Distributed Timed Automata with Independently Evolving Clocks

Paul Gastin LSV, ENS Cachan, CNRS

Joint work with S. Akshay, Benedikt Bollig, Madhavan Mukund, K Narayan Kumar

To appear in CONCUR'08

Logic & Algorithms Edinburgh, 21-25 July 2008

Motivations

Aim

Study the expressive power of local clocks as a synchronization mechanism in a distributed system.

- Distributed systems with no explicit communication or synchronization.
- Clocks as a synchronization mechanism.
- Clocks on different processes evolve independently according to local times.

Plan

Distributed Timed Automata

Region abstraction and existential semantics

Universal semantics and undecidability

Reactive (Game) Semantics

Timed automata (Alur & Dill)

Example: TA



Distributed Timed automata

Definition: DTA

$$\mathcal{D} = ((\mathcal{A}_p)_{p \in Proc}, \pi)$$
 where

- lacksquare each \mathcal{A}_p is a classical timed automaton
 - $\pi:\mathcal{Z} o Proc$ assigns processes to clocks. If $\pi(x)=p$ then
 - ullet clock x evolves according to local time on process p
 - lacktriangleright only process p may reset clock x
 - ullet all processes may read clock x (i.e., use x in guards or invariants)

Example: DTA with $\pi(x) = p$ and $\pi(y) = q$

$$\mathcal{A}_p: \quad \bullet \underbrace{s_0} \qquad y \leq 1, a \qquad \bullet \underbrace{s_1} \qquad a, \{x\} \qquad \bullet \underbrace{s_2}$$

$$\mathcal{A}_q: \quad \bullet \overbrace{r_0} \qquad x \ge 1, b \qquad y \le 1 \\ \bullet \overbrace{r_1} \qquad 0 < x < 1, b \\ \bullet \overbrace{r_2} \qquad \bullet$$

Local Times

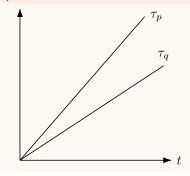
Local Times

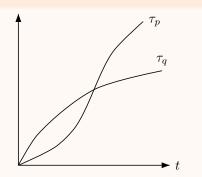
- Processes do not have access to the absolute (global) time.
- Each process has its own local time: $au_p: \mathbb{R}_{\geq 0} o \mathbb{R}_{\geq 0}$

 $\tau_p(t)$: local time on process p at absolute time t

continuous, strictly increasing, diverging, $\tau_p(0) = 0$.

Example: Local Times





Runs of DTA's & Untimed Behaviours

Example: DTA with
$$\pi(x) = p$$
 and $\pi(y) = q$

$$\mathcal{A}_p: \longrightarrow \bigcirc S_0 \qquad y \leq 1, a \qquad \bigcirc S_1 \qquad a, \{x\} \qquad \bigcirc S_2$$

$$\mathcal{A}_q: \quad \bullet \overbrace{r_0} \qquad x \ge 1, b \qquad y \le 1 \\ \bullet \overbrace{r_1} \qquad 0 < x < 1, b \\ \bullet \overbrace{r_2}$$

If
$$\tau_p = \tau_q$$
 then $\mathcal{L}(\mathcal{D}, \tau) = \emptyset$ (e.g. $\tau_p(t) = \tau_q(t) = 2t$)

If
$$\tau_p > \tau_q$$
 then $abab \in \mathcal{L}(\mathcal{D}, \tau)$ (e.g. $\tau_p(t) = 2t$ and $= \tau_q(t) = t$)

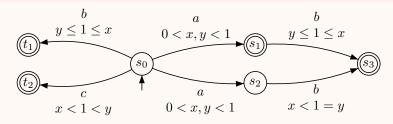
TA with independently evolving clocks

Definition: icTA

$$\mathcal{B} = (\mathcal{A}, \pi)$$
 where

- ${\cal A}$ is a timed automaton
- $\pi: \mathcal{Z} \to Proc$ assigns "processes" to clocks.
- If $\pi(x) = p$ then clock x evolves according to local time τ_p .

Example: icTA \mathcal{B} with $\pi(x) = p$ and $\pi(y) = q$



Remark: From DTA to icTA

Each DTA $\mathcal{D}=((\mathcal{A}_p)_{p\in Proc},\pi)$ can be viewed as an icTA $\mathcal{B}=(\mathcal{A},\pi)$ where \mathcal{A} is the asynchronous product of $(\mathcal{A}_p)_{p\in Proc}$.

Formal Semantics of icTA's and DTA's

Let $\mathcal{B} = (\mathcal{A}, \pi)$ be an icTA with local times $\tau = (\tau_p)_{p \in Proc}$.

