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Motivations

Aim
Study the expressive power of local clocks as a synchronization mechanism in a
distributed system.

◮ Distributed systems with no explicit communication or synchronization.

◮ Clocks as a synchronization mechanism.

◮ Clocks on different processes evolve independently according to local times.
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Plan

1 Distributed Timed Automata

Region abstraction and existential semantics

Universal semantics and undecidability

Reactive (Game) Semantics
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Timed automata (Alur & Dill)

Example: TA
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Distributed Timed automata

Definition: DTA

D = ((Ap)p∈Proc, π) where

◮ each Ap is a classical timed automaton

◮ π : Z → Proc assigns processes to clocks. If π(x) = p then
◮ clock x evolves according to local time on process p
◮ only process p may reset clock x
◮ all processes may read clock x (i.e., use x in guards or invariants)

Example: DTA with π(x) = p and π(y) = q

Ap: s0 s1 s2
y ≤ 1, a a, {x}

Aq : r0 r1 r2

y ≤ 1
x ≥ 1, b 0 < x < 1, b
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Local Times

Local Times
◮ Processes do not have access to the absolute (global) time.

◮ Each process has its own local time: τp : R≥0 → R≥0

τp(t): local time on process p at absolute time t

continuous, strictly increasing, diverging, τp(0) = 0.

Example: Local Times
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Runs of DTA’s & Untimed Behaviours
Example: DTA with π(x) = p and π(y) = q

Ap: s0 s1 s2
y ≤ 1, a a, {x}

Aq : r0 r1 r2

y ≤ 1
x ≥ 1, b 0 < x < 1, b

If τp > τq then abab ∈ L(D, τ) (e.g. τp(t) = 2t and τq(t) = t)
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Runs of DTA’s & Untimed Behaviours
Example: DTA with π(x) = p and π(y) = q

Ap: s0 s1 s2
y ≤ 1, a a, {x}

Aq : r0 r1 r2

y ≤ 1
x ≥ 1, b 0 < x < 1, b

If τp > τq then abab ∈ L(D, τ) (e.g. τp(t) = 2t and τq(t) = t)
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If τp = τq then abab /∈ L(D, τ) (e.g. τp(t) = τq(t) = 2t)
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Formal Semantics of DTA’s
Let D = ((Ap)p∈Proc, π) be an DTA with local times τ = (τp)p∈Proc.

Definition: (Infinite) Transition System TS(D, τ)

◮ Configurations are tuples (s, t, v) where
◮ s = (sp)p∈Proc where sp is a state of Ap for each p ∈ Proc

◮ t ∈ R≥0 is the absolute time
◮ v : Z → R≥0 is the valuation of clocks.
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Formal Semantics of DTA’s
Let D = ((Ap)p∈Proc, π) be an DTA with local times τ = (τp)p∈Proc.

Definition: (Infinite) Transition System TS(D, τ)

◮ Configurations are tuples (s, t, v) where
◮ s = (sp)p∈Proc where sp is a state of Ap for each p ∈ Proc

◮ t ∈ R≥0 is the absolute time
◮ v : Z → R≥0 is the valuation of clocks.

◮ For t < t′ we define vt,t′(x) = v(x) + τπ(x)(t
′) − τπ(x)(t).

◮ Transitions : (s, t, v)
g,a,R
−−−→ (s′, t′, v′) if

◮ sp
g,a,R
−−−→ s′p for some p ∈ Proc and s′q = sq for all q 6= p,

◮ vt,t′′ |=
V

q∈Proc
Iq(sq) for all t ≤ t′′ ≤ t′,

◮ vt,t′ |= g
◮ v′ = vt,t′ [R] (clocks in R are reset)
◮ v′ |=

V

q∈Proc
Iq(s

′
q).
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Formal Semantics of DTA’s
Let D = ((Ap)p∈Proc, π) be an DTA with local times τ = (τp)p∈Proc.

