Distributed Timed Automata with Independently Evolving Clocks

Paul Gastin LSV, ENS Cachan, CNRS

Joint work with S. Akshay, Benedikt Bollig, Madhavan Mukund, K Narayan Kumar

Séminaire LIAFA, 6 April 2009

Motivations

Aim

Study the expressive power of local clocks as a synchronization mechanism in a distributed system.

- Distributed systems with no explicit communication or synchronization.
- Clocks as a synchronization mechanism.
- Clocks on different processes evolve independently according to local times.

Plan

Distributed Timed Automata

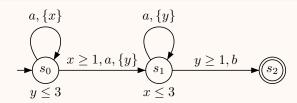
Region abstraction and existential semantics

Universal semantics and undecidability

Reactive (Game) Semantics

Timed automata (Alur & Dill)

Example: TA



Distributed Timed automata

Definition: DTA

$$\mathcal{D} = ((\mathcal{A}_p)_{p \in Proc}, \pi)$$
 where

- ightharpoonup each \mathcal{A}_p is a classical timed automaton
 - $\pi:\mathcal{Z} o Proc$ assigns processes to clocks. If $\pi(x)=p$ then
 - ullet clock x evolves according to local time on process p
 - lacktriangleright only process p may reset clock x
 - all processes may read clock x (i.e., use x in guards or invariants)

Example: DTA with $\pi(x) = p$ and $\pi(y) = q$

$$\mathcal{A}_p: \quad \bullet \underbrace{s_0} \quad y \leq 1, a \quad \bullet \underbrace{s_1} \quad a, \{x\} \quad \bullet \underbrace{s_2}$$

Local Times

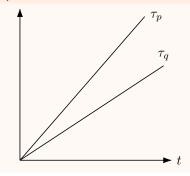
Local Times

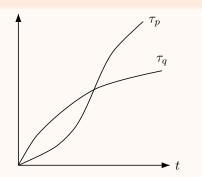
- Processes do not have access to the absolute (global) time.
- Each process has its own local time: $au_p: \mathbb{R}_{\geq 0} o \mathbb{R}_{\geq 0}$

 $\tau_p(t)$: local time on process p at absolute time t

continuous, strictly increasing, diverging, $\tau_p(0) = 0$.

Example: Local Times





Runs of DTA's & Untimed Behaviours

Example: DTA with
$$\pi(x) = p$$
 and $\pi(y) = q$

$$\mathcal{A}_p: \quad \bullet \underbrace{ \left(s_0 \right) \qquad y \leq 1, a \qquad }_{} \underbrace{ \left(s_1 \right) \qquad a, \left\{ x \right\} }_{} \underbrace{ \left(s_2 \right) }_{}$$

$$\mathcal{A}_q: \quad \bullet \boxed{r_0} \qquad x \ge 1, b \qquad y \le 1 \\ \bullet \boxed{r_1} \qquad 0 < x < 1, b \\ \bullet \boxed{r_2}$$

If
$$\tau_p > \tau_q$$
 then $abab \in \mathcal{L}(\mathcal{D}, \tau)$ (e.g. $\tau_p(t) = 2t$ and $\tau_q(t) = t$)

If
$$\tau_p = \tau_q$$
 then $abab \notin \mathcal{L}(\mathcal{D}, \tau)$ (e.g. $\tau_p(t) = \tau_q(t) = 2t$)

Formal Semantics of DTA's

Let $\mathcal{D} = ((\mathcal{A}_p)_{p \in Proc}, \pi)$ be an DTA with local times $\tau = (\tau_p)_{p \in Proc}$.

