ï}? | d | fi + fi

Õ | fi · fi

Õ | fi

ú

where s œ S, r, r

Õ œ Reg, ÛÙ œ {=, ”=, <, Æ}, and d œ {‘, Ω, æ, ø, ¿}. C

We call Ï a local formula, and fi a path formula. We use common abbreviations such as
false = m · ¬m, ÈfiÍÏ = ¬[fi]¬Ï, and Ï ‚ Ï

Õ = ¬(¬Ï · ¬Ï

Õ), and we may write fifi

Õ instead
of fi · fi

Õ. Implication ∆ is included explicitly in view of the restriction defined below.
Next, we define the semantics. Consider a run ‰ = C0

t

1
 C1

t

2
 . . .

t

k

 C

k

of D where
C

j

= (sj

1, . . . , s

j

n

, fl

j

1, . . . , fl

j

n

), i.e., n is the number of processes in the underlying ring. A local

7

in Figure 3 (for the moment, we may ignore the blue and violet lines). A colored row forms
a configuration. The three pids in a cell refer to registers r, r

Õ
, r

ÕÕ, respectively (we ignore id).
Moreover, a non-colored row forms, together with the states above and below, a transition
tuple. When looking at the step from C3 to C4, we have, for example, r

Õ@3 ⇢ r@4 and
r

Õ@3⇢ r

ÕÕ@6. Moreover, r

Õ@6⇢ r@7 and r

Õ@6⇢ r

ÕÕ@1 (recall that we are in a ring). Note
that the run conforms to the correctness property formulated in Example 3. In particular, in
the final configuration, all processes store the maximum pid in register r. C

3 The Specification Language

In Examples 2 and 3, we informally stated the correctness criterion for the presented
algorithms (e.g., “at the end, all processes store the maximal pid in register r”). Now, we
introduce a formal language to specify correctness properties. It is defined wrt. a given
distributed algorithm D = (S, s0, Reg, �), which we fix for the rest of this section.

Typically, one requires that a distributed algorithm is correct no matter what the
underlying ring is. Since we will bound the number of rounds, we moreover study a form of
partial correctness. Accordingly, a property is of the form ’

rings

’
runs

’
m

Ï, which has to be
read as “for all rings, all runs, and all processes m, we have Ï”. The marking m is used to
avoid to “get lost” in a ring when writing the property Ï. This is like placing a pebble in
the ring that can be retrieved at any time. Actually, Ï allows us to “navigate” back and
forth (ø and ¿) in a run, i.e., from one configuration to the previous or next one (similar
to a temporal logic with past operators). By means of Ω and æ, we may also navigate
horizontally within a configuration, i.e., from one process to a neighboring one.

Essentially, a sequence of configurations is interpreted as a cylinder (cf. Figure 3) that
can be explored using regular expressions fi over {‘, Ω, æ, ø, ¿} (where ‘ means “stay”). At
a given position/coordinate of the cylinder, we can check local (or positional) properties like
the state taken by a process, or whether we are on the marked process m. Such a property
can be combined with a regular expression fi: The formula [fi]Ï says that Ï holds at every
position that is reachable through a fi-path (a path matching fi). Dually, ÈfiÍÏ holds if there
is a fi-path to some position where Ï is satisfied. The most interesting construct in our logic
is ÈfiÍr ÛÙ ÈfiÕÍrÕ, where ÛÙ œ {=, ”=, <, Æ}, which has been used for reasoning about XML
documents [4,5,12]. It says that, from the current position, there are a fi-path and a fi

Õ-path
that lead to positions y and y

Õ, respectively, such that the pid stored in register r at y and
the pid stored in r

Õ at y

Õ satisfy the relation ÛÙ.
We will now introduce our logic in full generality. Later, we will restrict the use of <-

and Æ-guards to obtain positive results.

