Distributed Timed Automata with
Independently Evolving Clocks

Paul Gastin
LSV, ENS Cachan, CNRS

Logic & Algorithms
Edinburgh, 21-25 July 2008

Motivations

Study the expressive power of local clocks as a synchronization mechanism in a
distributed system.

Motivations

Study the expressive power of local clocks as a synchronization mechanism in a
distributed system.

» Distributed systems with no explicit communication or synchronization.
» Clocks as a synchronization mechanism.

» Clocks on different processes evolve independently according to local times.

Plan

© Distributed Timed Automata

Region abstraction and existential semantics

Universal semantics and undecidability

Reactive (Game) Semantics

DA

Timed automata (Alur & Dill)

Example: TA
a,{z} a,{y

x>1,a, >1,b
’8 B M‘\i/ . -©

y<3 <3

—

[y

Timed automata (Alur & Dill)

Example: TA
a,{x} a, {y}
s levm{y}‘ s y>1b _
‘ N '@
y<3 <3
r=0 0 20 Yoo 2?18 7Y 25

y=0 0.7 1.5 0 0 1.7

Distributed Timed automata

Definition: DTA
D= ((Ap>pEProc, 71—) where
» each A, is a classical timed automaton

» 7 : Z — Proc assigns processes to clocks. If w(xz) = p then

» clock z evolves according to local time on process p
> only process p may reset clock x
> all processes may read clock z (i.e., use z in guards or invariants)

Example: DTA with 7(z) = p and 7(y) = ¢

y<1

A, _»@ x>1,b o 0<$<1,b=@

Local Times

Local Times
» Processes do not have access to the absolute (global) time.
> Each process has its own local time: 7, : R>g — R>g
Tp(t): local time on process p at absolute time ¢

continuous, strictly increasing, diverging, 7,(0) = 0.

Example: Local Times

A Tp

\
~+

Local Times

Local Times
» Processes do not have access to the absolute (global) time.
> Each process has its own local time: 7, : R>g — R>g
Tp(t): local time on process p at absolute time ¢

continuous, strictly increasing, diverging, 7,(0) = 0.

Example: Local Times

A Tp f § Tp

\
~+
\
~+

Runs of DTA’s & Untimed Behaviours
Example: DTA with 7(z) = p and 7(y) = ¢

Ay _»@ y<1l,a =@ a,{z} =@

Runs of DTA’s & Untimed Behaviours
Example: DTA with 7(z) = p and 7(y) = ¢

Ay _»@ y<1l,a =@ a,{z} =@

y<1

A, _»@ x>1,b =@ 0<I<1,b=@

S0 a S1 b S1 a S2 b S2
— — — — >
7o 0.2 To 0.6 1 0.7 T1 0.8 T2
z=0 0.4 1.2 0 0.2
y=20 0.2 0.6 0.7 0.8

TA with independently evolving clocks
Definition: icTA
B = (A,) where

» Ais a timed automaton

» 7 : Z — Proc assigns “processes” to clocks.
> If m(x) = p then clock z evolves according to local time 7,.

Example: icTA B with m(x) = p and 7(y) = ¢

b a b
y<l<uz 0<mzy<l y<l<uz

TA with independently evolving clocks
B = (A, 7) where

» A is a timed automaton

» 7 : Z — Proc assigns “processes” to clocks.

» If w(z) = p then clock z evolves according to local time 7,,.

Example: icTA B with m(x) = p and 7(y) = ¢

b

a b
y<l<uz 0<mzy<l y<l<uz

r<l<y O<z,y<l1 r<l=y

Remark: From DTA to icTA

Each DTA D = ((A,)peProc,) can be viewed as an icTA B = (A,) where A is
the asynchronous product of (A,)pe proc-

Formal Semantics of icTA’s and DTA’s

Let B = (A,) be an icTA with local times 7 = (7)) pe Proc-
Definition: (Infinite) Transition System TS(B, 7)

» States are tuples (g, ¢, v) where
> ¢ is a state of A
> ¢t € R>g is the absolute time
> v: Z — Ry is the valuation of clocks.

