
Formal Methods for the Verification of Distributed Algorithms

Paul Gastin
Laboratoire Spécification et Vérification

ENS Paris Saclay & CNRS

with C. Aiswarya (CMI) & Benedikt Bollig (LSV)

Motivations

• Distributed algorithms are extremely difficult to get right

• Correctness proofs are often involved

• Formal methods may help verifying the correctness of
tricky algorithms

Peterson's algorithm
for n from 0 to N−1 exclusive
 level[i] ← n
 last_to_enter[n] ← i
 while last_to_enter[n] = i and there

 exists k ≠ i, such that level[k] ≥ n
 wait

Formal methods: Model Checking

Specification
Mutual exclusion∧

i̸=j

¬(CSi ∧ CSj)

NoYes

Peterson's algorithm
for n from 0 to N−1 exclusive
 level[i] ← n
 last_to_enter[n] ← i
 while last_to_enter[n] = i and there

 exists k ≠ i, such that level[k] ≥ n
 wait

Formal methods: Model Checking

Specification
Mutual exclusion∧

i̸=j

¬(CSi ∧ CSj)

NoYes

Decision problem

• Finite state machine (control points)

• Data structures

• Boolean variables

• Integer variables

• Stacks (recursivity)

• Queues (asynchronous communication)

Models for programs/algorithms

Models for programs/algorithms
Peterson's algorithm
for n from 0 to N−1 exclusive
 level[i] := n
 last_to_enter[n] := i
 while last_to_enter[n] = i and there

 exists k ≠ i, such that level[k] ≥ n
 wait

wait

max{level[k], k≠i} ≥ n
last_to_enter[n] = i

trying
level[i] := n

last_to_enter[n] := i

CS

init

n := 0

n = N

n := n+1
else

waitn < N

Franklin’s leader election algorithm

Processes are arranged in an undirected ring.

Each node has a unique identity.

Each node is either active or passive (relay mode) at a given time.

The algorithm executes as follows:

– Each active node sends its identity to its neighbors.

Let each active node p1 receive identities from p0 and p2. Where p0 and p2 are its either neighbors in the ring.

– If min(ID[p0], ID[p2]) > ID[p1], then p1 becomes passive

– If min(ID[p0], ID[p2]) < ID[p1], then p1 sends its ID to its neighbors again

– If min(ID[p0], ID[p2]) == ID[p1], then p1 declares itself as leader

– Passive nodes only pass on messages.

– The loop continues until a leader with highest unique ID has been elected.

Models for programs/algorithms

active

passive

fwd

leader

left ! id right ! id

id > r1 ∧ id > r2

left?r1 right?r2

left ! id right ! id

id < r1 ∨ id < r2

left?r1 right?r2

left ! id right ! id

id = r1

left?r1 right?r2

• Modal logics

• Temporal logics

• First-order logic

• Dynamic logics

Languages for the specification

• Each infinite/unbounded aspects

• number of processes/agents

• Integer variables (pids, timestamps, …)

• FIFO channels (asynchronous communication)

Model checking: sources of undecidability

SpecificationSystem model

Behavior L(')

'

L(A)

model checking

A

set of possible
traces

set of admissible
traces

L(A) ✓ L(') ?

|=

distributed

¬F

specificati

Model checking (Linear time)

LTL specification

Behavior L(')

'A

A0

L(A) L(A0)\ = ;?

¬'

Finite automata

Reachability

model checking

L(A) ✓ L(') ?

|=

effective

distributed

¬F

specificati

Model checking: First solution

LTL specification

Behavior L(')

'A

Finite automata

Validity

!

! ⇒ "?L(A)

model checking

L(A) ✓ L(') ?

|=

effective

distributed

¬F

specificati

Model checking: Second solution

Models of Distributed Systems

47

23

19

71

5

42

• Number of processes: arbitrary, unknown
• Unique process identification

• Comparisons: <, =
• No arithmetic

• Topology: fixed degree (ring, …)
• Communication: Synchronous in rounds

• Round: send messages, receive messages,
compute and update local registers

Distributed algorithms: our hypotheses

71

42

19

23

47

Distributed algorithms

Behavior

Distributed algorithm

left ! id right ! id

id > r1 ∧ id > r2

active

passive

Leader election [Franklin ’82]

|{z} round

5

left?r1 right?r2

left ! id right ! id

id < r1 ∨ id < r2

left?r1 right?r2

71

42

19

23

47

Distributed algorithms

Behavior

Distributed algorithm

left ! id right ! id

id > r1 ∧ id > r2

active

passive

Leader election [Franklin ’82]

|{z} round

5

left?r1 right?r2

left ! id right ! id

id < r1 ∨ id < r2

left?r1 right?r2

Active
id = 47
r1 = 23
r2 = 19

71

42

19

23

47

Distributed algorithms

Behavior

Distributed algorithm

left ! id right ! id

id > r1 ∧ id > r2

active

passive

fwd

Leader election [Franklin ’82]

