Distributed Timed Automata with Independently Evolving Clocks

Paul Gastin

LSV, ENS Cachan, CNRS

Joint work with S. Akshay, Benedikt Bollig, Madhavan Mukund, K Narayan Kumar

To appear in CONCUR'08

Logic & Algorithms Edinburgh, 21-25 July 2008

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 臣 の � � 1/29

Motivations

Aim

Study the expressive power of local clocks as a synchronization mechanism in a distributed system.

Motivations

Aim

Study the expressive power of local clocks as a synchronization mechanism in a distributed system.

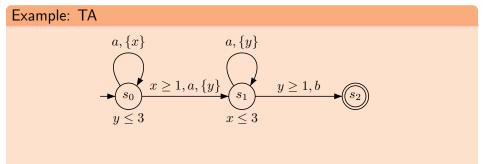
- Distributed systems with no explicit communication or synchronization.
- Clocks as a synchronization mechanism.
- Clocks on different processes evolve independently according to local times.

◆□ → ◆ □ → ◆ 三 → ◆ 三 → ○ へ ○ 2/29

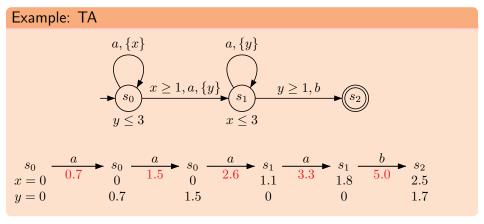
Plan

- Distributed Timed Automata
 - **Region abstraction and existential semantics**
 - Universal semantics and undecidability
- **Reactive (Game) Semantics**

Timed automata (Alur & Dill)



Timed automata (Alur & Dill)



◆□▶◆□▶◆≧▶◆≧▶ ≧ の�� 4/29

Distributed Timed automata

Definition: DTA

- $\mathcal{D} = ((\mathcal{A}_p)_{p \in Proc}, \pi)$ where
 - each \mathcal{A}_p is a classical timed automaton
 - $\pi: \mathcal{Z} \to Proc$ assigns processes to clocks. If $\pi(x) = p$ then
 - \blacktriangleright clock x evolves according to local time on process p
 - \blacktriangleright only process p may reset clock x
 - > all processes may read clock x (i.e., use x in guards or invariants)

Example: DTA with
$$\pi(x) = p$$
 and $\pi(y) = q$
 $\mathcal{A}_p: \quad \checkmark \underbrace{s_0} \qquad y \leq 1, a \qquad & \underbrace{s_1} \qquad a, \{x\} \qquad & \underbrace{s_2} \qquad & \underbrace{s_2} \qquad & \underbrace{s_3} \qquad & \underbrace{s_4} \qquad & \underbrace{s_5} \qquad & \underbrace{s_5} \qquad & \underbrace{s_6} \qquad$

Local Times

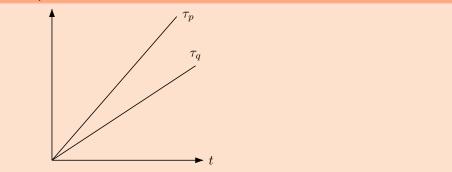
Local Times

- Processes do not have access to the absolute (global) time.
- Each process has its own local time: $\tau_p : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$

 $au_p(t)$: local time on process p at absolute time t

continuous, strictly increasing, diverging, $\tau_p(0) = 0$.

Example: Local Times



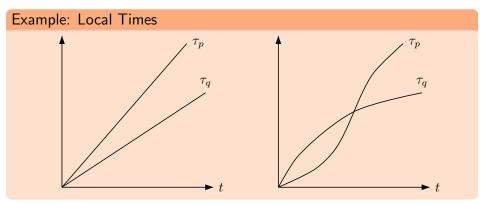
Local Times

Local Times

- Processes do not have access to the absolute (global) time.
- Each process has its own local time: $\tau_p: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$

 $\tau_p(t)$: local time on process p at absolute time t

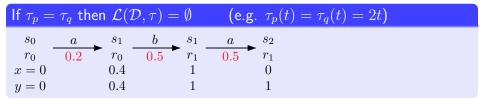
continuous, strictly increasing, diverging, $\tau_p(0) = 0$.