Definition: (Infinite) Transition System $TS(\mathcal{D}, \tau)$

- Configurations are tuples (s,t,v) where
 - $s = (s_p)_{p \in Proc}$ where s_p is a state of \mathcal{A}_p for each $p \in Proc$
 - $t \in \mathbb{R}_{\geq 0}$ is the absolute time
 - $v: \mathcal{Z} \to \mathbb{R}_{\geq 0}$ is the valuation of clocks.
- For t < t' we define $v_{t,t'}(x) = v(x) + \tau_{\pi(x)}(t') \tau_{\pi(x)}(t)$.
- Transitions : $(s,t,v) \xrightarrow{g,a,R} (s',t',v')$ if
 - $s_p \xrightarrow{g,a,R} s'_p$ for some $p \in Proc$ and $s'_q = s_q$ for all $q \neq p$,
 - $v_{t,t''} \models \bigwedge_{q \in Proc} I_q(s_q)$ for all $t \leq t'' \leq t'$,
 - $v_{t,t'} \models g$
 - $v' = v_{t,t'}[R]$ (clocks in R are reset)
 - $v' \models \bigwedge_{q \in Proc} I_q(s'_q).$
- $w = a_1 \dots a_n \in \mathcal{L}(\mathcal{D}, \tau)$ (with $a_i \in \Sigma \cup \{\varepsilon\}$) if there is a run in $TS(\mathcal{D}, \tau)$

$$(s_0, t_0, v_0) \xrightarrow{g_1, a_1, R_1} (s_1, t_1, v_1) \xrightarrow{g_2, a_2, R_2} \cdots \xrightarrow{g_n, a_n, R_n} (s_n, t_n, v_n)$$

with s_0 initial, $t_0 = 0$, $v_0(x) = 0$ for all $x \in \mathcal{Z}$ and s_n final.

Semantics of DTA's

Example: DTA \mathcal{D} with $\pi(x) = p$ and $\pi(y) = q$

$$\mathcal{A}_p: \quad \bullet \underbrace{s_0} \qquad y \leq 1, a \qquad \bullet \underbrace{s_1} \qquad a, \{x\} \qquad \bullet \underbrace{s_2}$$

$$\mathcal{A}_q: \quad \bullet \boxed{r_0} \qquad x \ge 1, b \qquad y \le 1 \\ \bullet \boxed{r_1} \qquad 0 < x < 1, b \\ \bullet \boxed{r_2}$$

- If $\tau_p = \tau_q$ then $\mathcal{L}(\mathcal{D}, \tau) = \{aa\}$.
- If $\tau_p > \tau_q$ then $\mathcal{L}(\mathcal{D}, \tau) = \{aa, abab, baab\}$.
- For all local times τ , we have $aa \in \mathcal{L}(\mathcal{D}, \tau)$.

Unregular Behaviours

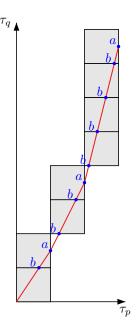
Consider the following DTA $\mathcal D$

with $\pi(x) = p$ and $\pi(y) = q$ and the local times on the right.

a occurs every local time unit of p.

b occurs every local time unit of q.

 $\mathcal{L}(\mathcal{D}, \tau)$ are the finite prefixes of $bab^2ab^4ab^8a\cdots$



Existential & Universal Semantics

Definition: Existential & Universal Semantics

Let \mathcal{D} be a DTA.

$$\mathcal{L}_{\exists}(\mathcal{D}) = \bigcup_{\tau} \mathcal{L}(\mathcal{D}, \tau)$$

$$\mathcal{L}_{orall}(\mathcal{D}) = \bigcap_{ au} \mathcal{L}(\mathcal{D}, au)$$

Example: $\mathcal{L}_{\exists}(\mathcal{D}) = \{aa, abab, baab\}$ $\mathcal{L}_{\forall}(\mathcal{D}) = \{aa\}$

$$\mathcal{L}_{\forall}(\mathcal{D}) = \{aa\}$$

$$A_p: - s_0 \qquad a, \ y \le 1 \qquad s_1 \qquad a, \ \{x\} \qquad s_2$$

$$\mathcal{A}_q: \quad \bullet \quad b, \quad x \ge 1 \quad b, \quad 0 < x < 1$$

Negative & Positive Specifications

Aim: robustness of a DTA ${\mathcal D}$ against relative local times

Definition: Negative Specifications (Safety)