5

71 47

left?r1 right?r2

left ! id right ! id

id < r1 ∨ id < r2

left?r1 right?r2

71

42

19

23

47

Distributed algorithms

Behavior

Distributed algorithm

left ! id right ! id

id > r1 ∧ id > r2

active

passive

fwd

leader

Leader election [Franklin ’82]

5

71

left?r1 right?r2

left ! id right ! id

id < r1 ∨ id < r2

left?r1 right?r2

left ! id right ! id

id = r1

left?r1 right?r2

71

42

19

23

47

Distributed algorithms

Behavior

Distributed algorithm

left ! id right ! id

id > r1 ∧ id > r2

active

passive

fwd

leader

Leader election [Franklin ’82]

5

left?r1 right?r2

left ! id right ! id

id < r1 ∨ id < r2

left?r1 right?r2

left ! id right ! id

id = r1

left?r1 right?r2

Distributed algorithms

• Identical finite-state
processes

• Number of processes is
unknown and unbounded

• Processes have unique
pids (integers —
unbounded data)

47

23

19
42

71

5

right

left

A formal model for distributed algorithms
An automata-like way of writing DA

• Set of states

• Initial state

• Set of registers
• stores pid

• Set of transitions
• send pids to neighbours

• receive pids from neighbours,
and store in registers

• compare registers

• update registers

Every process can be described by:5

71

42

19

23

47

Behaviors

Distributed algorithm

active

passive

fwd

leader

5

Cylinders
Arbitrary length and width

Labelled with data
from an infinite domain

Active
id = 47
r1 = 23
r2 = 19

two unbounded
dimensions

3 sources of infinity

left ! id right ! id

id > r1 ∧ id > r2

left?r1 right?r2

left ! id right ! id

id < r1 ∨ id < r2

left?r1 right?r2

left ! id right ! id

id = r1

left?r1 right?r2

Abstraction of Data Values

47

23

19

71

5

42

Model Checking Distributed algorithms

71

42

19

23

47

5

Active
id = 47
r1 = 23
r2 = 19

• Behaviors: Cylinders of arbitrary width and length
Data from an infinite domain

• System: Register automata with data comparisons
• Specification: Data PDL with data comparisons

UNDECIDABLE

Reduction to Satisfiability of LCPDL: Data abstraction

Distributed algorithm Data PDL

A '

PDL with loop (over finite alphabet)

valid
over cylinders

() A |= '

71

42

19

23

47

5

$⇒

LCPDL: Propositional Dynamic logic with
Loop and Converse

Ψ,Ψ ′ ::= Eψ | ¬Ψ | Ψ ∧ Ψ ′

ψ,ψ′ ::= ‡ | p | ¬ψ | ψ ∧ ψ′ | ⟨π⟩ψ | loop(π)

π,π′ ::= {ψ}? | → | ↓ | π + π′ | π · π′ | π∗ | π−1

ψ

LCPDL: Propositional Dynamic logic with
Loop and Converse

Ψ,Ψ ′ ::= Eψ | ¬Ψ | Ψ ∧ Ψ ′

ψ,ψ′ ::= ‡ | p | ¬ψ | ψ ∧ ψ′ | ⟨π⟩ψ | loop(π)

π,π′ ::= {ψ}? | → | ↓ | π + π′ | π · π′ | π∗ | π−1

‡

LCPDL: Propositional Dynamic logic with
Loop and Converse

Ψ,Ψ ′ ::= Eψ | ¬Ψ | Ψ ∧ Ψ ′

ψ,ψ′ ::= ‡ | p | ¬ψ | ψ ∧ ψ′ | ⟨π⟩ψ | loop(π)

π,π′ ::= {ψ}? | → | ↓ | π + π′ | π · π′ | π∗ | π−1

LCPDL: Propositional Dynamic logic with
Loop and Converse

Ψ,Ψ ′ ::= Eψ | ¬Ψ | Ψ ∧ Ψ ′

ψ,ψ′ ::= ‡ | p | ¬ψ | ψ ∧ ψ′ | ⟨π⟩ψ | loop(π)

π,π′ ::= {ψ}? | → | ↓ | π + π′ | π · π′ | π∗ | π−1

ψ

⟨π⟩ψ

π

⟨↓∗←∗{•}?(↓↓{•}?)∗→∗{•}?→{•}?↑∗⟩•

LCPDL: Propositional Dynamic logic with
Loop and Converse

Ψ,Ψ ′ ::= Eψ | ¬Ψ | Ψ ∧ Ψ ′

ψ,ψ′ ::= ‡ | p | ¬ψ | ψ ∧ ψ′ | ⟨π⟩ψ | loop(π)