Runs of DTA's & Untimed Behaviours

Example: DTA with $\pi(x) = p$ and $\pi(y) = q$

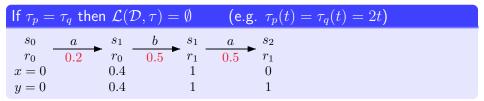
$$\mathcal{A}_q: \quad \mathbf{P}(\mathbf{r}_0) \qquad x \ge 1, b \qquad \mathbf{r}_1 \qquad \mathbf{r}_2 \qquad \mathbf{r}_1 \qquad \mathbf{r}_2 \qquad \mathbf{r}_2 \qquad \mathbf{r}_2 \qquad \mathbf{r}_3 \qquad \mathbf{r}_4 \qquad \mathbf{r}_4 \qquad \mathbf{r}_5 \qquad \mathbf$$

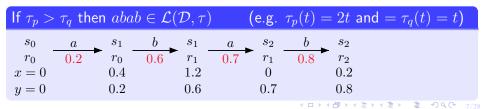


Runs of DTA's & Untimed Behaviours

Example: DTA with $\pi(x) = p$ and $\pi(y) = q$

$$\mathcal{A}_q: \quad \mathbf{P}(\mathbf{r}_0) \qquad x \ge 1, b \qquad \mathbf{r}_1 \qquad \mathbf{r}_2 \qquad \mathbf{r}_1 \qquad \mathbf{r}_2 \qquad \mathbf$$



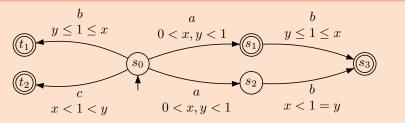


TA with independently evolving clocks

Definition: icTA

- $\mathcal{B} = (\mathcal{A}, \pi)$ where
 - A is a timed automaton
 - $\pi: \mathcal{Z} \to Proc$ assigns "processes" to clocks.
 - If $\pi(x) = p$ then clock x evolves according to local time τ_p .

Example: icTA \mathcal{B} with $\pi(x) = p$ and $\pi(y) = q$

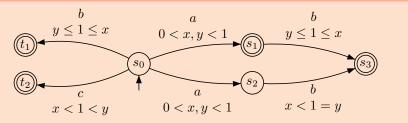


TA with independently evolving clocks

Definition: icTA

- $\mathcal{B} = (\mathcal{A}, \pi)$ where
 - A is a timed automaton
 - $\pi: \mathcal{Z} \to Proc$ assigns "processes" to clocks.
 - If $\pi(x) = p$ then clock x evolves according to local time τ_p .

Example: icTA \mathcal{B} with $\pi(x) = p$ and $\pi(y) = q$



Remark: From DTA to icTA

Each DTA $\mathcal{D} = ((\mathcal{A}_p)_{p \in Proc}, \pi)$ can be viewed as an icTA $\mathcal{B} = (\mathcal{A}, \pi)$ where \mathcal{A} is the *asynchronous product* of $(\mathcal{A}_p)_{p \in Proc}$.

Let $\mathcal{B} = (\mathcal{A}, \pi)$ be an icTA with local times $\tau = (\tau_p)_{p \in Proc}$.

Definition: (Infinite) Transition System $TS(\mathcal{B}, \tau)$

- States are tuples (q, t, v) where
 - ▶ q is a state of A
 - $t \in \mathbb{R}_{\geq 0}$ is the absolute time
 - $v: \mathcal{Z} \to \mathbb{R}_{\geq 0}$ is the valuation of clocks.

Let $\mathcal{B} = (\mathcal{A}, \pi)$ be an icTA with local times $\tau = (\tau_p)_{p \in Proc}$.

Definition: (Infinite) Transition System $TS(\mathcal{B}, \tau)$

- States are tuples (q, t, v) where
 - ▶ q is a state of A
 - $t \in \mathbb{R}_{\geq 0}$ is the absolute time
 - $v: \mathcal{Z} \to \mathbb{R}_{\geq 0}$ is the valuation of clocks.
- ► For t < t' we define $v_{t,t'}(x) = v(x) + \tau_{\pi(x)}(t') \tau_{\pi(x)}(t)$.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 臣 - の � () - 9/29

Let $\mathcal{B} = (\mathcal{A}, \pi)$ be an icTA with local times $\tau = (\tau_p)_{p \in Proc}$.