Definition: (Infinite) Transition System $TS(\mathcal{B}, \tau)$

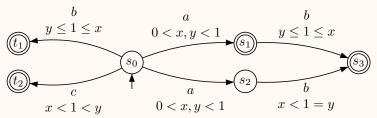
- ightharpoonup States are tuples (q,t,v) where
 - lacksq q is a state of ${\mathcal A}$
 - $t \in \mathbb{R}_{\geq 0}$ is the absolute time
 - $v: \mathcal{Z} \to \mathbb{R}_{\geq 0}$ is the valuation of clocks.
- For t < t' we define $v_{t,t'}(x) = v(x) + \tau_{\pi(x)}(t') \tau_{\pi(x)}(t)$.
- Transitions : $(q,t,v) \xrightarrow{g,a,R} (q',t',v')$ if
 - $v_{t,t''} \models I(q)$ for all $t \leq t'' \leq t'$,
 - $v_{t,t''} \models I(q)$ for all $t \leq t \leq t$
 - $v' = v_{t,t'}[R]$ (clocks in R are reset)
 - $v' \models I(q').$
- $w = a_1 \dots a_n \in \mathcal{L}(\mathcal{B}, \tau)$ (with $a_i \in \Sigma \cup \{\varepsilon\}$) if there is a run in $TS(\mathcal{B}, \tau)$

$$(q_0,t_0,v_0) \xrightarrow{g_1,a_1,R_1} (q_1,t_1,v_1) \xrightarrow{g_2,a_2,R_2} \cdots \xrightarrow{g_n,a_n,R_n} (q_n,t_n,v_n)$$

with q_0 initial, $t_0 = 0$, $v_0(x) = 0$ for all $x \in \mathcal{Z}$ and q_n final.

Semantics of icTA's and DTA's

Example: icTA $\mathcal B$ with $\pi(x)=p$ and $\pi(y)=q$



- If $\tau_p = \tau_q$ then $b \in \mathcal{L}(\mathcal{B}, \tau)$ but $c \notin \mathcal{L}(\mathcal{B}, \tau)$.
- If $\tau_p < \tau_q$ then $b \notin \mathcal{L}(\mathcal{B}, \tau)$ but $c \in \mathcal{L}(\mathcal{B}, \tau)$.
- For all local times τ , we have $a \in \mathcal{L}(\mathcal{B}, \tau)$.
- For all local times τ , we have $ab \in \mathcal{L}(\mathcal{B}, \tau)$.

Unregular Behaviours

Consider the following icTA ${\cal B}$

$$\begin{array}{c}
a \\
x = 1 \\
\{x\}
\end{array}$$

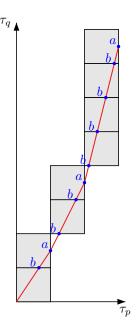
$$\begin{array}{c}
b \\
y = 1 \\
\{y\}
\end{array}$$

with $\pi(x) = p$ and $\pi(y) = q$ and the local times on the right.

a occurs every local time unit of p.

b occurs every local time unit of q.

 $\mathcal{L}(\mathcal{B}, au)$ are the finite prefixes of $bab^2ab^4ab^8a\cdots$



Existential & Universal Semantics

Definition: Existential & Universal Semantics

Let \mathcal{B} be a DTA or an icTA.

$$\mathcal{L}_{\exists}(\mathcal{B}) = \bigcup \mathcal{L}(\mathcal{B}, \tau)$$

$$\mathcal{L}_{\forall}(\mathcal{B}) = \bigcap_{\tau} \mathcal{L}(\mathcal{B}, \tau)$$

Example: $\mathcal{L}_{\exists}(\mathcal{B}) = \{a,b,c,ab\}$ $\mathcal{L}_{\forall}(\mathcal{B}) = \{a,ab\}$ $y \leq 1 \leq x$ 0 < x,y < 1 $y \leq 1 \leq x$ 0 < x,y < 1 x < 1 < y 0 < x,y < 1 x < 1 = y

Existential & Universal Semantics

Example:
$$\mathcal{L}_{\exists}(\mathcal{D}) = \operatorname{Pref}(\{aab, abab, baab\})$$
 $\mathcal{L}_{\forall}(\mathcal{D}) = \operatorname{Pref}(\{aa\})$
$$\mathcal{A}_{p} : \begin{array}{c} a, \ y \leq 1 \\ \hline & b, \ x \geq 1 \end{array}$$
 $\begin{array}{c} a, \ \{x\} \\ \hline & \\ \end{array}$ $\begin{array}{c} a, \ \{x\} \\ \hline \end{array}$ $\begin{array}{c} a, \ \{x\} \\ \end{array}$ $\begin{array}{c} a, \ \{x\} \\$

Negative & Positive Specifications

Aim: robustness of a DTA ${\mathcal D}$ against relative local times

Definition: Negative Specifications (Safety)