π,π′ ::= {ψ}? | → | ↓ | π + π′ | π · π′ | π∗ | π−1

π

loop(π)

Data abstraction: symbolic runs + tracking data

71

42

19

23

47

5

Distributed algorithm

active

passive

leader

fwd

left ! id right ! id

id > r1 ∧ id > r2

left?r1 right?r2

left ! id right ! id

id < r1 ∨ id < r2

left?r1 right?r2

left ! id right ! id

id = r1

left?r1 right?r2

Active
id = 47
r1 = 23
r2 = 19

Data abstraction: symbolic runs + tracking data

71

42

19

23

47

5

Distributed algorithm

active

passive

leader

fwd

t1

t1

t2

t4

t3

t1

t1 t4

t2

t2

t2

t2

t2

t3 t3

t3 t3

t3 t3

t3 t3

t3

left ! id right ! id

id > r1 ∧ id > r2

left?r1 right?r2

left ! id right ! id

id < r1 ∨ id < r2

left?r1 right?r2

left ! id right ! id

id = r1

left?r1 right?r2

Data abstraction: symbolic runs + tracking data

71

42

19

23

47

5

Distributed algorithm

active

passive

leader

fwd

t1

t1

t2

t4

t3

t1

t1 t4

t2

t2

t2

t2

t2

t3 t3

t3 t3

t3 t3

t3 t3

t3

left ! id right ! id

id > r1 ∧ id > r2

left?r1 right?r2

left ! id right ! id

id < r1 ∨ id < r2

left?r1 right?r2

left ! id right ! id

id = r1

left?r1 right?r2

A pid distribution realizes a
symbolic run if all guards are
satisfied.

Pb: Is there a pid distribution
realizing a symbolic run?

Data abstraction: symbolic runs + tracking data

71

42

23

47

5

Distributed algorithm

19

• Register updates

r1

Data abstraction: symbolic runs + tracking data

71

42

23

47

5

Distributed algorithm

19

• Register updates

r1right?r1

Data abstraction: symbolic runs + tracking data

71

42

23

47

5

Distributed algorithm

left!r2

fwd19

• Register updates

r1right?r1

Data abstraction: symbolic runs + tracking data

71

42

23

47

5

Distributed algorithm

left!r2

fwd19

• Register updates

left?r2

r1right?r1

Data abstraction: symbolic runs + tracking data

71

42

23

47

5

Distributed algorithm

left!r2

fwd19

• Register updates

left?r2

right!r1

r1right?r1

fwd

fwd

Data abstraction: symbolic runs + tracking data

71

42

23

47

5

Distributed algorithm

left!r2

fwd19

• Register updates

left?r2

right!r1
right?r1

r1right?r1

fwd

fwd

Data abstraction: symbolic runs + tracking data

71

42

23

47

5

Distributed algorithm

left!r2

fwd19

• Register updates

left?r2

right!r1
right?r1

left!id

r1right?r1

fwd

fwdfwd

Data abstraction: symbolic runs + tracking data

71

42

23

47

5

Distributed algorithm

left!r2

fwd19

• Register updates

left?r2

right!r1
right?r1

left!id

r1right?r1

fwd

fwdfwd

Data abstraction: symbolic runs + tracking data

71

42

23

47

5

Distributed algorithm

left!r2

fwd19

(r1,id)-path

can be expressed in CPDL
PDL with converse

• Register updates

left?r2

right!r1
right?r1

left!id

r1right?r1

fwd

fwdfwd

Data abstraction: symbolic runs + tracking data

71

42

23

47

5

Distributed algorithm

19

r2=r1

• Register updates
• Register equality check

Data abstraction: symbolic runs + tracking data

71

42

23

47

5

Distributed algorithm

19

π1:(r1,id)-path
π2:(r2,id)-path

r2=r1

• Register updates
• Register equality check

Data abstraction: symbolic runs + tracking data

71

42

23

47

5

Distributed algorithm

19

π1:(r1,id)-path
π2:(r2,id)-path

can be expressed in LCPDL
CPDL with loop

r2=r1

• Register updates
• Register equality check r2 = r1 iff loop(π1 ; π2-1)

