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Motivations

Aim
Study the expressive power of local clocks as a synchronization mechanism in a
distributed system.
Distributed systems with no explicit communication or synchronization.
Clocks as a synchronization mechanism.
Clocks on different processes evolve independently according to local times.
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Timed automata (Alur & Dill)

Example: TA
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Distributed Timed automata

Definition: DTA

D= ((A;D)pEProca 71—) where
each A, is a classical timed automaton

7 : Z — Proc assigns processes to clocks. If w(z) = p then

clock x evolves according to local time on process p
only process p may reset clock x
all processes may read clock x (i.e., use x in guards or invariants)

Example: DTA with 7(z) =p and 7(y) = ¢
Yy S 1,CL a, {IL‘}
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Local Times

Local Times
Processes do not have access to the absolute (global) time.
Each process has its own local time: 7, : R>g — R>g
Tp(t): local time on process p at absolute time ¢

continuous, strictly increasing, diverging, 7,(0) = 0.

Example: Local Times

A Tp A Tp

\
~
\




Runs of DTA’s & Untimed Behaviours
Example: DTA with 7(z) = p and 7(y) = ¢

Ap: —»@ ysla =@ a {z} :@

x>1,b yfﬁ\l 0<x<1,b
0 -©

If 7, > 7, then abab € L(D, 7) (e.g. 7,(t) =2t and 7,(t) = t)
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If 7, = 7, then abab ¢ L(D, 1) (e.g. Tp(t) = 7,(t) = 2t)
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Formal Semantics of DTA’s

Let D = ((Ap)peProc, ™) be an DTA with local times 7 = (7)) pe Proc-
Definition: (Infinite) Transition System TS(D, 7)

Configurations are tuples (s,t,v) where
s = (Sp)pe Proc Where s, is a state of A, for each p € Proc
t € R>q is the absolute time
v: Z — Rx>q is the valuation of clocks.

For t < t’ we define vy ¢/ (x) = v(x) + Tr(2)(t") — Tr(a)(t).
Transitions : (s,t,v) ELEN (s',t',0") if
g,a, R

sp ——— s, for some p € Proc and s;, = s4 for all ¢ # p,
IR /\qEPT-g(; I4(sq) forall t <t <,

Vg, =
v’ = v, 4[R] (clocks in R are reset)
’U/ ': /\qGP’wc I‘I(S;)
w=aj...a, € L(D,7) (with a; € ¥ U {e}) if there is a run in TS(D, 1)
(S(), t(),'U()) g1,a1,R1 (81, tl, Ul) g2,a2,R2 . gn,an, R (Sn,tn,vn)

with sq initial, to = 0, vo(z) =0 for all z € Z and s,, final.



Semantics of DTA’s

Example: DTA D with w(z) = p and 7(y) = ¢

s1p “Sloca<ts
x—? x b

If 7, = 74 then L(D,7) = {aa}.
If 7, > 74 then £L(D, ) = {aa, abab, baab}.
For all local times 7, we have aa € L(D, ).



Unregular Behaviours

Consider the following DTA D
a b
z=1 y=1
{z} {y}

with 7m(x) = p and 7(y) = ¢
and the local times on the right.

a occurs every local time unit of p.

b occurs every local time unit of g.

L(D, 1) are the finite prefixes of bab*ab*ab®a - - -

.
74




Existential & Universal Semantics

Definition: Existential & Universal Semantics
Let D be a DTA.

£5(D) = J£(D,7)

Ly(D) =) £(D,7)

Example: £3(D) = {aa, abab, baab} Ly(D) = {aa}

Ap:@ a, y<1 =@ a, {z} =@

Y
.Aq: b, t>1 o b,0<x<1=@
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Negative & Positive Specifications

Aim: robustness of a DTA D against relative local times

Definition: Negative Specifications (Safety)
Given a set Bad of undesired behaviours,

Does a DTA D robustly avoid Bad
L3 (D) NBad =0

Definition: Positive Specifications (Liveness)
Given a set Good of desired behaviours,

Does a DTA D robustly exhibit Good

Good C Ly(D)
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Region abstraction for 3-semantics

Regions when 7(z) = 7(y) Regions when 7 (x) # 7(y)

&
y

Proposition:

The region equivalence of a DTA is a timed abstract bisimulation for its 3-semantics.



Region abstraction for 3-semantics

Theorem: Region abstraction
Let D be a DTA. Let Rp be its region abstraction.

L3(D) = L(Rp)

and
|Rp| < |D]- (2C +2)12!- | 2)!

Corollary: Negative specifications

Model checking regular negative specifications for DTA's is decidable.

£5(D) N Bad = 0



Plan
Distributed Timed Automata

Region abstraction and existential semantics

© Universal semantics and undecidability

Reactive (Game) Semantics

A



Undecidability of the universal semantics

Theorem: Undecidability Skip proof.
Let D be a DTA.
emptiness: Ly(D) = 0 is undecidable.
universality: Ly(D) = £* is undecidable.
Even for 2 processes, 1 clock each and bounded drifts: Ja > 0, Vt > 0,

t
1ma<™ 140 o O -n@l<a

7 (1)

T, T,
49 49

Tp Tp

Corollary: Positive specifications Good C Ly(D)

Model checking regular positive specifications for DTA's is undecidable.