Definition 6. The logic DataPDL(D) is given by the following grammar:

� ::= ’
rings

’
runs

’
m

Ï

Ï, Ï

Õ ::= m | s | ¬Ï | Ï · Ï

Õ | Ï ∆ Ï

Õ | [fi]Ï | ÈfiÍr ÛÙ ÈfiÕÍrÕ

fi, fi

Õ ::= {Ï}? | d | fi + fi

Õ | fi · fi

Õ | fi

ú

where s œ S, r, r

Õ œ Reg, ÛÙ œ {=, ”=, <, Æ}, and d œ {‘, Ω, æ, ø, ¿}. C

We call Ï a local formula, and fi a path formula. We use common abbreviations such as
false = m · ¬m, ÈfiÍÏ = ¬[fi]¬Ï, and Ï ‚ Ï

Õ = ¬(¬Ï · ¬Ï

Õ), and we may write fifi

Õ instead
of fi · fi

Õ. Implication ∆ is included explicitly in view of the restriction defined below.
Next, we define the semantics. Consider a run ‰ = C0

t

1
 C1

t

2
 . . .

t

k

 C

k

of D where
C

j

= (sj

1, . . . , s

j

n

, fl

j

1, . . . , fl

j

n

), i.e., n is the number of processes in the underlying ring. A local

7

M. Bojanczyk, A. Muscholl, T. Schwentick, and L. Segoufin. Two-variable logic on data trees and XML reasoning. J. ACM, 56(3), 2009.

D. Figueira and L. Segoufin. Bottom-up automata on data trees and vertical XPath. In STACS’11, volume 9 of LIPIcs, pages 93–104, 2011.

Specifications
Data PDL

[π]!

π π
π

!
!!

⟨π⟩r < ⟨π’⟩r’

r < r’

π’π

in Figure 3 (for the moment, we may ignore the blue and violet lines). A colored row forms
a configuration. The three pids in a cell refer to registers r, r

Õ
, r

ÕÕ, respectively (we ignore id).
Moreover, a non-colored row forms, together with the states above and below, a transition
tuple. When looking at the step from C3 to C4, we have, for example, r

Õ@3 ⇢ r@4 and
r

Õ@3⇢ r

ÕÕ@6. Moreover, r

Õ@6⇢ r@7 and r

Õ@6⇢ r

ÕÕ@1 (recall that we are in a ring). Note
that the run conforms to the correctness property formulated in Example 3. In particular, in
the final configuration, all processes store the maximum pid in register r. C

3 The Specification Language

In Examples 2 and 3, we informally stated the correctness criterion for the presented
algorithms (e.g., “at the end, all processes store the maximal pid in register r”). Now, we
introduce a formal language to specify correctness properties. It is defined wrt. a given
distributed algorithm D = (S, s0, Reg, �), which we fix for the rest of this section.

Typically, one requires that a distributed algorithm is correct no matter what the
underlying ring is. Since we will bound the number of rounds, we moreover study a form of
partial correctness. Accordingly, a property is of the form ’

rings

’
runs

’
m

Ï, which has to be
read as “for all rings, all runs, and all processes m, we have Ï”. The marking m is used to
avoid to “get lost” in a ring when writing the property Ï. This is like placing a pebble in
the ring that can be retrieved at any time. Actually, Ï allows us to “navigate” back and
forth (ø and ¿) in a run, i.e., from one configuration to the previous or next one (similar
to a temporal logic with past operators). By means of Ω and æ, we may also navigate
horizontally within a configuration, i.e., from one process to a neighboring one.

Essentially, a sequence of configurations is interpreted as a cylinder (cf. Figure 3) that
can be explored using regular expressions fi over {‘, Ω, æ, ø, ¿} (where ‘ means “stay”). At
a given position/coordinate of the cylinder, we can check local (or positional) properties like
the state taken by a process, or whether we are on the marked process m. Such a property
can be combined with a regular expression fi: The formula [fi]Ï says that Ï holds at every
position that is reachable through a fi-path (a path matching fi). Dually, ÈfiÍÏ holds if there
is a fi-path to some position where Ï is satisfied. The most interesting construct in our logic
is ÈfiÍr ÛÙ ÈfiÕÍrÕ, where ÛÙ œ {=, ”=, <, Æ}, which has been used for reasoning about XML
documents [4,5,12]. It says that, from the current position, there are a fi-path and a fi

Õ-path
that lead to positions y and y

Õ, respectively, such that the pid stored in register r at y and
the pid stored in r

Õ at y

Õ satisfy the relation ÛÙ.
We will now introduce our logic in full generality. Later, we will restrict the use of <-

and Æ-guards to obtain positive results.