Definition: (Infinite) Transition System $TS(\mathcal{B}, \tau)$

- States are tuples (q, t, v) where
 - ▶ q is a state of A
 - $t \in \mathbb{R}_{\geq 0}$ is the absolute time
 - $v: \mathcal{Z} \to \mathbb{R}_{\geq 0}$ is the valuation of clocks.
- For t < t' we define $v_{t,t'}(x) = v(x) + \tau_{\pi(x)}(t') \tau_{\pi(x)}(t)$.
- ▶ Transitions : $(q, t, v) \xrightarrow{g, a, R} (q', t', v')$ if
 - $v_{t,t^{\prime\prime}} \models I(q)$ for all $t \le t^{\prime\prime} \le t^{\prime}$,

$$v_{t,t'} \models g$$

•
$$v' = v_{t,t'}[R]$$
 (clocks in R are reset)

•
$$v' \models I(q')$$
.

Let $\mathcal{B} = (\mathcal{A}, \pi)$ be an icTA with local times $\tau = (\tau_p)_{p \in Proc}$.

Definition: (Infinite) Transition System $TS(\mathcal{B}, \tau)$

- States are tuples (q, t, v) where
 - ▶ q is a state of A
 - $t \in \mathbb{R}_{\geq 0}$ is the absolute time
 - $v: \mathcal{Z} \to \mathbb{R}_{\geq 0}$ is the valuation of clocks.
- ► For t < t' we define $v_{t,t'}(x) = v(x) + \tau_{\pi(x)}(t') \tau_{\pi(x)}(t)$.
- ► Transitions : $(q, t, v) \xrightarrow{g,a,R} (q', t', v')$ if ► $v_{t,t''} \models I(q)$ for all $t \le t'' \le t'$, ► $v_{t,t'} \models g$ ► $v' = v_{t,t'}[R]$ (clocks in R are reset) ► $v' \models I(q')$.

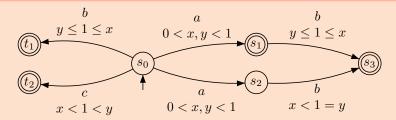
• $w = a_1 \dots a_n \in \mathcal{L}(\mathcal{B}, \tau)$ (with $a_i \in \Sigma \cup \{\varepsilon\}$) if there is a run in $TS(\mathcal{B}, \tau)$

$$(q_0, t_0, v_0) \xrightarrow{g_1, a_1, R_1} (q_1, t_1, v_1) \xrightarrow{g_2, a_2, R_2} \cdots \xrightarrow{g_n, a_n, R_n} (q_n, t_n, v_n)$$

with q_0 initial, $t_0 = 0$, $v_0(x) = 0$ for all $x \in \mathbb{Z}$ and q_n final.

Semantics of icTA's and DTA's

Example: icTA \mathcal{B} with $\pi(x) = p$ and $\pi(y) = q$

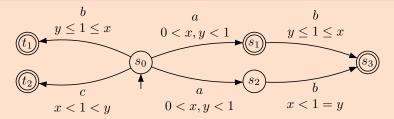


◆□▶◆□▶◆ミ▶◆ミ▶ ミ のへで 10/29

▶ If $\tau_p = \tau_q$ then $b \in \mathcal{L}(\mathcal{B}, \tau)$ but $c \notin \mathcal{L}(\mathcal{B}, \tau)$. ▶ If $\tau_p < \tau_q$ then $b \notin \mathcal{L}(\mathcal{B}, \tau)$ but $c \in \mathcal{L}(\mathcal{B}, \tau)$.

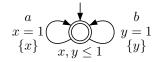
Semantics of icTA's and DTA's

Example: icTA \mathcal{B} with $\pi(x) = p$ and $\pi(y) = q$

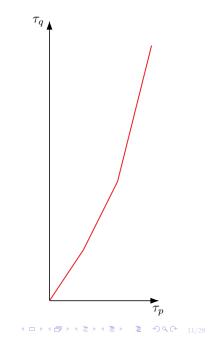


- If $\tau_p = \tau_q$ then $b \in \mathcal{L}(\mathcal{B}, \tau)$ but $c \notin \mathcal{L}(\mathcal{B}, \tau)$.
- If $\tau_p < \tau_q$ then $b \notin \mathcal{L}(\mathcal{B}, \tau)$ but $c \in \mathcal{L}(\mathcal{B}, \tau)$.
- For all local times τ , we have $a \in \mathcal{L}(\mathcal{B}, \tau)$.
- For all local times τ , we have $ab \in \mathcal{L}(\mathcal{B}, \tau)$.