Undecidability of emptiness

Proof: Reduction from Post Correspondance Problem
Given two morphisms f,g: AT — {0,1}" with A = {a1,...,ax}.
Does there exist w € AT such that f(w) = g(w)?

Definition: Words defined by local times

Each pair of local times 7 = (7,,7,) is mapped to a word dir(7) € {0,1,2}~.

4 7a Assume = = iy = 0 when entering the 2 x 2 square.

Next letter of dir(7) is 0

/ 0 guard(0) :=x =2A1<y <2

\/
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Undecidability of emptiness

Proof: Reduction from Post Correspondance Problem
Given two morphisms f,g: AT — {0,1}" with A = {a1,...,ax}.
Does there exist w € AT such that f(w) = g(w)?

Definition: Words defined by local times

Each pair of local times 7 = (7,,7,) is mapped to a word dir(7) € {0,1,2}~.

4 7a Assume = = iy = 0 when entering the 2 x 2 square.
1 Next letter of dir(7) is 1
/ guard(0) :=x =2A1<y <2
guard(l) :=1<x <2Ay=2

\/
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Undecidability of emptiness

Proof: Reduction from Post Correspondance Problem
Given two morphisms f,g: AT — {0,1}" with A = {a1,...,ax}.
Does there exist w € AT such that f(w) = g(w)?

Definition: Words defined by local times

Each pair of local times 7 = (7,,7,) is mapped to a word dir(7) € {0,1,2}~.

4 7a Assume = = iy = 0 when entering the 2 x 2 square.

9 9 Next letter of dir(7) is 2

/ guard(0) ;=2 =2A1<y <2
/

L—"12 guard(2) = (z=2A(y<1Vy=2)V(z<1Ay=2)

Tp




Words defined by local times

Clocks x, y are reset when reaching the 2 x 2 square boundary

/

/

.
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dir(7) = 0100 - -



Undecidability of emptiness

Recall that we are given two morphisms
fr9: AT —{0,1}7F
We want to construct DTA's Dy and Dy such that for all local times 7 = (7, 74)

L(Dg,7)={wb e ATb | f(w)2 £ dir(r)}
L(Dy,7)={wb € ATb | g(w)2 < dir()}

For simplicity, we use a central controls for our automata,
but they can be distributed to get DTA's.



Undecidability of emptiness

Definition: Macro transition
Fora € A and 0 = dydy...d, € {0,1,2}" we define

From u with x = y = 0, reading input letter a we reach
s with z = y = 0 if local times 7 = (7, 74) evolve according to o

r otherwise

€, guard(ds)

a, guard(dy) €, guard(ds) €, guard(d,,)

a, guard(d) €, guard(ds) €, guard(d,,)
gt 7 Aoy {z.y)




Undecidability of emptiness

Proposition: L(D,,7) = {wb € A™b | g(w)2 < dir(7)}
50 —> 89 iff g(w) < dir(7)
50 —> 1o iff g(w) £ dir(r)



Undecidability of emptiness

Proposition: L(Dy,7) = {wb € A*b | f(w)2 £ dir(7)}
s0 — sy iff f(w) < dir(7)
50— 7y iff f(w) £ dir(7)



Undecidability of emptiness

(as, f(a)) A (ai, 9(a:))

Proposition: Ly(D) = {wb € ATb | f(w) = g(w)}
s0 — 51 iff f(w) < dir(r)
50— 11 iff f(w) £ dir(r)
) < dir

-
50— sy iff g(w (1)



Plan
Distributed Timed Automata

Region abstraction and existential semantics

Universal semantics and undecidability

© Reactive (Game) Semantics

A



Reactive (Game) Semantics

Remark: Positive Specifications and universal semantics

Good C Ly(D) does not imply that the system can be controlled in order to exhibit
all Good behaviours, whatever local times are.




Reactive (Game) Semantics

Definition: Reactive (Game) Semantics

Environment controls how local times evolve (time-elapse transitions)
Y
A

L |

System observes current region and controls discrete transitions

» T

Not turn-based: system may execute several discrete transitions

Lycact (D) = {w € ¥ | System has a winning strategy}



Decidability of the reactive semantics

Theorem: Regularity
Let D be a DTA. Licact (D) is regular.

Proof: construct an alternating automaton with e-transitions accepting L,eact(D).

Corollary: Positive specifications

Model checking regular positive specifications is decidable for the reactive semantics.

Good C Lyeact(D)

Proposition: Reactive vs. Universal

»Creact(D) - »CV(D) for all DTA's D.

In general, Lyeact(D) S Ly(D).
Even for DTA’s over 2 processes having 1 clock each.



Conclusion
Summary
Distributed systems which synchronize using clocks with local times.
Regular existential semantics suited for negative specifications
Regular reactive semantics suited for positive specification
Undecidable universal semantics

Further work: Synthesis Problem

Given a regular specification Spec C ¥* and an architecture A,
Construct a DTA D over A such that Lyeact(D) = Spec = L3(D)

If we are given two sets Good and Bad, find a DTA D such that

Good C Lieact(D) C L3(D) C Bad
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