Definition 6. The logic DataPDL(D) is given by the following grammar:

� ::= ’
rings

’
runs

’
m

Ï

Ï, Ï

Õ ::= m | s | ¬Ï | Ï · Ï

Õ | Ï ∆ Ï

Õ | [fi]Ï | ÈfiÍr ÛÙ ÈfiÕÍrÕ

fi, fi

Õ ::= {Ï}? | d | fi + fi

Õ | fi · fi

Õ | fi

ú

where s œ S, r, r

Õ œ Reg, ÛÙ œ {=, ”=, <, Æ}, and d œ {‘, Ω, æ, ø, ¿}. C

We call Ï a local formula, and fi a path formula. We use common abbreviations such as
false = m · ¬m, ÈfiÍÏ = ¬[fi]¬Ï, and Ï ‚ Ï

Õ = ¬(¬Ï · ¬Ï

Õ), and we may write fifi

Õ instead
of fi · fi

Õ. Implication ∆ is included explicitly in view of the restriction defined below.
Next, we define the semantics. Consider a run ‰ = C0

t

1
 C1

t

2
 . . .

t

k

 C

k

of D where
C

j

= (sj

1, . . . , s

j

n

, fl

j

1, . . . , fl

j

n

), i.e., n is the number of processes in the underlying ring. A local

7

in Figure 3 (for the moment, we may ignore the blue and violet lines). A colored row forms
a configuration. The three pids in a cell refer to registers r, r

Õ
, r

ÕÕ, respectively (we ignore id).
Moreover, a non-colored row forms, together with the states above and below, a transition
tuple. When looking at the step from C3 to C4, we have, for example, r

Õ@3 ⇢ r@4 and
r

Õ@3⇢ r

ÕÕ@6. Moreover, r

Õ@6⇢ r@7 and r

Õ@6⇢ r

ÕÕ@1 (recall that we are in a ring). Note
that the run conforms to the correctness property formulated in Example 3. In particular, in
the final configuration, all processes store the maximum pid in register r. C

3 The Specification Language

In Examples 2 and 3, we informally stated the correctness criterion for the presented
algorithms (e.g., “at the end, all processes store the maximal pid in register r”). Now, we
introduce a formal language to specify correctness properties. It is defined wrt. a given
distributed algorithm D = (S, s0, Reg, �), which we fix for the rest of this section.

Typically, one requires that a distributed algorithm is correct no matter what the
underlying ring is. Since we will bound the number of rounds, we moreover study a form of
partial correctness. Accordingly, a property is of the form ’

rings

’
runs

’
m

Ï, which has to be
read as “for all rings, all runs, and all processes m, we have Ï”. The marking m is used to
avoid to “get lost” in a ring when writing the property Ï. This is like placing a pebble in
the ring that can be retrieved at any time. Actually, Ï allows us to “navigate” back and
forth (ø and ¿) in a run, i.e., from one configuration to the previous or next one (similar
to a temporal logic with past operators). By means of Ω and æ, we may also navigate
horizontally within a configuration, i.e., from one process to a neighboring one.

Essentially, a sequence of configurations is interpreted as a cylinder (cf. Figure 3) that
can be explored using regular expressions fi over {‘, Ω, æ, ø, ¿} (where ‘ means “stay”). At
a given position/coordinate of the cylinder, we can check local (or positional) properties like
the state taken by a process, or whether we are on the marked process m. Such a property
can be combined with a regular expression fi: The formula [fi]Ï says that Ï holds at every
position that is reachable through a fi-path (a path matching fi). Dually, ÈfiÍÏ holds if there
is a fi-path to some position where Ï is satisfied. The most interesting construct in our logic
is ÈfiÍr ÛÙ ÈfiÕÍrÕ, where ÛÙ œ {=, ”=, <, Æ}, which has been used for reasoning about XML
documents [4,5,12]. It says that, from the current position, there are a fi-path and a fi

Õ-path
that lead to positions y and y

Õ, respectively, such that the pid stored in register r at y and
the pid stored in r

Õ at y

Õ satisfy the relation ÛÙ.
We will now introduce our logic in full generality. Later, we will restrict the use of <-

and Æ-guards to obtain positive results.