Given a set Bad of undesired behaviours,

Does a DTA $\mathcal D$ robustly avoid Bad

$$\mathcal{L}_{\exists}(\mathcal{D}) \cap \text{Bad} = \emptyset$$

Definition: Positive Specifications (Liveness)

Given a set Good of desired behaviours,

Does a DTA \mathcal{D} robustly exhibit Good

Good $\subseteq \mathcal{L}_{\forall}(\mathcal{D})$

Plan

Distributed Timed Automata

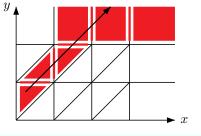
Region abstraction and existential semantics

Universal semantics and undecidability

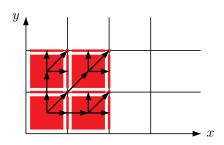
Reactive (Game) Semantics

Region abstraction for ∃-semantics

Regions when
$$\pi(x) = \pi(y)$$



Regions when $\pi(x) \neq \pi(y)$



Proposition:

The region equivalence of a DTA is a timed abstract bisimulation for its ∃-semantics.

Region abstraction for ∃-semantics

Theorem: Region abstraction

Let \mathcal{D} be a DTA. Let $\mathcal{R}_{\mathcal{D}}$ be its region abstraction.

$$\mathcal{L}_{\exists}(\mathcal{D}) = \mathcal{L}(\mathcal{R}_{\mathcal{D}})$$

and

$$|\mathcal{R}_{\mathcal{D}}| \le |\mathcal{D}| \cdot (2C+2)^{|\mathcal{Z}|} \cdot |\mathcal{Z}|!$$

Corollary: Negative specifications

Model checking regular negative specifications for DTA's is decidable.

$$\mathcal{L}_{\exists}(\mathcal{D}) \cap \underline{\mathbf{Bad}} = \emptyset$$

Plan

Distributed Timed Automata

Region abstraction and existential semantics

3 Universal semantics and undecidability

Reactive (Game) Semantics

Undecidability of the universal semantics

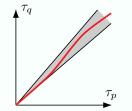
Theorem: Undecidability Skip proof.

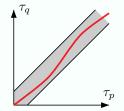
Let \mathcal{D} be a DTA.

emptiness: $\mathcal{L}_{\forall}(\mathcal{D}) = \emptyset$ is undecidable. universality: $\mathcal{L}_{\forall}(\mathcal{D}) = \Sigma^*$ is undecidable.

Even for 2 processes, 1 clock each and bounded drifts: $\exists \alpha > 0, \forall t > 0$,

$$1-\alpha \le \frac{\tau_q(t)}{\tau_p(t)} < 1+\alpha \qquad \text{or} \qquad |\tau_q(t)-\tau_p(t)| \le \alpha$$





Corollary: Positive specifications $Good \subseteq \mathcal{L}_{\forall}(\mathcal{D})$

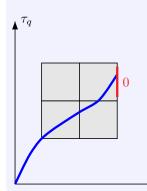
Model checking regular positive specifications for DTA's is undecidable.

Proof: Reduction from Post Correspondance Problem

- Given two morphisms $f, g: A^+ \to \{0, 1\}^+$ with $A = \{a_1, \dots, a_k\}$.
- Does there exist $w \in A^+$ such that f(w) = g(w)?

Definition: Words defined by local times

Each pair of local times $\tau=(\tau_p,\tau_q)$ is mapped to a word $\mathrm{dir}(\tau)\in\{0,1,2\}^\omega$.



Assume x = y = 0 when entering the 2×2 square.

Next letter of $dir(\tau)$ is 0

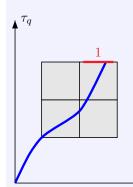
$$guard(0) := x = 2 \land 1 < y < 2$$

Proof: Reduction from Post Correspondance Problem

- Given two morphisms $f, g: A^+ \to \{0, 1\}^+$ with $A = \{a_1, \dots, a_k\}$.
- Does there exist $w \in A^+$ such that f(w) = g(w)?

Definition: Words defined by local times

Each pair of local times $\tau=(\tau_p,\tau_q)$ is mapped to a word $\mathrm{dir}(\tau)\in\{0,1,2\}^\omega.$



Assume x=y=0 when entering the 2×2 square.