Formal Semantics of icTA’s and DTA’s

Let B = (A,) be an icTA with local times 7 = (7)) pe Proc-
Definition: (Infinite) Transition System TS(B, 7)

» States are tuples (g, ¢, v) where

> ¢ is a state of A
> ¢t € R>g is the absolute time
> v: Z — Ry is the valuation of clocks.

» For t < t' we define vy ¢ (x) = v(2) + Tr(2)(t') — Tr(a) (£).

Formal Semantics of icTA’s and DTA’s

Let B = (A,) be an icTA with local times 7 = (7)) pe Proc-
Definition: (Infinite) Transition System TS(B, 7)

» States are tuples (g, ¢, v) where

> ¢ is a state of A
> ¢t € R>g is the absolute time
> v: Z — Ry is the valuation of clocks.

» For t < t' we define vy ¢ (x) = v(2) + Tr(2)(t') — Tr(a) (£).

> Transitions : (g,t,v) JELIN (¢, t',) if

> v = 1I(g) forall t <t <,

> Vg ': g
> v’ =wv; +[R] (clocks in R are reset)

» o' = 1(q).

Formal Semantics of icTA’s and DTA’s

Let B = (A,) be an icTA with local times 7 = (7)) pe Proc-

Definition: (Infinite) Transition System TS(B, 7)

» States are tuples (g, ¢, v) where
> ¢ is a state of A
> ¢t € R>g is the absolute time
> v: Z — Ry is the valuation of clocks.

» For t < t' we define vy ¢ (x) = v(2) + Tr(2)(t') — Tr(a) (£).

> Transitions : (g,t,v) JELIN (¢, t',) if

> v = 1I(g) forall t <t <,
v g
> v’ =wv; +[R] (clocks in R are reset)
» o' = 1(q).
> w=ay...a, € L(B,7) (with a; € XU {e}) if there is a run in TS(B, 1)

g1,a1,R1

(0, t0,v0) —— (q1,t1,1) 92,92, Rz gn.an,Rn

(Qna tn, Un)

with gqq initial, tg = 0, vo(z) = 0 for all x € Z and ¢, final.

Semantics of icTA’s and DTA’s

Example: icTA B with 7w(xz) = p and 7(y) = ¢

ysl=<z 0<z,y<l y<l<uz

r<l<y O<z,y<1 r<l=y

If 7, = 74 then b € L(B,7) but ¢ ¢ L(B,7).
If 7, <7, then b ¢ L(B,T) but c € L(B,).

Semantics of icTA’s and DTA’s

Example: icTA B with 7w(xz) = p and 7(y) = ¢

b a b
yslsz 0<zy<l y<l<uz

r<l<y O<z,y<1 r<l=y

If 7, = 74 then b € L(B,7) but ¢ ¢ L(B,7).
If 7, <7, then b ¢ L(B,T) but c € L(B,).
For all local times 7, we have a € L(B, 7).

For all local times 7, we have ab € L(B,).

Unregular Behaviours

Consider the following icTA B
a b
r=1 y=1

with 7w(x) = p and 7(y) = ¢
and the local times on the right.

Tq

[

A

Unregular Behaviours

Consider the following icTA B

a :. % |: b
r=1 y=1
{y}

with 7w(x) = p and 7(y) = ¢
and the local times on the right.

a occurs every local time unit of p.

Tq

[

A

Unregular Behaviours

Consider the following icTA B
a b
r=1 y=1
with 7(z) = p and 7(y) = ¢

and the local times on the right.

a occurs every local time unit of p.

b occurs every local time unit of g.

b/

AN

Unregular Behaviours

Consider the following icTA B
a b
r=1 y=1
with 7(z) = p and 7(y) = ¢

and the local times on the right.

a occurs every local time unit of p.

b occurs every local time unit of g.