Definition 6. The logic DataPDL(D) is given by the following grammar:

� ::= ’
rings

’
runs

’
m

Ï

Ï, Ï

Õ ::= m | s | ¬Ï | Ï · Ï

Õ | Ï ∆ Ï

Õ | [fi]Ï | ÈfiÍr ÛÙ ÈfiÕÍrÕ

fi, fi

Õ ::= {Ï}? | d | fi + fi

Õ | fi · fi

Õ | fi

ú

where s œ S, r, r

Õ œ Reg, ÛÙ œ {=, ”=, <, Æ}, and d œ {‘, Ω, æ, ø, ¿}. C

We call Ï a local formula, and fi a path formula. We use common abbreviations such as
false = m · ¬m, ÈfiÍÏ = ¬[fi]¬Ï, and Ï ‚ Ï

Õ = ¬(¬Ï · ¬Ï

Õ), and we may write fifi

Õ instead
of fi · fi

Õ. Implication ∆ is included explicitly in view of the restriction defined below.
Next, we define the semantics. Consider a run ‰ = C0

t

1
 C1

t

2
 . . .

t

k

 C

k

of D where
C

j

= (sj

1, . . . , s

j

n

, fl

j

1, . . . , fl

j

n

), i.e., n is the number of processes in the underlying ring. A local

7

M. Bojanczyk, A. Muscholl, T. Schwentick, and L. Segoufin. Two-variable logic on data trees and XML reasoning. J. ACM, 56(3), 2009.

D. Figueira and L. Segoufin. Bottom-up automata on data trees and vertical XPath. In STACS’11, volume 9 of LIPIcs, pages 93–104, 2011.

Specifications
Data PDL

For rings of all sizes, all pid distributions,
all accepting runs, and all starting process (m)

[π]!

π π
π

!
!!

⟨π⟩r < ⟨π’⟩r’

r < r’

π’π

Model Checking

47

23

19

71

5

42

Model Checking Distributed algorithms

71

42

19

23

47

5

Active
id = 47
r1 = 23
r2 = 19

Cylinders of arbitrary width and length
Data from an infinite domain

Register automata with data comparisons
Data PDL with data comparisons

UNDECIDABLE

Reduction to automata?

Distributed algorithm Data PDL

A '

71

42

19

23

47

5

A0 ¬'

We do not know
how to translate Data PDL

to automata

Data abstraction

Distributed algorithm Data PDL

A '

PDL with loop (over finite alphabet)

unsatisfiable
over grids

() A |= '