Next letter of $\operatorname{dir}(\tau)$ is 1

$$guard(0) := x = 2 \land 1 < y < 2$$

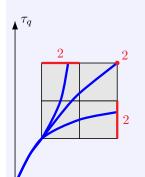
$$\mathrm{guard}(1) := 1 < x < 2 \land y = 2$$

Proof: Reduction from Post Correspondance Problem

- Given two morphisms $f, g: A^+ \to \{0, 1\}^+$ with $A = \{a_1, \dots, a_k\}$.
- Does there exist $w \in A^+$ such that f(w) = g(w)?

Definition: Words defined by local times

Each pair of local times $\tau=(\tau_p,\tau_q)$ is mapped to a word $\mathrm{dir}(\tau)\in\{0,1,2\}^\omega$.



Assume x=y=0 when entering the 2×2 square.

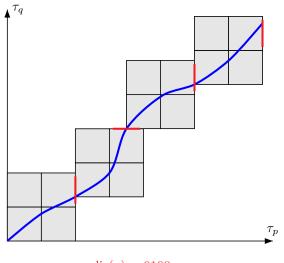
Next letter of $\operatorname{dir}(\tau)$ is 2

$$guard(0) := x = 2 \land 1 < y < 2$$

$$\mathrm{guard}(2) := (x = 2 \land (y \leq 1 \lor y = 2)) \lor (x \leq 1 \land y = 2)$$

Words defined by local times

Clocks x,y are reset when reaching the 2×2 square boundary



Recall that we are given two morphisms

$$f,g:A^+ \to \{0,1\}^+$$

We want to construct DTA's \mathcal{D}_f and \mathcal{D}_g such that for all local times $au=(au_p, au_q)$

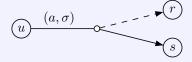
$$\mathcal{L}(\mathcal{D}_f, \tau) = \{ wb \in A^+b \mid f(w)2 \nleq \operatorname{dir}(\tau) \}$$

$$\mathcal{L}(\mathcal{D}_g, \tau) = \{ wb \in A^+b \mid g(w)2 \leq \operatorname{dir}(\tau) \}$$

For simplicity, we use a central controls for our automata, but they can be distributed to get DTA's.

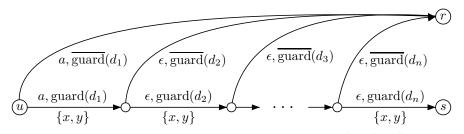
Definition: Macro transition

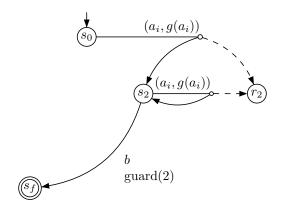
For $a \in A$ and $\sigma = d_1 d_2 \dots d_n \in \{0, 1, 2\}^+$ we define



From u with x=y=0, reading input letter a we reach

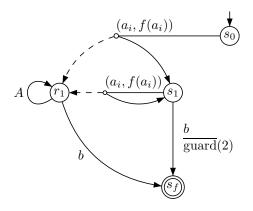
- s with x=y=0 if local times $au=(au_p, au_q)$ evolve according to σ
- r otherwise





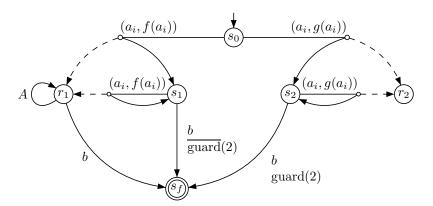
Proposition: $\mathcal{L}(\mathcal{D}_g, \tau) = \{ wb \in A^+b \mid g(w)2 \leq \operatorname{dir}(\tau) \}$

- $s_0 \xrightarrow{w} s_2 \text{ iff } g(w) \leq \operatorname{dir}(\tau)$
- $s_0 \xrightarrow{w} r_2 \text{ iff } g(w) \not\leq \operatorname{dir}(\tau)$