L(B,T) are the finite prefixes of bab*ab*ab®a - - -

.
74

Existential & Universal Semantics

Definition: Existential & Universal Semantics

Let B be a DTA or an icTA.
> L3(B) = J£B,7)

> Ly(B) =()L(B,T)

Example: £5(B) = {a,b,c, ab} Ly(B) = {a,ab}

b a b
ysl=<z 0<azy<1 y<l<uz

Existential & Universal Semantics

Example: £5(D) = Pref({aab, abab, baab}) Ly(D) = Pref({aa})

A,,: a, y<1 =@ a, {z} =@
<
@

—_

Y

b, z>1 b, 0 1
Aq: x =O Sre =@

If 7y < 7p then baab € L(D,T).

Negative & Positive Specifications

Aim: robustness of a DTA D against relative local times

Definition: Negative Specifications (Safety)

Given a set Bad of undesired behaviours,

Does a DTA D robustly avoid Bad

ﬁg(D) NBad =0

Negative & Positive Specifications

Aim: robustness of a DTA D against relative local times

Definition: Negative Specifications (Safety)

Given a set Bad of undesired behaviours,

Does a DTA D robustly avoid Bad

ﬁg(D) NBad =0

Definition: Positive Specifications (Liveness)

Given a set Good of desired behaviours,

Does a DTA D robustly exhibit Good

Good C Ly(D)

Plan
Distributed Timed Automata

© Region abstraction and existential semantics

Universal semantics and undecidability

Reactive (Game) Semantics

Region abstraction for 3-semantics

Regions when 7(z) = 7(y)

A

Region abstraction for 3-semantics

Regions when 7(z) = 7(y)

| i

y

Region abstraction for 3-semantics

Regions when 7(z) = 7(y)

| i

y

Region abstraction for 3-semantics

Regions when 7(z) = 7(y)
b
A/
y

Region abstraction for 3-semantics

Regions when 7(z) = 7(y)

[
Y 4
y

Region abstraction for 3-semantics

Regions when 7(z) = 7(y) Regions when 7(z) # 7(y)

| ..-

Yy 4

y

Region abstraction for 3-semantics

Regions when 7(z) = 7(y) Regions when 7(z) # 7(y)

| ..-

Yy 4

y L]

Region abstraction for 3-semantics

Regions when 7(z) = 7(y) Regions when 7(z) # 7(y)

| ..-

Yy 4

4 u

Region abstraction for 3-semantics

Regions when 7(z) = 7(y) Regions when 7(z) # 7(y)

| ..-

Y 4 s

y L

Region abstraction for 3-semantics

Regions when 7(z) = 7(y) Regions when 7(z) # 7(y)

yﬂ

[
Yy 4 i

4 g

Region abstraction for 3-semantics

Theorem: Region abstraction
Let B be an icTA (or a DTA). Let Rp be its region abstraction.
and

L3(B) = L(RB)

Rs| <1B]- (2C +2)121- 2|1

Region abstraction for 3-semantics

Theorem: Region abstraction
Let B be an icTA (or a DTA). Let Rp be its region abstraction.
and

L3(B) = L(Rg)
Rs| < |B|- (2C +2)1%1 - |2]!
Corollary: Negative specifications
Model checking regular negative specifications for icTA's or DTA's is decidable.
L3(B)nBad =0

DA

Plan
Distributed Timed Automata

Region abstraction and existential semantics

© Universal semantics and undecidability

Reactive (Game) Semantics

A

Undecidability of the universal semantics
Theorem: Undecidability
Let D be a DTA.

emptiness: Ly(D)

universality: Ly(D)

Skip proof.
(0 is undecidable.
>* is undecidable

Undecidability of the universal semantics

Theorem: Undecidability Skip proof.
Let D be a DTA.
emptiness: Ly(D) = 0 is undecidable.
universality: Ly(D) = £* is undecidable.
Even for 2 processes, 1 clock each and bounded drifts: da > 0, V¢ > 0,

t
1—a§LU<1+a or I7q(t) — 7p(t)| <

7p(t)