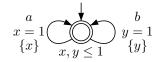
Consider the following icTA ${\cal B}$



with $\pi(x) = p$ and $\pi(y) = q$ and the local times on the right.

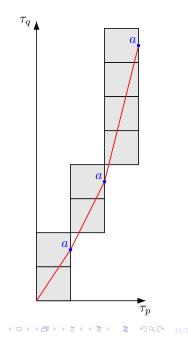


Consider the following icTA ${\cal B}$

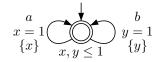


with $\pi(x) = p$ and $\pi(y) = q$ and the local times on the right.

a occurs every local time unit of p.



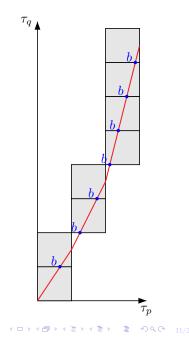
Consider the following icTA ${\cal B}$



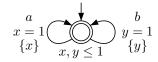
with $\pi(x) = p$ and $\pi(y) = q$ and the local times on the right.

a occurs every local time unit of p.

b occurs every local time unit of q.



Consider the following icTA ${\cal B}$

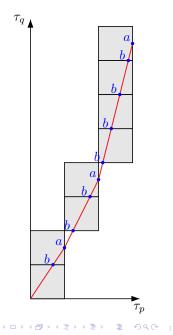


with $\pi(x) = p$ and $\pi(y) = q$ and the local times on the right.

 \boldsymbol{a} occurs every local time unit of $\boldsymbol{p}.$

b occurs every local time unit of q.

 $\mathcal{L}(\mathcal{B}, au)$ are the finite prefixes of $bab^2ab^4ab^8a\cdots$

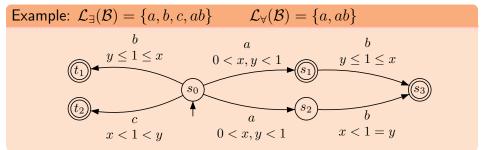


Existential & Universal Semantics

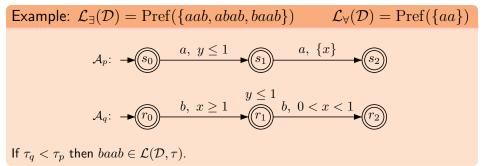
Definition: Existential & Universal Semantics

Let \mathcal{B} be a DTA or an icTA.

$$\mathcal{L}_{\exists}(\mathcal{B}) = \bigcup_{\tau} \mathcal{L}(\mathcal{B}, \tau)$$
$$\mathcal{L}_{\forall}(\mathcal{B}) = \bigcap_{\tau} \mathcal{L}(\mathcal{B}, \tau)$$



Existential & Universal Semantics



Negative & Positive Specifications

Aim: robustness of a DTA ${\mathcal D}$ against relative local times

Definition: Negative Specifications (Safety)

Given a set Bad of undesired behaviours,

Does a DTA ${\mathcal D}$ robustly avoid Bad

 $\mathcal{L}_\exists(\mathcal{D})\cap \underline{\mathrm{Bad}}=\emptyset$

◆□▶◆□▶◆≧▶◆≧▶ ≧ ∽��? 14/29

Negative & Positive Specifications

Aim: robustness of a DTA $\ensuremath{\mathcal{D}}$ against relative local times

Definition: Negative Specifications (Safety)

Given a set Bad of undesired behaviours,

Does a DTA ${\mathcal D}$ robustly avoid Bad

 $\mathcal{L}_\exists(\mathcal{D})\cap \underline{Bad}=\emptyset$

Definition: Positive Specifications (Liveness)

Given a set Good of desired behaviours,

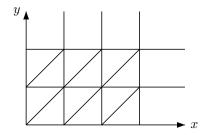
Does a DTA ${\mathcal D}$ robustly exhibit Good