^ ¬

71

42

19

23

47

5

Data abstraction: symbolic runs + tracking data

71

42

19

23

47

5

Distributed algorithm

left ! id right ! id
id > ?left
id > ?right

left ! id right ! id

active

passive

id = ?left
leader

id < ?left
id < ?right_

^

left ! id right ! id

fwd

Data abstraction: symbolic runs + tracking data

71

42

19

23

47

5

Distributed algorithm

left ! id right ! id
id > ?left
id > ?right

left ! id right ! id

active

passive

id = ?left
leader

id < ?left
id < ?right_

^

left ! id right ! id

fwd

t1

t1

t2

t4

t3

t1

t1 t4

t2

t2

t2

t2

t2

t3 t3

t3 t3

t3 t3

t3 t3

t3

Data abstraction: symbolic runs + tracking data

71

42

23

47

5

Distributed algorithm

19

• Register updates

r1

Data abstraction: symbolic runs + tracking data

71

42

23

47

5

Distributed algorithm

19

• Register updates

r1r1=?right

Data abstraction: symbolic runs + tracking data

71

42

23

47

5

Distributed algorithm

left!r2

fwd19

• Register updates

r1r1=?right

Data abstraction: symbolic runs + tracking data

71

42

23

47

5

Distributed algorithm

left!r2

fwd19

• Register updates

r2=?left

r1r1=?right

Data abstraction: symbolic runs + tracking data

71

42

23

47

5

Distributed algorithm

left!r2

fwd19

• Register updates

r2=?left

right!r1

r1r1=?right

Data abstraction: symbolic runs + tracking data

71

42

23

47

5

Distributed algorithm

left!r2

fwd19

• Register updates

r2=?left

right!r1
r1=?right

r1r1=?right

Data abstraction: symbolic runs + tracking data

71

42

23

47

5

Distributed algorithm

left!r2

fwd19

• Register updates

r2=?left

right!r1
r1=?right

left!id

r1r1=?right

Data abstraction: symbolic runs + tracking data

71

42

23

47

5

Distributed algorithm

left!r2

fwd19

(r1,id)-path

can be expressed in PDL

• Register updates

r2=?left

right!r1
r1=?right

left!id

r1r1=?right

Data abstraction: symbolic runs + tracking data

71

42

23

47

5

Distributed algorithm

19

r2=r1

• Register updates
• Register equality check

Data abstraction: symbolic runs + tracking data

71

42

23

47

5

Distributed algorithm

19

π1:(r1,id)-path
π2:(r2,id)-path

r2=r1

• Register updates
• Register equality check

Data abstraction: symbolic runs + tracking data

71

42

23

47

5

Distributed algorithm

19

π1:(r1,id)-path
π2:(r2,id)-path
loop(π1 π2-1)

can be expressed
in PDL with loop

r2=r1

• Register updates
• Register equality check

Data abstraction: symbolic runs + tracking data

71

42

23

47

5

Distributed algorithm

19

r1 < r2

• Register updates
• Register equality check
• Register comparison

Data abstraction: symbolic runs + tracking data

71

42

23

47

5

Distributed algorithm

19

r1 < r2

left!id
right!id

• Register updates
• Register equality check
• Register comparison

r’2 < r3

r’3 < r4

Data abstraction: symbolic runs + tracking data

71

42

23

47

5

Distributed algorithm

19

r1 < r2

left!id
right!id

• Register updates
• Register equality check
• Register comparison

r’2 < r3

r’3 < r4

• If there is a loop, no pids assignment can turn the
symbolic cylinder into a valid run.

• If no such loops, then there are pids that allow a
valid realization of the abstract grid

Data abstraction: symbolic runs + tracking data

71

42

23

47

5

Distributed algorithm

19

No loop of the form
ri0<ri1; (ri1,ri2)-path; ri2<ri3; (ri3,ri4)-path; … ; rin<ri0

r1 < r2

left!id
right!id

• Register updates
• Register equality check
• Register comparison

r’2 < r3

r’3 < r4

• If there is a loop, no pids assignment can turn the
symbolic cylinder into a valid run.

• If no such loops, then there are pids that allow a
valid realization of the abstract grid

Data abstraction: symbolic runs + tracking data

71

42

23

47

5

Distributed algorithm

19

No loop of the form
ri0<ri1; (ri1,ri2)-path; ri2<ri3; (ri3,ri4)-path; … ; rin<ri0

can be expressed
in PDL with loop

r1 < r2

left!id
right!id

• Register updates
• Register equality check
• Register comparison

r’2 < r3

r’3 < r4

Distributed algorithm Data PDL

A '

PDL with loop (over finite alphabet)

71

42

19

23

47

5

t1

t1

t1 t4

t2

t2

t2

t2

t2

t3 t3

t3 t3

t3 t3

t3 t3

t3

Data abstraction: symbolic runs + tracking data

5

71

42

19

23

47

Distributed algorithms

Behavior

Distributed algorithm Data PDL

∧ [*] (id ≤ ⟨go-to- ⟩ id))

go-to- = (¬)*

⟨ *⟩ (¬⟨ ⟩ ∧ ⟨go-to- ⟩

«There is a leader, and the leader is the
process with the maximum id.»

| {z }

For all n, pid distributions, accepting runs, and processes:

left ! id right ! id
id > ?left
id > ?right

left ! id right ! id

active

passive

id = ?left
leader

id < ?left
id < ?right_

^

left ! id right ! id

fwd

t1

t2

t4

t3

id

idt1

t2

t2

t2

t3

t3

t3

t3

t4

t3

t3

t3

t3

t3t1

t1

t2

t2

'