T, T,
49 49

Undecidability of the universal semantics

Theorem: Undecidability Skip proof.
Let D be a DTA.
emptiness: Ly(D) = 0 is undecidable.
universality: Ly(D) = £* is undecidable.
Even for 2 processes, 1 clock each and bounded drifts: da > 0, V¢ > 0,

t
1—a§LU<1+a or I7q(t) — 7p(t)| <

7p(t)

T, T,
49 49

Tp Tp

Corollary: Positive specifications Good C Ly(D)

Model checking regular positive specifications for icTA's or DTA's is undecidable.

OraFre=raEr E

Undecidability of emptiness

Proof: Reduction from Post Correspondance Problem

> Given two morphisms f,g: At — {0,1}* with A = {a4,...,ax}.
» Does there exist w € A such that f(w) = g(w)?

Proof: Reduction from Post Correspondance Problem

Undecidability of emptiness

> Given two morphisms f,g: At — {0,1}* with A = {a4,...,ax}.
» Does there exist w € AT such that f(w) = g(w)?

Definition: Directions defined by local times

Each local times 7 = (7, 7,) is mapped to a word dir(7) € {0, 1, 2}“.

[

Tq

Next direction of dir(7) is 0

/O guard(0) :=z=2A1<y <2

\/
5

Proof: Reduction from Post Correspondance Problem

Undecidability of emptiness

> Given two morphisms f,g: At — {0,1}* with A = {a4,...,ax}.
» Does there exist w € AT such that f(w) = g(w)?

Definition: Directions defined by local times

Each local times 7 = (7, 7,) is mapped to a word dir(7) € {0, 1, 2}“.

[

Tq
1 Next direction of dir(7) is 1

/ guard(0) ;=2 =2A1<y <2

guard(l) :=1<x <2Ay=2

\/
5

Undecidability of emptiness

Proof: Reduction from Post Correspondance Problem

> Given two morphisms f,g: At — {0,1}* with A = {a4,...,ax}.
» Does there exist w € AT such that f(w) = g(w)?

Definition: Directions defined by local times

Each local times 7 = (7, 7,) is mapped to a word dir(7) € {0, 1, 2}“.

[

Tq

Next direction of dir(7) is 2

2 2
/ guard(0) ;=2 =2A1<y <2
/ guard(l) :=1< a2 <2Ay=2
—12 guard(2):=(z=2A(y<1Vvy=2)V(@<1lAy=2)

Tp

Directions defined by local times

Clocks x, y are reset when reaching the 2 x 2 square boundary

/

/

.
49

Directions defined by local times

Clocks x, y are reset when reaching the 2 x 2 square boundary

/

/

.
49

dir(7) = 0100 - -

Undecidability of emptiness

Definition: Macro transition
Fora € A and 0 = dydy ...d, € {0,1,2}" we define

From p with x =y = 0, we reach
» s with x = y = 0 if local times 7 evolve according to o

» 1 otherwise

Undecidability of emptiness

Definition: Macro transition
Fora € A and 0 = dydy ...d, € {0,1,2}" we define

From p with x =y = 0, we reach
» s with x = y = 0 if local times 7 evolve according to o

» 1 otherwise

€, guard(ds)

a, guard(dy) €, guard(ds) €, guard(d,,)

a, guard(d)
{z,y}

€, guard(ds) €, guard(d,,)
{wy} {z,y}

Undecidability of emptiness

L(By,7) ={wbe ATb| g(w)2 < dir(r)}

O & = = = 9vaQ

Undecidability of emptiness

(ai, f(ai)) /}0\ (aiag(ai))

> 50 — s1 iff f(w) < dir(7)
> 801)1"1 |fff(w)£d ()
> 50— 89 iff g(w) < dir(7)

Plan
Distributed Timed Automata

Region abstraction and existential semantics

Universal semantics and undecidability

© Reactive (Game) Semantics

A

Reactive (Game) Semantics

Remark: Positive Specifications and universal semantics

Good C Ly(D) does not imply that the system can be controlled in order to exhibit
all Good behaviours, whatever local times are.