Given a set Bad of undesired behaviours,

Does a DTA $\mathcal D$ robustly avoid Bad

$$\mathcal{L}_{\exists}(\mathcal{D}) \cap \underline{\mathrm{Bad}} = \emptyset$$

Definition: Positive Specifications (Liveness)

Given a set Good of desired behaviours,

Does a DTA \mathcal{D} robustly exhibit Good

 $Good \subseteq \mathcal{L}_{\forall}(\mathcal{D})$

Plan

Distributed Timed Automata

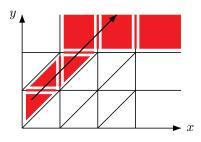
Region abstraction and existential semantics

Universal semantics and undecidability

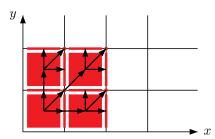
Reactive (Game) Semantics

Region abstraction for ∃**-semantics**

Regions when
$$\pi(x) = \pi(y)$$



Regions when $\pi(x) \neq \pi(y)$



Region abstraction for ∃-semantics

Theorem: Region abstraction

Let \mathcal{B} be an icTA (or a DTA). Let $\mathcal{R}_{\mathcal{B}}$ be its region abstraction.

$$\mathcal{L}_\exists(\mathcal{B}) = \mathcal{L}(\mathcal{R}_\mathcal{B})$$

and

$$|\mathcal{R}_{\mathcal{B}}| \le |\mathcal{B}| \cdot (2C+2)^{|\mathcal{Z}|} \cdot |\mathcal{Z}|!$$

Corollary: Negative specifications

Model checking regular negative specifications for icTA's or DTA's is decidable.

$$\mathcal{L}_{\exists}(\mathcal{B}) \cap \underline{\mathrm{Bad}} = \emptyset$$

Plan

Distributed Timed Automata

Region abstraction and existential semantics

Universal semantics and undecidability

Reactive (Game) Semantics

Undecidability of the universal semantics

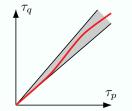
Theorem: Undecidability Skip proof.

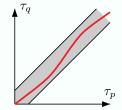
Let \mathcal{D} be a DTA.

emptiness: $\mathcal{L}_{\forall}(\mathcal{D}) = \emptyset$ is undecidable. universality: $\mathcal{L}_{\forall}(\mathcal{D}) = \Sigma^*$ is undecidable.

Even for 2 processes, 1 clock each and bounded drifts: $\exists \alpha > 0, \forall t > 0$,

$$1 - \alpha \le \frac{\tau_q(t)}{\tau_p(t)} < 1 + \alpha$$
 or $|\tau_q(t) - \tau_p(t)| \le \alpha$





Corollary: Positive specifications $Good \subseteq \mathcal{L}_{\forall}(\mathcal{D})$

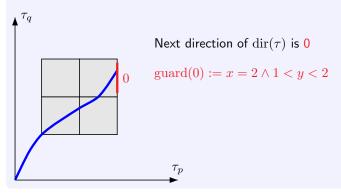
Model checking regular positive specifications for icTA's or DTA's is undecidable.

Proof: Reduction from Post Correspondance Problem

- Given two morphisms $f, g: A^+ \to \{0, 1\}^+$ with $A = \{a_1, \dots, a_k\}$.
- Does there exist $w \in A^+$ such that f(w) = g(w)?

Definition: Directions defined by local times

Each local times $\tau=(\tau_p,\tau_q)$ is mapped to a word $\mathrm{dir}(\tau)\in\{0,1,2\}^\omega.$

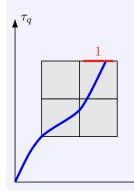


Proof: Reduction from Post Correspondance Problem

- Given two morphisms $f, g: A^+ \to \{0, 1\}^+$ with $A = \{a_1, \dots, a_k\}$.
- Does there exist $w \in A^+$ such that f(w) = g(w)?

Definition: Directions defined by local times

Each local times $\tau=(\tau_p,\tau_q)$ is mapped to a word $\mathrm{dir}(\tau)\in\{0,1,2\}^\omega.$



Next direction of $dir(\tau)$ is 1

$$guard(0) := x = 2 \land 1 < y < 2$$

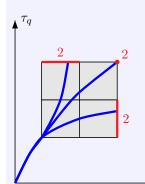
 $guard(1) := 1 < x < 2 \land y = 2$

Proof: Reduction from Post Correspondance Problem

- Given two morphisms $f, g: A^+ \to \{0, 1\}^+$ with $A = \{a_1, \dots, a_k\}$.
- Does there exist $w \in A^+$ such that f(w) = g(w)?