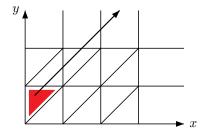
 $\mathbf{Good} \subseteq \mathcal{L}_\forall(\mathcal{D})$

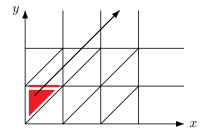
Plan

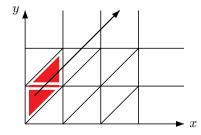
Distributed Timed Automata

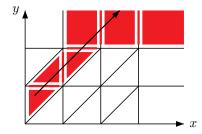
- 2 Region abstraction and existential semantics
 - Universal semantics and undecidability
 - **Reactive (Game) Semantics**



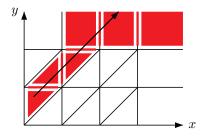


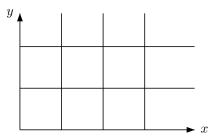




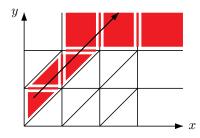


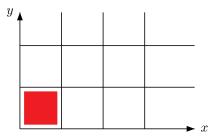
Regions when $\pi(x) = \pi(y)$



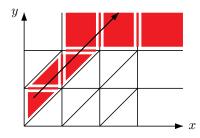


Regions when $\pi(x) = \pi(y)$

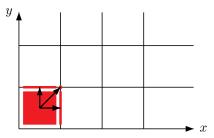




Regions when $\pi(x) = \pi(y)$



Regions when $\pi(x) \neq \pi(y)$

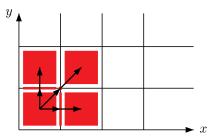


◆□ ▶ ◆ □ ▶ ◆ ■ ▶ ◆ ■ ◆ ○ へ ○ 16/29

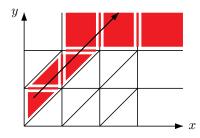
Regions when $\pi(x) = \pi(y)$



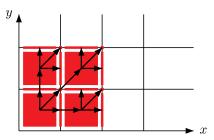
Regions when $\pi(x) \neq \pi(y)$



Regions when $\pi(x) = \pi(y)$



Regions when $\pi(x) \neq \pi(y)$



◆□ ▶ ◆ □ ▶ ◆ ■ ▶ ◆ ■ ◆ ○ へ ○ 16/29

Theorem: Region abstraction

Let \mathcal{B} be an icTA (or a DTA). Let $\mathcal{R}_{\mathcal{B}}$ be its region abstraction.

 $\mathcal{L}_\exists(\mathcal{B})=\mathcal{L}(\mathcal{R}_\mathcal{B})$

and

$$|\mathcal{R}_{\mathcal{B}}| \le |\mathcal{B}| \cdot (2C+2)^{|\mathcal{Z}|} \cdot |\mathcal{Z}|!$$

Theorem: Region abstraction

Let \mathcal{B} be an icTA (or a DTA). Let $\mathcal{R}_{\mathcal{B}}$ be its region abstraction.

 $\mathcal{L}_\exists(\mathcal{B})=\mathcal{L}(\mathcal{R}_\mathcal{B})$

and

$$|\mathcal{R}_{\mathcal{B}}| \le |\mathcal{B}| \cdot (2C+2)^{|\mathcal{Z}|} \cdot |\mathcal{Z}|!$$

Corollary: Negative specifications

Model checking regular negative specifications for icTA's or DTA's is decidable.

 $\mathcal{L}_{\exists}(\mathcal{B}) \cap \underline{\mathrm{Bad}} = \emptyset$

◆□▶◆□▶◆≧▶◆≧▶ ≧ のへで 17/29

Plan

- **Distributed Timed Automata**
- **Region abstraction and existential semantics**
- 3 Universal semantics and undecidability
 - **Reactive (Game) Semantics**

Undecidability of the universal semantics

Theorem: Undecidability

Skip proof.

Let ${\mathcal D}$ be a DTA.

emptiness: $\mathcal{L}_{\forall}(\mathcal{D}) = \emptyset$ is undecidable.

universality: $\mathcal{L}_{\forall}(\mathcal{D}) = \Sigma^*$ is undecidable.