5

71

42

19

23

47

Distributed algorithms

Behavior

Distributed algorithm Data PDL

∧ [*] (id ≤ ⟨go-to- ⟩ id))

go-to- = (¬)*

⟨ *⟩ (¬⟨ ⟩ ∧ ⟨go-to- ⟩

«There is a leader, and the leader is the
process with the maximum id.»

left!id

id < ?right

id < ?right

| {z }

For all n, pid distributions, accepting runs, and processes:

left ! id right ! id
id > ?left
id > ?right

left ! id right ! id

active

passive

id = ?left
leader

id < ?left
id < ?right_

^

left ! id right ! id

fwd

t1

t2

t4

t3

id

idleft!idt1

t1

t2

t2

t2

t2

t1

t2

t3

t3

t3

t3

t4

t3

t3

t3

t3

t3

'

5

71

42

19

23

47

Distributed algorithms

Behavior

Distributed algorithm Data PDL

∧ [*] (id ≤ ⟨go-to- ⟩ id))

go-to- = (¬)*

⟨ *⟩ (¬⟨ ⟩ ∧ ⟨go-to- ⟩

«There is a leader, and the leader is the
process with the maximum id.»

left!id

id < ?right

id < ?right

| {z }

For all n, pid distributions, accepting runs, and processes:

left ! id right ! id
id > ?left
id > ?right

left ! id right ! id

active

passive

id = ?left
leader

id < ?left
id < ?right_

^

left ! id right ! id

fwd

t1

t2

t4

t3

id

idleft!idt1

t1

t2

t2

t2

t2

t1

t2

t3

t3

t3

t3

t4

t3

t3

t3

t3

t3

<-path

'

Distributed algorithms

Behavior

Distributed algorithm Data PDL

∧ [*] (id ≤ ⟨go-to- ⟩ id))

go-to- = (¬)*

⟨ *⟩ (¬⟨ ⟩ ∧ ⟨go-to- ⟩

«There is a leader, and the leader is the
process with the maximum id.»

left!id

id < ?right

id < ?right

| {z }

For all n, pid distributions, accepting runs, and processes:

left ! id right ! id
id > ?left
id > ?right

left ! id right ! id

active

passive

id = ?left
leader

id < ?left
id < ?right_

^

left ! id right ! id

fwd

t1

t2

t4

t3

id

idleft!idt1

t1

t2

t2

t2

t2

t1

t2

t3

t3

t3

t3

t4

t3

t3

t3

t3

t3

'

<-path

Distributed algorithms

Behavior

Distributed algorithm Data PDL

∧ [*] (id ≤ ⟨go-to- ⟩ id))

go-to- = (¬)*

⟨ *⟩ (¬⟨ ⟩ ∧ ⟨go-to- ⟩

«There is a leader, and the leader is the
process with the maximum id.»

left!id

id < ?right

id < ?right

| {z }

For all n, pid distributions, accepting runs, and processes:

left ! id right ! id
id > ?left
id > ?right

left ! id right ! id

active

passive

id = ?left
leader

id < ?left
id < ?right_

^

left ! id right ! id

fwd

t1

t2

t4

t3

id

idleft!idt1

t1

t2

t2

t2

t2

t1

t2

t3

t3

t3

t3

t4

t3

t3

t3

t3

t3

Loop (π . (r,r’)-<-path . (π’)-1)
h⇡ir  h⇡0ir0

go-to-
—1

'

<-path

Distributed algorithms

Behavior

Distributed algorithm Data PDL

∧ [*] (id ≤ ⟨go-to- ⟩ id))

go-to- = (¬)*

⟨ *⟩ (¬⟨ ⟩ ∧ ⟨go-to- ⟩

«There is a leader, and the leader is the
process with the maximum id.»

left!id

id < ?right

id < ?right

| {z }

For all n, pid distributions, accepting runs, and processes:

left ! id right ! id
id > ?left
id > ?right

left ! id right ! id

active

passive

id = ?left
leader

id < ?left
id < ?right_

^

left ! id right ! id

fwd

t1

t2

t4

t3

id

idleft!idt1

t1

t2

t2

t2

t2

t1

t2

t3

t3

t3

t3

t4

t3

t3

t3

t3

t3

Loop (π . (r,r’)-<-path . (π’)-1)
h⇡ir  h⇡0ir0

go-to-
—1

'

there is loop

' holds here

)<-path

Distributed algorithms

Behavior

Distributed algorithm Data PDL

∧ [*] (id ≤ ⟨go-to- ⟩ id))

go-to- = (¬)*

⟨ *⟩ (¬⟨ ⟩ ∧ ⟨go-to- ⟩

«There is a leader, and the leader is the
process with the maximum id.»