Data abstraction: symbolic runs + tracking data

71

42

23

47

5

Distributed algorithm

19

r1 < r2

• Register updates
• Register equality check
• Register comparison

r3 < r1

r3 < r2

r1 < r3

r3 < r1

Data abstraction: symbolic runs + tracking data

71

42

23

47

5

Distributed algorithm

19

r1 < r2

• Register updates
• Register equality check
• Register comparison

r3 < r1

r3 < r2

r1 < r3

r3 < r1

<-path

Data abstraction: symbolic runs + tracking data

71

42

23

47

5

Distributed algorithm

19

r1 < r2

• Register updates
• Register equality check
• Register comparison

r3 < r1

r3 < r2

r1 < r3

r3 < r1

<-path

Data abstraction: symbolic runs + tracking data

71

42

23

47

5

Distributed algorithm

19

r1 < r2

• Register updates
• Register equality check
• Register comparison

r3 < r1

r3 < r2

r1 < r3

r3 < r1

<-path

Data abstraction: symbolic runs + tracking data

71

42

23

47

5

Distributed algorithm

19

r1 < r2

• Register updates
• Register equality check
• Register comparison

r3 < r1

r3 < r2

r1 < r3

r3 < r1

• If there is a <-loop, no pid assignments can turn the
symbolic cylinder into a valid run.

• If no such loops, then there are pids that allow a
valid realization of the symbolic cylinder

<-path

Data abstraction: symbolic runs + tracking data

71

42

23

47

5

Distributed algorithm

19

r1 < r2

• Register updates
• Register equality check
• Register comparison

r3 < r1

r3 < r2

r1 < r3

r3 < r1

• If there is a <-loop, no pid assignments can turn the
symbolic cylinder into a valid run.

• If no such loops, then there are pids that allow a
valid realization of the symbolic cylinder

No loop of the form
(Σi,j (ri,id)-path-1; ri<rj; (rj,id)-path)+

<-path

Data abstraction: symbolic runs + tracking data

71

42

23

47

5

Distributed algorithm

19

r1 < r2

• Register updates
• Register equality check
• Register comparison

r3 < r1

r3 < r2

r1 < r3

r3 < r1

• If there is a <-loop, no pid assignments can turn the
symbolic cylinder into a valid run.

• If no such loops, then there are pids that allow a
valid realization of the symbolic cylinder

No loop of the form
(Σi,j (ri,id)-path-1; ri<rj; (rj,id)-path)+

can be expressed in LCPDL
CPDL with loop

<-path

Distributed algorithm Data PDL

A '

PDL with loop (over finite alphabet)

71

42

19

23

47

5

t1

t1

t1 t4

t2

t2

t2

t2

t2

t3 t3

t3 t3

t3 t3

t3 t3

t3

Data abstraction: symbolic runs + tracking data

#

effective

Specification language

47

23

19

71

5

42

• Leader election:
• At the end there is a unique leader
• All other processes are passive
• The leader has the maximal pid

• Distributed sorting algorithm
• The output values form a permutation of the input values
• If q is on the right of p, and q ≠ leader then p.v < q.v

Distributed algorithms: typical properties

compare values

at different nodes

Moves inside

the behavior

Inspired by [Bojanczyk et al. ’09; Figueira-Segoufin ‘11]

Specifications
Data PDL ⟨π⟩r ̸= ⟨π′⟩r′

Φ,Φ′ ::= Aφ | Φ ∧ Φ′

φ,φ′ ::= ϕ | φ ∧ φ′ | ϕ ∨ φ | [π]φ | ⟨η⟩r < ⟨η′⟩r′ | ⟨η⟩r ≤ ⟨η′⟩r′

ϕ,ϕ′ ::= ‡ | p | ¬ϕ | ϕ ∧ ϕ′ | ⟨π⟩ϕ | ⟨π⟩r = ⟨π′⟩r′ | ⟨π⟩r ̸= ⟨π′⟩r′

π,π′ ::= {ϕ}? |→ | ↓ | π−1 | π + π′ | π · π′ | π∗

η, η′ ::= {ϕ}? |← |→ | ↓ | ↑ | η · η′ | Fη
ϕ

Inspired by [Bojanczyk et al. ’09; Figueira-Segoufin ‘11]

Specifications
Data PDL

r ≠ r’

π’π

⟨π⟩r ̸= ⟨π′⟩r′

Φ,Φ′ ::= Aφ | Φ ∧ Φ′

φ,φ′ ::= ϕ | φ ∧ φ′ | ϕ ∨ φ | [π]φ | ⟨η⟩r < ⟨η′⟩r′ | ⟨η⟩r ≤ ⟨η′⟩r′

ϕ,ϕ′ ::= ‡ | p | ¬ϕ | ϕ ∧ ϕ′ | ⟨π⟩ϕ | ⟨π⟩r = ⟨π′⟩r′ | ⟨π⟩r ̸= ⟨π′⟩r′

π,π′ ::= {ϕ}? |→ | ↓ | π−1 | π + π′ | π · π′ | π∗

η, η′ ::= {ϕ}? |← |→ | ↓ | ↑ | η · η′ | Fη
ϕ

compare values

at different nodes

Moves inside

the behavior

71

42

19

23

47

Distributed algorithms

Behavior

SpecificationDistributed algorithm

active

passive

fwd

leader

«At the end, there is a leader, and
the leader is the process with the maximum id.»