Reactive (Game) Semantics

Definition: Reactive (Game) Semantics

» Environment controls how local times evolve (time-elapse transitions)
Y
A

\/
8

Reactive (Game) Semantics

Definition: Reactive (Game) Semantics

» Environment controls how local times evolve (time-elapse transitions)
Y
A

\/
8

Reactive (Game) Semantics

Definition: Reactive (Game) Semantics

» Environment controls how local times evolve (time-elapse transitions)
Y
A

\/
8

Reactive (Game) Semantics

Definition: Reactive (Game) Semantics

» Environment controls how local times evolve (time-elapse transitions)
Y
A

» System observes current region and controls discrete transitions

» T

» Not turn-based: system may execute several discrete transitions

Reactive (Game) Semantics

Definition: Reactive (Game) Semantics

» Environment controls how local times evolve (time-elapse transitions)
Y
A

» System observes current region and controls discrete transitions

» T

» Not turn-based: system may execute several discrete transitions

Lyicact(B) = {w € ¥* | System has a winning strategy}

Decidability of the reactive semantics

Theorem: Regularity
Let B be an icTA or a DTA. L cact(B) is regular.

Proof: construct an alternating automaton with e-transitions accepting L eact(B).

Decidability of the reactive semantics

Theorem: Regularity
Let B be an icTA or a DTA. L cact(B) is regular.

Proof: construct an alternating automaton with e-transitions accepting L eact(B).

Corollary: Positive specifications

Model checking regular poitive specifications is decidable for the reactive semantics.

Good C Lyeact(B)

DA

Decidability of the reactive semantics

Theorem: Regularity

Let B be an icTA or a DTA. L cact(B) is regular.

Proof: construct an alternating automaton with e-transitions accepting L eact(B).

Corollary: Positive specifications

Model checking regular poitive specifications is decidable for the reactive semantics.

Good C Lyeact(B)

Proposition: Reactive vs. Universal

> Lrcact(B) € Ly(B) for all icTA's or DTA's B.
> In general, Lreact(B) € Lv(B).
Even for DTA's over 2 processes having 1 clock each.

DA

Conclusion

» Distributed system using clocks with local times to synchronize.

v

Regular existential semantics suited for negative specifications

v

Regular reactive semantics suited for positive specification
Undecidable universal semantics

v

Conclusion

» Distributed system using clocks with local times to synchronize.

> Regular existential semantics suited for negative specifications
» Regular reactive semantics suited for positive specification

» Undecidable universal semantics

Further work: Synthesis Problem

Given a regular specification Spec C ¥* and an architecture A,
Construct a DTA D over A such that Lyeact (D) = Spec

(7] 4]

Conclusion

» Distributed system using clocks with local times to synchronize.

> Regular existential semantics suited for negative specifications
» Regular reactive semantics suited for positive specification

» Undecidable universal semantics

Further work: Synthesis Problem

Given a regular specification Spec C ¥* and an architecture A,
Construct a DTA D over A such that Lyeact (D) = Spec

a,b@ Ec

i[7] [3)e.s

Conclusion

Summary
» Distributed system using clocks with local times to synchronize.
> Regular existential semantics suited for negative specifications
» Regular reactive semantics suited for positive specification

» Undecidable universal semantics

Further work: Synthesis Problem

Given a regular specification Spec C ¥* and an architecture A,
Construct a DTA D over A such that Lyeact (D) = Spec

o.b[7] 4]

	Distributed Timed Automata
	Region abstraction and existential semantics
	Universal semantics and undecidability
	Reactive (Game) Semantics