Undecidability of the universal semantics

Theorem: Undecidability

Skip proof.

Let \mathcal{D} be a DTA.

emptiness: $\mathcal{L}_{\forall}(\mathcal{D}) = \emptyset$ is undecidable.

universality: $\mathcal{L}_{\forall}(\mathcal{D}) = \Sigma^*$ is undecidable.

Even for 2 processes, 1 clock each and bounded drifts: $\exists \alpha > 0, \forall t > 0$,

 $1 - \alpha \leq \frac{\tau_q(t)}{\tau_p(t)} < 1 + \alpha \quad \text{or} \quad |\tau_q(t) - \tau_p(t)| \leq \alpha$

Undecidability of the universal semantics

Theorem: Undecidability

Skip proof.

Let \mathcal{D} be a DTA.

emptiness: $\mathcal{L}_{\forall}(\mathcal{D}) = \emptyset$ is undecidable.

universality: $\mathcal{L}_{\forall}(\mathcal{D}) = \Sigma^*$ is undecidable.

Even for 2 processes, 1 clock each and bounded drifts: $\exists \alpha > 0, \forall t > 0$,

 $1 - \alpha \leq \frac{\tau_q(t)}{\tau_p(t)} < 1 + \alpha \quad \text{or} \quad |\tau_q(t) - \tau_p(t)| \leq \alpha$

Corollary: Positive specifications

$\operatorname{Good} \subseteq \mathcal{L}_\forall(\mathcal{D})$

◆□▶★@▶★ミ▶★ミ≯ ミーのへで

Model checking regular positive specifications for icTA's or DTA's is undecidable.

Proof: Reduction from Post Correspondance Problem

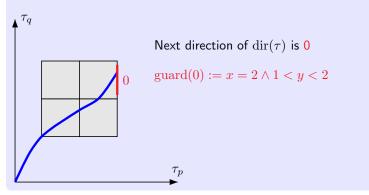
- Given two morphisms $f, g: A^+ \to \{0, 1\}^+$ with $A = \{a_1, \ldots, a_k\}$.
- Does there exist $w \in A^+$ such that f(w) = g(w)?

Proof: Reduction from Post Correspondance Problem

- Given two morphisms $f, g: A^+ \to \{0, 1\}^+$ with $A = \{a_1, \ldots, a_k\}$.
- Does there exist $w \in A^+$ such that f(w) = g(w)?

Definition: Directions defined by local times

Each local times $\tau = (\tau_p, \tau_q)$ is mapped to a word $\operatorname{dir}(\tau) \in \{0, 1, 2\}^{\omega}$.



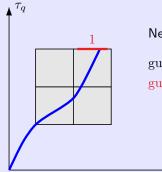
Proof: Reduction from Post Correspondance Problem

- Given two morphisms $f, g: A^+ \to \{0, 1\}^+$ with $A = \{a_1, \ldots, a_k\}$.
- Does there exist $w \in A^+$ such that f(w) = g(w)?

 τ_p

Definition: Directions defined by local times

Each local times $\tau = (\tau_p, \tau_q)$ is mapped to a word $\operatorname{dir}(\tau) \in \{0, 1, 2\}^{\omega}$.



Next direction of $dir(\tau)$ is 1

guard(0) :=
$$x = 2 \land 1 < y < 2$$

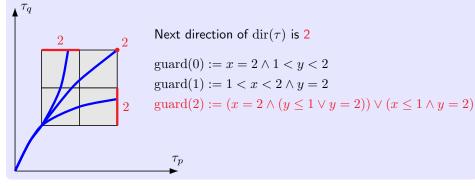
guard(1) := $1 < x < 2 \land y = 2$

Proof: Reduction from Post Correspondance Problem

- Given two morphisms $f, g: A^+ \to \{0, 1\}^+$ with $A = \{a_1, \ldots, a_k\}$.
- Does there exist $w \in A^+$ such that f(w) = g(w)?

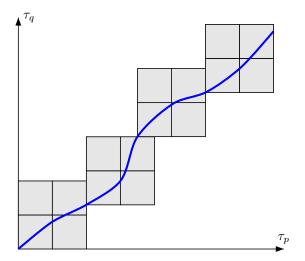
Definition: Directions defined by local times

Each local times $\tau = (\tau_p, \tau_q)$ is mapped to a word $\operatorname{dir}(\tau) \in \{0, 1, 2\}^{\omega}$.