Leader election [Franklin ’82]

5

left ! id right ! id

id > r1 ∧ id > r2

left?r1 right?r2

left ! id right ! id

id < r1 ∨ id < r2

left?r1 right?r2

left ! id right ! id

id = r1

left?r1 right?r2

move in
the cylinder

71

42

19

23

47

Distributed algorithms

Behavior

SpecificationDistributed algorithm

active

passive

fwd

leader

«At the end, there is a leader, and
the leader is the process with the maximum id.»

Leader election [Franklin ’82]

5

left ! id right ! id

id > r1 ∧ id > r2

left?r1 right?r2

left ! id right ! id

id < r1 ∨ id < r2

left?r1 right?r2

left ! id right ! id

id = r1

left?r1 right?r2

move in
the cylinder

71

42

19

23

47

Distributed algorithms

Behavior

SpecificationDistributed algorithm

active

passive

fwd

leader

«At the end, there is a leader, and
the leader is the process with the maximum id.»

Leader election [Franklin ’82]

5

left ! id right ! id

id > r1 ∧ id > r2

left?r1 right?r2

left ! id right ! id

id < r1 ∨ id < r2

left?r1 right?r2

left ! id right ! id

id = r1

left?r1 right?r2

move in
the cylinder

compare
values

at different
nodes

71

42

19

23

47

Distributed algorithms

⟨ *⟩ (¬⟨ ⟩ ∧ ⟨go-to- ⟩

Behavior

Distributed algorithm

active

passive

fwd

leader

«At the end, there is a leader, and
the leader is the process with the maximum id.»

Data Propositional Dynamic Logic

Leader election [Franklin ’82]

5

[Bojanczyk et al. ’09; Figueira-Segoufin ‘11]

∧ [*] (id ≤ ⟨go-to- ⟩ id))

left ! id right ! id

id > r1 ∧ id > r2

left?r1 right?r2

left ! id right ! id

id < r1 ∨ id < r2

left?r1 right?r2

left ! id right ! id

id = r1

left?r1 right?r2

move in
the cylinder

compare
values

at different
nodes

71

42

19

23

47

Distributed algorithms

go-to- = (¬)*

⟨ *⟩ (¬⟨ ⟩ ∧ ⟨go-to- ⟩

Behavior

Distributed algorithm

active

passive

fwd

leader

«At the end, there is a leader, and
the leader is the process with the maximum id.»

Data Propositional Dynamic Logic

Leader election [Franklin ’82]

5

[Bojanczyk et al. ’09; Figueira-Segoufin ‘11]

∧ [*] (id ≤ ⟨go-to- ⟩ id))

left ! id right ! id

id > r1 ∧ id > r2

left?r1 right?r2

left ! id right ! id

id < r1 ∨ id < r2

left?r1 right?r2

left ! id right ! id

id = r1

left?r1 right?r2

move in
the cylinder

compare
values

at different
nodes

71

42

19

23

47

Distributed algorithms

go-to- = (¬)*

⟨ *⟩ (¬⟨ ⟩ ∧ ⟨go-to- ⟩

Behavior

Distributed algorithm

active

passive

fwd

leader

«At the end, there is a leader, and
the leader is the process with the maximum id.»

Data Propositional Dynamic Logic

Leader election [Franklin ’82]

5

[Bojanczyk et al. ’09; Figueira-Segoufin ‘11]

∧ [*] (id ≤ ⟨go-to- ⟩ id))

left ! id right ! id

id > r1 ∧ id > r2

left?r1 right?r2

left ! id right ! id

id < r1 ∨ id < r2

left?r1 right?r2

left ! id right ! id

id = r1

left?r1 right?r2

move in
the cylinder

compare
values

at different
nodes

71

42

19

23

47

Distributed algorithms

go-to- = (¬)*

⟨ *⟩ (¬⟨ ⟩ ∧ ⟨go-to- ⟩

Behavior

Distributed algorithm

active

passive

fwd

leader

«At the end, there is a leader, and
the leader is the process with the maximum id.»