Proposition:
$$\mathcal{L}(\mathcal{D}_f, \tau) = \{ wb \in A^+b \mid f(w)2 \not\leq \operatorname{dir}(\tau) \}$$

- $s_0 \xrightarrow{w} s_1 \text{ iff } f(w) \leq \operatorname{dir}(\tau)$
- $s_0 \xrightarrow{w} r_1 \text{ iff } f(w) \not\leq \operatorname{dir}(\tau)$



Proposition:
$$\mathcal{L}_{\forall}(\mathcal{D}) = \{wb \in A^+b \mid f(w) = g(w)\}$$

- $s_0 \xrightarrow{w} s_1 \text{ iff } f(w) \leq \operatorname{dir}(\tau)$
- $s_0 \xrightarrow{w} r_1 \text{ iff } f(w) \not\leq \operatorname{dir}(\tau)$
- $s_0 \xrightarrow{w} s_2 \text{ iff } g(w) \leq \operatorname{dir}(\tau)$

Plan

Distributed Timed Automata

Region abstraction and existential semantics

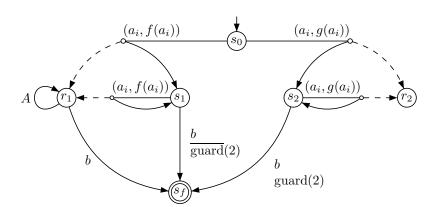
Universal semantics and undecidability

4 Reactive (Game) Semantics

Reactive (Game) Semantics

Remark: Positive Specifications and universal semantics

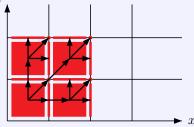
Good $\subseteq \mathcal{L}_{\forall}(\mathcal{D})$ does not imply that the system can be controlled in order to exhibit all Good behaviours, whatever local times are.



Reactive (Game) Semantics

Definition: Reactive (Game) Semantics

Environment controls how local times evolve (time-elapse transitions)



- System observes current region and controls discrete transitions
 - Not turn-based: system may execute several discrete transitions

$$\mathcal{L}_{\text{react}}(\mathcal{D}) = \{ w \in \Sigma^* \mid \mathsf{System has a winning strategy} \}$$

Decidability of the reactive semantics

Theorem: Regularity

Let \mathcal{D} be a DTA. $\mathcal{L}_{react}(\mathcal{D})$ is regular.

Proof: construct an alternating automaton with ε -transitions accepting $\mathcal{L}_{\mathrm{react}}(\mathcal{D})$.

Corollary: Positive specifications

Model checking regular positive specifications is decidable for the reactive semantics.

 $\operatorname{Good} \subseteq \mathcal{L}_{\operatorname{react}}(\mathcal{D})$

Proposition: Reactive vs. Universal

 $\mathcal{L}_{\mathrm{react}}(\mathcal{D}) \subseteq \mathcal{L}_{\forall}(\mathcal{D})$ for all DTA's \mathcal{D} .

In general, $\mathcal{L}_{\mathrm{react}}(\mathcal{D}) \subsetneq \mathcal{L}_{\forall}(\mathcal{D})$.

Even for DTA's over 2 processes having 1 clock each.

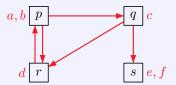
Conclusion

Summary

- Distributed systems which synchronize using clocks with local times.
- Regular existential semantics suited for negative specifications
- Regular reactive semantics suited for positive specification
- Undecidable universal semantics

Further work: Synthesis Problem

Given a regular specification $\operatorname{Spec} \subseteq \Sigma^*$ and an architecture A, Construct a DTA $\mathcal D$ over A such that $\mathcal L_{\operatorname{react}}(\mathcal D) = \operatorname{Spec} = \mathcal L_\exists(\mathcal D)$



If we are given two sets Good and Bad, find a DTA \mathcal{D} such that

$$\underline{Good} \subseteq \mathcal{L}_{\mathrm{react}}(\mathcal{D}) \subseteq \mathcal{L}_{\exists}(\mathcal{D}) \subseteq \overline{\underline{Bad}}$$