left!id

id < ?right

id < ?right

| {z }

For all n, pid distributions, accepting runs, and processes:

left ! id right ! id
id > ?left
id > ?right

left ! id right ! id

active

passive

id = ?left
leader

id < ?left
id < ?right_

^

left ! id right ! id

fwd

t1

t2

t4

t3

id

idleft!idt1

t1

t2

t2

t2

t2

t1

t2

t3

t3

t3

t3

t4

t3

t3

t3

t3

t3

Loop (π . (r,r’)-<-path . (π’)-1)
h⇡ir  h⇡0ir0

go-to-
—1

'

there is loop

' holds here

()

no loop

no evidence of

there are pids
making false

)

)
'

' <-path

Data abstraction

Distributed algorithm Data PDL

A '

PDL with loop (over finite alphabet)

71

42

19

23

47

5

t1

t1

t1 t4

t2

t2

t2

t2

t2

t3 t3

t3 t3

t3 t3

t3 t3

t3

() A |= '

^ ¬
unsatisfiable
over grids

Data abstraction

Distributed algorithm Data PDL

A '

PDL with loop (over finite alphabet)

71

42

19

23

47

5

t1

t1

t1 t4

t2

t2

t2

t2

t2

t3 t3

t3 t3

t3 t3

t3 t3

t3

() A |= '

^ ¬
unsatisfiable
over grids

UNDECIDABLE

two unbounded
dimensions

Under approximate verification

Distributed algorithm Data PDL

A '

PDL with loop (over finite alphabet)

() A |= '

^ ¬
unsatisfiable
over grids

undecidable

Behavior

1
2

3
k

…

restrict to bounded
number of rounds

Distributed algorithm Data PDL

A '

PDL with loop (over finite alphabet)

() A |= '

^ ¬
unsatisfiable
over grids

undecidable

restrict to bounded
number of rounds

71

42

19

23

47

5

t1

t1

t1 t4

t2

t2

t2

t2

t2

t3 t3

t3 t3

t3 t3

t3 t3

t3

exponentially smaller than # of processes

PDL with loop over bounded grids

Bounded

Un
bo

un
de

d

PDL with loop over bounded grids
➯

PDL with loop over words

Bounded

Un
bo

un
de

d

PDL with loop over bounded grids
➯

PDL with loop over words

Bounded

Un
bo

un
de

d

left/right moves

PDL with loop over bounded grids
➯

PDL with loop over words

Bounded

Un
bo

un
de

d
Bounded

left/right moves up/down moves

PDL with loop over bounded grids
➯

PDL with loop over words
➯

Alternating 2-way Automata
➯

PSPACE
[Göller-Lohrey-Lutz ’08] [Serre ’08]

Bounded

Un
bo

un
de

d
Bounded

left/right moves up/down moves

** unary encoding of # of rounds
* with registers, register guards, and register updates

Distributed algorithms exponentially smaller than # of processes

Theorem (Aiswarya-Bollig-Gastin; CONCUR ’15).
Round-bounded model checking distributed algorithms* against Data PDL is PSPACE-
complete**.

** unary encoding of # of rounds
* with registers, register guards, and register updatesSummary

‣ What is the right temporal logic?

‣ How to deal with data?

‣ How to deal with undecidability?

Use generic Data PDL.
Use symbolic technique.
Under-approximation.

Distributed algorithms exponentially smaller than # of processes

Theorem (Aiswarya-Bollig-Gastin; CONCUR ’15).
Round-bounded model checking distributed algorithms* against Data PDL is PSPACE-
complete**.

Conclusions
Getting rid of Data

Translation of Distributed
Algorithms and DataPDL
to PDL with loops over

finitely labelled cylinders

Independent of the
restriction to rings

Future work..

Independent of the
number of rounds

• Other operations?
• Other topologies?
• Other restrictions?
• Other communications?

Thank you!