Definition: Directions defined by local times

Each local times $\tau=(\tau_p,\tau_q)$ is mapped to a word $\mathrm{dir}(\tau)\in\{0,1,2\}^\omega.$



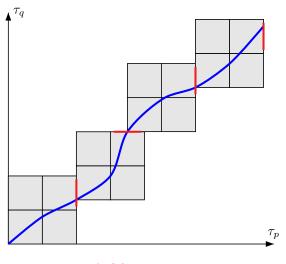
Next direction of $dir(\tau)$ is 2

$$guard(0) := x = 2 \land 1 < y < 2$$

$$\mathrm{guard}(2) := (x = 2 \land (y \le 1 \lor y = 2)) \lor (x \le 1 \land y = 2)$$

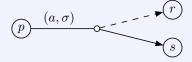
Directions defined by local times

Clocks x, y are reset when reaching the 2×2 square boundary



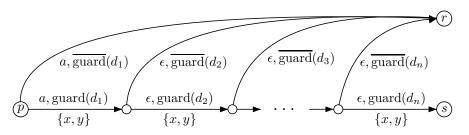
Definition: Macro transition

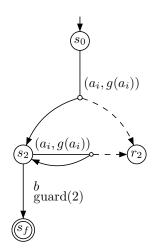
For $a \in A$ and $\sigma = d_1 d_2 \dots d_n \in \{0, 1, 2\}^+$ we define



From p with x = y = 0, we reach

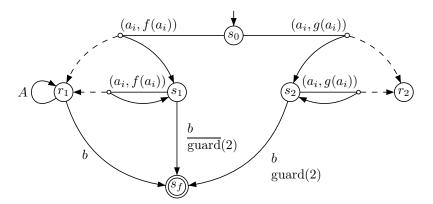
- * s with x=y=0 if local times au evolve according to σ
- r otherwise





Proposition:

$$\mathcal{L}(\mathcal{B}_q, \tau) = \{ wb \in A^+b \mid g(w)2 \le \operatorname{dir}(\tau) \}$$



Proposition:
$$\mathcal{L}_{\forall}(\mathcal{B}) = \{wb \in A^+b \mid f(w) = g(w)\}$$

- $s_0 \xrightarrow{w} s_1 \text{ iff } f(w) \leq \operatorname{dir}(\tau)$
- $s_0 \xrightarrow{w} r_1 \text{ iff } f(w) \not\leq \operatorname{dir}(\tau)$
- $s_0 \xrightarrow{w} s_2 \text{ iff } g(w) \leq \operatorname{dir}(\tau)$

Plan

Distributed Timed Automata

Region abstraction and existential semantics

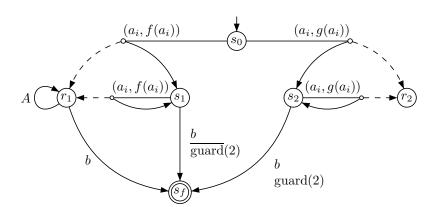
Universal semantics and undecidability

4 Reactive (Game) Semantics

Reactive (Game) Semantics

Remark: Positive Specifications and universal semantics

Good $\subseteq \mathcal{L}_{\forall}(\mathcal{D})$ does not imply that the system can be controlled in order to exhibit all Good behaviours, whatever local times are.



Reactive (Game) Semantics

Definition: Reactive (Game) Semantics

Environment controls how local times evolve (time-elapse transitions)



- System observes current region and controls discrete transitions
 - Not turn-based: system may execute several discrete transitions

$$\mathcal{L}_{\text{react}}(\mathcal{B}) = \{ w \in \Sigma^* \mid \text{System has a winning strategy} \}$$

Decidability of the reactive semantics

Theorem: Regularity

Let \mathcal{B} be an icTA or a DTA. $\mathcal{L}_{react}(\mathcal{B})$ is regular.

Proof: construct an alternating automaton with ε -transitions accepting $\mathcal{L}_{\mathrm{react}}(\mathcal{B})$.

Corollary: Positive specifications

Model checking regular poitive specifications is decidable for the reactive semantics.

 $\underline{Good}\subseteq\mathcal{L}_{\mathrm{react}}(\mathcal{B})$

Proposition: Reactive vs. Universal

 $\mathcal{L}_{\mathrm{react}}(\mathcal{B}) \subseteq \mathcal{L}_{\forall}(\mathcal{B})$ for all icTA's or DTA's \mathcal{B} .

In general, $\mathcal{L}_{\mathrm{react}}(\mathcal{B}) \subsetneq \mathcal{L}_{\forall}(\mathcal{B})$.

Even for DTA's over 2 processes having 1 clock each.

Conclusion

Summary

- Distributed system using clocks with local times to synchronize.
- Regular existential semantics suited for negative specifications
- Regular reactive semantics suited for positive specification
- Undecidable universal semantics

Further work: Synthesis Problem

Given a regular specification $\operatorname{Spec} \subseteq \Sigma^*$ and an architecture A, Construct a DTA $\mathcal D$ over A such that $\mathcal L_{\operatorname{react}}(\mathcal D) = \operatorname{Spec}$