Data Propositional Dynamic Logic

Leader election [Franklin ’82]

5

[Bojanczyk et al. ’09; Figueira-Segoufin ‘11]

|= ∧ [*] (id ≤ ⟨go-to- ⟩ id))

left ! id right ! id

id > r1 ∧ id > r2

left?r1 right?r2

left ! id right ! id

id < r1 ∨ id < r2

left?r1 right?r2

left ! id right ! id

id = r1

left?r1 right?r2

For all n, pid distributions, and accepting runs:

move in
the cylinder

compare
values

at different
nodes

Specifications: distributed sorting

Φ,Φ′ ::= Aφ | Φ ∧ Φ′

φ,φ′ ::= ϕ | φ ∧ φ′ | ϕ ∨ φ | [π]φ | ⟨η⟩r < ⟨η′⟩r′ | ⟨η⟩r ≤ ⟨η′⟩r′

ϕ,ϕ′ ::= ‡ | p | ¬ϕ | ϕ ∧ ϕ′ | ⟨π⟩ϕ | ⟨π⟩r = ⟨π′⟩r′ | ⟨π⟩r ̸= ⟨π′⟩r′

π,π′ ::= {ϕ}? |→ | ↓ | π−1 | π + π′ | π · π′ | π∗

η, η′ ::= {ϕ}? |← |→ | ↓ | ↑ | η · η′ | Fη
ϕ

The output values form a permutation of the input values
• same set of values:

• pairwise distinct:
¬⟨→∗⟩(⟨ε⟩r = ⟨(→{¬‡}?)+⟩r)

[→∗](⟨ε⟩r = ⟨↑∗{¬⟨↑⟩}?→∗⟩r)

5

71

42

19

23

47

Distributed algorithms

Behavior

Distributed algorithm Data PDL

∧ [*] (id ≤ ⟨go-to- ⟩ id))

go-to- = (¬)*

⟨ *⟩ (¬⟨ ⟩ ∧ ⟨go-to- ⟩

«There is a leader, and the leader is the
process with the maximum id.»

left!id

right?r2
id < r2

| {z }

For all n, pid distributions, accepting runs, and processes:

active

passive

leader

fwd

t1

t2

t4

t3

id

idleft!idt1

t1

t2

t2

t2

t2

t1

t2

t3

t3

t3

t3

t4

t3

t3

t3

t3

t3

'

left ! id right ! id

id > r1 ∧ id > r2

left?r1 right?r2

left ! id right ! id

id < r1 ∨ id < r2

left?r1 right?r2

left ! id right ! id

id = r1

left?r1 right?r2

right?r2
id < r2

5

71

42

19

23

47

Distributed algorithms

Behavior

Distributed algorithm Data PDL

∧ [*] (id ≤ ⟨go-to- ⟩ id))

go-to- = (¬)*

⟨ *⟩ (¬⟨ ⟩ ∧ ⟨go-to- ⟩

«There is a leader, and the leader is the
process with the maximum id.»

left!id

right?r2
id < r2

| {z }

For all n, pid distributions, accepting runs, and processes:

active

passive

leader

fwd

t1

t2

t4

t3

id

idleft!idt1

t1

t2

t2

t2

t2

t1

t2

t3

t3

t3

t3

t4

t3

t3

t3

t3

t3

'

left ! id right ! id

id > r1 ∧ id > r2

left?r1 right?r2

left ! id right ! id

id < r1 ∨ id < r2

left?r1 right?r2

left ! id right ! id

id = r1

left?r1 right?r2

right?r2
id < r2

5

71

42

19

23

47

Distributed algorithms

Behavior

Distributed algorithm Data PDL

∧ [*] (id ≤ ⟨go-to- ⟩ id))

go-to- = (¬)*

⟨ *⟩ (¬⟨ ⟩ ∧ ⟨go-to- ⟩

«There is a leader, and the leader is the
process with the maximum id.»

left!id

right?r2
id < r2

| {z }

For all n, pid distributions, accepting runs, and processes:

active

passive

leader

fwd

t1

t2

t4

t3

id

idleft!idt1

t1

t2

t2

t2

t2

t1

t2

t3

t3

t3

t3

t4

t3

t3

t3

t3

t3

'

left ! id right ! id

id > r1 ∧ id > r2

left?r1 right?r2

left ! id right ! id

id < r1 ∨ id < r2

left?r1 right?r2

left ! id right ! id

id = r1

left?r1 right?r2

right?r2
id < r2

5

71

42

19

23

47

Distributed algorithms

Behavior

Distributed algorithm Data PDL

∧ [*] (id ≤ ⟨go-to- ⟩ id))

go-to- = (¬)*

⟨ *⟩ (¬⟨ ⟩ ∧ ⟨go-to- ⟩

«There is a leader, and the leader is the
process with the maximum id.»

left!id

right?r2
id < r2

| {z }

For all n, pid distributions, accepting runs, and processes:

active

passive

leader

fwd

t1

t2

t4

t3

id

idleft!idt1

t1

t2

t2

t2

t2

t1

t2

t3

t3

t3

t3

t4

t3

t3

t3

t3

t3

'

left ! id right ! id

id > r1 ∧ id > r2

left?r1 right?r2

left ! id right ! id

id < r1 ∨ id < r2

left?r1 right?r2

left ! id right ! id

id = r1

left?r1 right?r2

right?r2
id < r2

5

71

42

19

23

47

Distributed algorithms

Behavior

Distributed algorithm Data PDL

∧ [*] (id ≤ ⟨go-to- ⟩ id))

go-to- = (¬)*

⟨ *⟩ (¬⟨ ⟩ ∧ ⟨go-to- ⟩

«There is a leader, and the leader is the
process with the maximum id.»