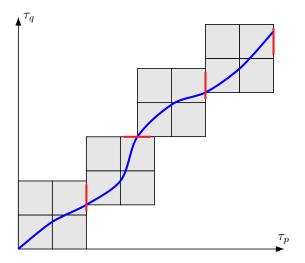
Directions defined by local times

Clocks x, y are reset when reaching the 2×2 square boundary



Directions defined by local times

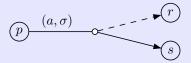
Clocks x, y are reset when reaching the 2×2 square boundary



 $\operatorname{dir}(\tau) = 0100\cdots$

Definition: Macro transition

For $a \in A$ and $\sigma = d_1 d_2 \dots d_n \in \{0, 1, 2\}^+$ we define

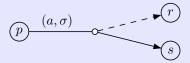


From p with x = y = 0, we reach

- s with x = y = 0 if local times τ evolve according to σ
- r otherwise

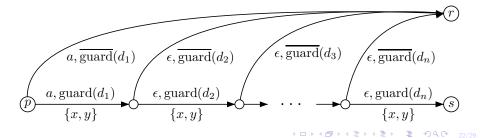
Definition: Macro transition

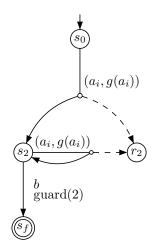
For $a \in A$ and $\sigma = d_1 d_2 \dots d_n \in \{0, 1, 2\}^+$ we define



From p with x = y = 0, we reach

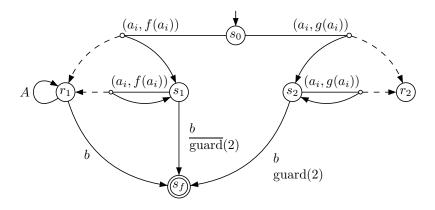
- s with x = y = 0 if local times τ evolve according to σ
- r otherwise





Proposition:

$$\mathcal{L}(\mathcal{B}_g, \tau) = \{ wb \in A^+b \mid g(w)2 \le \operatorname{dir}(\tau) \}$$



Proposition: $\mathcal{L}_{\forall}(\mathcal{B}) = \{wb \in A^+b \mid f(w) = g(w)\}$

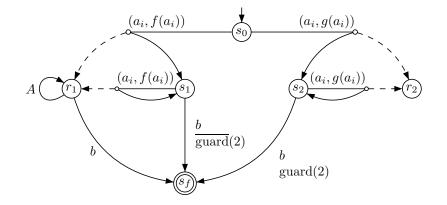
- $s_0 \xrightarrow{w} s_1$ iff $f(w) \leq \operatorname{dir}(\tau)$
- $s_0 \xrightarrow{w} r_1$ iff $f(w) \not\leq \operatorname{dir}(\tau)$
- $s_0 \xrightarrow{w} s_2$ iff $g(w) \leq \operatorname{dir}(\tau)$

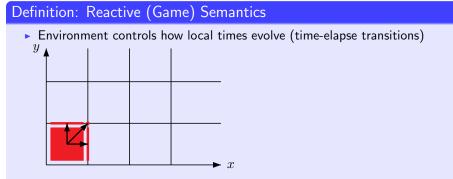
Plan

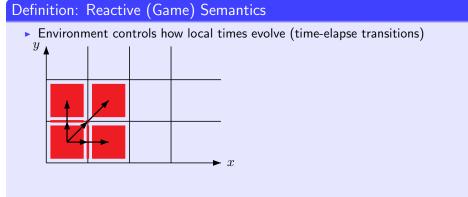
- **Distributed Timed Automata**
- **Region abstraction and existential semantics**
- Universal semantics and undecidability
- 4 Reactive (Game) Semantics

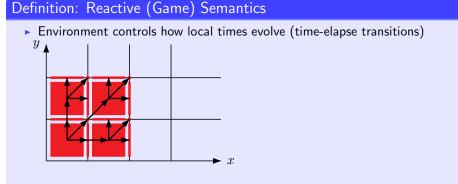
Remark: Positive Specifications and universal semantics

Good $\subseteq \mathcal{L}_{\forall}(\mathcal{D})$ does not imply that the system can be controlled in order to exhibit all Good behaviours, whatever local times are.



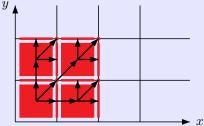






Definition: Reactive (Game) Semantics

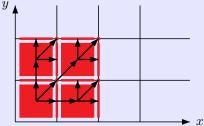
Environment controls how local times evolve (time-elapse transitions)



- System observes current region and controls discrete transitions
- Not turn-based: system may execute several discrete transitions

Definition: Reactive (Game) Semantics

Environment controls how local times evolve (time-elapse transitions)



- System observes current region and controls discrete transitions
- Not turn-based: system may execute several discrete transitions

 $\mathcal{L}_{\text{react}}(\mathcal{B}) = \{ w \in \Sigma^* \mid \text{System has a winning strategy} \}$

Decidability of the reactive semantics

Theorem: Regularity

Let \mathcal{B} be an icTA or a DTA. $\mathcal{L}_{react}(\mathcal{B})$ is regular.

Proof: construct an alternating automaton with ε -transitions accepting $\mathcal{L}_{react}(\mathcal{B})$.

Decidability of the reactive semantics

Theorem: Regularity

Let \mathcal{B} be an icTA or a DTA. $\mathcal{L}_{react}(\mathcal{B})$ is regular.

Proof: construct an alternating automaton with ε -transitions accepting $\mathcal{L}_{react}(\mathcal{B})$.

Corollary: Positive specifications

Model checking regular poitive specifications is decidable for the reactive semantics.

 $\underline{Good} \subseteq \mathcal{L}_{\mathrm{react}}(\mathcal{B})$

Decidability of the reactive semantics

Theorem: Regularity

Let \mathcal{B} be an icTA or a DTA. $\mathcal{L}_{react}(\mathcal{B})$ is regular.

Proof: construct an alternating automaton with ε -transitions accepting $\mathcal{L}_{react}(\mathcal{B})$.

Corollary: Positive specifications

Model checking regular poitive specifications is decidable for the reactive semantics.

$$\underline{\text{Good}} \subseteq \mathcal{L}_{\text{react}}(\mathcal{B})$$

Proposition: Reactive vs. Universal

- $\mathcal{L}_{react}(\mathcal{B}) \subseteq \mathcal{L}_{\forall}(\mathcal{B})$ for all icTA's or DTA's \mathcal{B} .
- In general, L_{react}(B) ⊊ L_∀(B).
 Even for DTA's over 2 processes having 1 clock each.

Summary

- Distributed system using clocks with local times to synchronize.
- Regular existential semantics suited for negative specifications
- Regular reactive semantics suited for positive specification
- Undecidable universal semantics

Summary

- Distributed system using clocks with local times to synchronize.
- Regular existential semantics suited for negative specifications
- Regular reactive semantics suited for positive specification
- Undecidable universal semantics

Further work: Synthesis Problem

Given a regular specification $\operatorname{Spec} \subseteq \Sigma^*$ and an architecture A, Construct a DTA \mathcal{D} over A such that $\mathcal{L}_{\operatorname{react}}(\mathcal{D}) = \operatorname{Spec}$

$$p$$
 q

Summary

- Distributed system using clocks with local times to synchronize.
- Regular existential semantics suited for negative specifications
- Regular reactive semantics suited for positive specification
- Undecidable universal semantics

Further work: Synthesis Problem

Given a regular specification $\operatorname{Spec} \subseteq \Sigma^*$ and an architecture A, Construct a DTA \mathcal{D} over A such that $\mathcal{L}_{\operatorname{react}}(\mathcal{D}) = \operatorname{Spec}$

$$a, b p$$
 $q c$

$$\frac{d}{r}$$

Summary

- Distributed system using clocks with local times to synchronize.
- Regular existential semantics suited for negative specifications
- Regular reactive semantics suited for positive specification
- Undecidable universal semantics

Further work: Synthesis Problem

Given a regular specification $\operatorname{Spec} \subseteq \Sigma^*$ and an architecture A, Construct a DTA \mathcal{D} over A such that $\mathcal{L}_{\operatorname{react}}(\mathcal{D}) = \operatorname{Spec}$