left!id

right?r2
id < r2

| {z }

For all n, pid distributions, accepting runs, and processes:

active

passive

leader

fwd

t1

t2

t4

t3

id

idleft!idt1

t1

t2

t2

t2

t2

t1

t2

t3

t3

t3

t3

t4

t3

t3

t3

t3

t3

'

left ! id right ! id

id > r1 ∧ id > r2

left?r1 right?r2

left ! id right ! id

id < r1 ∨ id < r2

left?r1 right?r2

left ! id right ! id

id = r1

left?r1 right?r2

right?r2
id < r2

Distributed algorithms

Behavior

Distributed algorithm Data PDL

∧ [*] (id ≤ ⟨go-to- ⟩ id))

go-to- = (¬)*

⟨ *⟩ (¬⟨ ⟩ ∧ ⟨go-to- ⟩

«There is a leader, and the leader is the
process with the maximum id.»

left!id

id < ?right

id < ?right

| {z }

For all n, pid distributions, accepting runs, and processes:

left ! id right ! id
id > ?left
id > ?right

left ! id right ! id

active

passive

id = ?left
leader

id < ?left
id < ?right_

^

left ! id right ! id

fwd

t1

t2

t4

t3

id

idleft!idt1

t1

t2

t2

t2

t2

t1

t2

t3

t3

t3

t3

t4

t3

t3

t3

t3

t3

'

<-path

Distributed algorithms

Behavior

Distributed algorithm Data PDL

∧ [*] (id ≤ ⟨go-to- ⟩ id))

go-to- = (¬)*

⟨ *⟩ (¬⟨ ⟩ ∧ ⟨go-to- ⟩

«There is a leader, and the leader is the
process with the maximum id.»

left!id

id < ?right

id < ?right

| {z }

For all n, pid distributions, accepting runs, and processes:

left ! id right ! id
id > ?left
id > ?right

left ! id right ! id

active

passive

id = ?left
leader

id < ?left
id < ?right_

^

left ! id right ! id

fwd

t1

t2

t4

t3

id

idleft!idt1

t1

t2

t2

t2

t2

t1

t2

t3

t3

t3

t3

t4

t3

t3

t3

t3

t3

Loop (π . (r,r’)-<-path . (π’)-1)
h⇡ir h⇡0ir0

'

<-path

Distributed algorithms

Behavior

Distributed algorithm Data PDL

∧ [*] (id ≤ ⟨go-to- ⟩ id))

go-to- = (¬)*

⟨ *⟩ (¬⟨ ⟩ ∧ ⟨go-to- ⟩

«There is a leader, and the leader is the
process with the maximum id.»

left!id

id < ?right

id < ?right

| {z }

For all n, pid distributions, accepting runs, and processes:

left ! id right ! id
id > ?left
id > ?right

left ! id right ! id

active

passive

id = ?left
leader

id < ?left
id < ?right_

^

left ! id right ! id

fwd

t1

t2

t4

t3

id

idleft!idt1

t1

t2

t2

t2

t2

t1

t2

t3

t3

t3

t3

t4

t3

t3

t3

t3

t3

Loop (π . (r,r’)-<-path . (π’)-1)
h⇡ir h⇡0ir0

go-to-
—1

'

there is loop

' holds here

)<-path

Distributed algorithms

Behavior

Distributed algorithm Data PDL

∧ [*] (id ≤ ⟨go-to- ⟩ id))

go-to- = (¬)*

⟨ *⟩ (¬⟨ ⟩ ∧ ⟨go-to- ⟩

«There is a leader, and the leader is the
process with the maximum id.»

left!id

id < ?right

id < ?right

| {z }

For all n, pid distributions, accepting runs, and processes:

left ! id right ! id
id > ?left
id > ?right

left ! id right ! id

active

passive

id = ?left
leader

id < ?left
id < ?right_

^

left ! id right ! id

fwd

t1

t2

t4

t3

id

idleft!idt1

t1

t2

t2

t2

t2

t1

t2

t3

t3

t3

t3

t4

t3

t3

t3

t3

t3

Loop (π . (r,r’)-<-path . (π’)-1)
h⇡ir h⇡0ir0

go-to-
—1

'

there is loop

' holds here

()

no loop

no evidence of

there are pids
making false

)

)
'

'

<-path

Distributed algorithms

Behavior

Distributed algorithm Data PDL

∧ [*] (id ≤ ⟨go-to- ⟩ id))

go-to- = (¬)*

⟨ *⟩ (¬⟨ ⟩ ∧ ⟨go-to- ⟩

«There is a leader, and the leader is the
process with the maximum id.»

left!id

id < ?right

id < ?right

| {z }

For all n, pid distributions, accepting runs, and processes:

left ! id right ! id
id > ?left
id > ?right

left ! id right ! id

active

passive

id = ?left
leader

id < ?left
id < ?right_

^

left ! id right ! id

fwd

t1

t2

t4

t3

id

idleft!idt1

t1

t2

t2

t2

t2

t1

t2

t3

t3

t3

t3

t4

t3

t3

t3

t3

t3

Loop (π . (r,r’)-<-path . (π’)-1)
h⇡ir h⇡0ir0

go-to-
—1

'
deterministic

there is loop

' holds here

()

no loop

no evidence of

there are pids
making false

)

)
'

'

id ≤ ⟨ ⟩ id
id > ⟨ ⟩ id_

<-path

compare
values

at different
nodes

r < r’

η’η

Φ,Φ′ ::= Aφ | Φ ∧ Φ′

φ,φ′ ::= ϕ | φ ∧ φ′ | ϕ ∨ φ | [π]φ | ⟨η⟩r < ⟨η′⟩r′ | ⟨η⟩r ≤ ⟨η′⟩r′

ϕ,ϕ′ ::= ‡ | p | ¬ϕ | ϕ ∧ ϕ′ | ⟨π⟩ϕ | ⟨π⟩r = ⟨π′⟩r′ | ⟨π⟩r ̸= ⟨π′⟩r′

π,π′ ::= {ϕ}? |→ | ↓ | π−1 | π + π′ | π · π′ | π∗

η, η′ ::= {ϕ}? |← |→ | ↓ | ↑ | η · η′ | Fη
ϕ

deterministic paths

⟨η⟩r < ⟨η′⟩r′
Specifications

Data PDL

Data abstraction

Distributed algorithm Data PDL

A '

PDL with loop (over finite alphabet)

71

42

19

23

47

5

t1

t1

t1 t4

t2

t2

t2

t2

t2

t3 t3

t3 t3

t3 t3

t3 t3

t3

() A |= '

valid
over cylinders

$

effective effective

⇒

Data abstraction

Distributed algorithm Data PDL

A '

PDL with loop (over finite alphabet)

71

42

19

23

47

5

t1

t1

t1 t4

t2

t2

t2

t2

t2

t3 t3

t3 t3

t3 t3

t3 t3

t3

() A |= '

valid
over cylinders

UNDECIDABLE

two unbounded
dimensions

$

effective effective

⇒

Model Checking 2

47

23

19

71

5

42

Under approximate verification

Distributed algorithm Data PDL

A '

PDL with loop (over finite alphabet)

() A |= '

valid
over cylinders

undecidable

Behavior

1
2

3
k

…

restrict to bounded
number of rounds

$⇒

Distributed algorithm Data PDL

A '

PDL with loop (over finite alphabet)

valid
over cylinders

71

42

19

23

47

5

t1

t1

t1 t4

t2

t2

t2

t2

t2

t3 t3

t3 t3

t3 t3

t3 t3

t3

exponentially smaller than # of processes

undecidable
restrict to bounded
number of rounds

$

() A |= '

⇒

PDL with loop over bounded cylinders
➯

PDL with loop over words

Bounded

U
nb

ou
nd

ed

PDL with loop over bounded cylinders
➯

PDL with loop over words

Bounded

U
nb

ou
nd

ed

PDL with loop over bounded cylinders
➯

PDL with loop over words

Bounded

U
nb

ou
nd

ed

left/right moves

PDL with loop over bounded cylinders
➯

PDL with loop over words

Bounded

U
nb

ou
nd

ed

Bounded

left/right moves up/down moves

PDL with loop over bounded cylinders
➯

PDL with loop over words
➯

Alternating 2-way Automata
➯

PSPACE
[Göller-Lohrey-Lutz ’08] [Serre ’08]

Bounded

U
nb

ou
nd

ed

Bounded

left/right moves up/down moves

Summary & Conclusion

47

23

19

71

5

42

** unary encoding of # of rounds
* with registers, register guards, and register updates (no arithmetic)

Summary exponentially smaller than # of processes

Theorem (Aiswarya-Bollig-Gastin; CONCUR ’15).
Round-bounded model checking distributed algorithms* against Data PDL is PSPACE-
complete**.

• Other operations? (increment only, decrement only, …)
• Other topologies?
• Other restrictions? (bounded tree-width, …)
• Other hypotheses on DA?

‣ What is the right temporal logic?

‣ How to deal with data?

‣ How to deal with undecidability?

Use generic Data PDL.
Use symbolic technique.
Under-approximation.

Conclusion

Future work …

Thank you!