Definition: (Infinite) Transition System TS(D, τ)

◮ Configurations are tuples (s, t, v) where
◮ s = (sp)p∈Proc where sp is a state of Ap for each p ∈ Proc

◮ t ∈ R≥0 is the absolute time
◮ v : Z → R≥0 is the valuation of clocks.

◮ For t < t′ we define vt,t′(x) = v(x) + τπ(x)(t
′) − τπ(x)(t).

◮ Transitions : (s, t, v)
g,a,R
−−−→ (s′, t′, v′) if

◮ sp
g,a,R
−−−→ s′p for some p ∈ Proc and s′q = sq for all q 6= p,

◮ vt,t′′ |=
V

q∈Proc
Iq(sq) for all t ≤ t′′ ≤ t′,

◮ vt,t′ |= g
◮ v′ = vt,t′ [R] (clocks in R are reset)
◮ v′ |=

V

q∈Proc
Iq(s

′
q).

◮ w = a1 . . . an ∈ L(D, τ) (with ai ∈ Σ ∪ {ε}) if there is a run in TS(D, τ)

(s0, t0, v0)
g1,a1,R1

−−−−−→ (s1, t1, v1)
g2,a2,R2

−−−−−→ · · ·
gn,an,Rn

−−−−−−→ (sn, tn, vn)

with s0 initial, t0 = 0, v0(x) = 0 for all x ∈ Z and sn final.
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Semantics of DTA’s

Example: DTA D with π(x) = p and π(y) = q

Ap: s0 s1 s2
y ≤ 1, a a, {x}

Aq : r0 r1 r2

y ≤ 1
x ≥ 1, b 0 < x < 1, b

◮ If τp > τq then L(D, τ) = {aa, abab, baab}.

◮ If τp = τq then L(D, τ) = {aa}.
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Unregular Behaviours

Consider the following DTA D

x ≤ 1

a
x = 1
{x}

y ≤ 1

b
y = 1
{y}

with π(x) = p and π(y) = q

and the local times on the right.

τp

τq
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Unregular Behaviours

Consider the following DTA D

x ≤ 1

a
x = 1
{x}

y ≤ 1

b
y = 1
{y}

with π(x) = p and π(y) = q

and the local times on the right.
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a
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a occurs every local time unit of p.
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and the local times on the right.
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Unregular Behaviours

Consider the following DTA D

x ≤ 1

a
x = 1
{x}

y ≤ 1

b
y = 1
{y}

with π(x) = p and π(y) = q

and the local times on the right.

τp

τq

a

a

a

b

b

b

b

b

b

b

a occurs every local time unit of p.

b occurs every local time unit of q.

L(D, τ) are the finite prefixes of bab2ab4ab8a · · ·
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Existential & Universal Semantics

Definition: Existential & Universal Semantics
Let D be a DTA.

◮ L∃(D) =
⋃

τ

L(D, τ)

◮ L∀(D) =
⋂

τ

L(D, τ)

Example: L∃(D) = {aa, abab, baab} L∀(D) = {aa}

Ap: s0 s1 s2
a, y ≤ 1 a, {x}

Aq : r0 r1 r2

y ≤ 1
b, x ≥ 1 b, 0 < x < 1
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Negative & Positive Specifications

Aim: robustness of a DTA D against relative local times

Definition: Negative Specifications (Safety)

Given a set Bad of undesired behaviours,

Does a DTA D robustly avoid Bad

L∃(D) ∩ Bad = ∅
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Negative & Positive Specifications

Aim: robustness of a DTA D against relative local times

Definition: Negative Specifications (Safety)

Given a set Bad of undesired behaviours,

Does a DTA D robustly avoid Bad

L∃(D) ∩ Bad = ∅

Definition: Positive Specifications (Liveness)

Given a set Good of desired behaviours,

Does a DTA D robustly exhibit Good

Good ⊆ L∀(D)
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Plan

Distributed Timed Automata

2 Region abstraction and existential semantics

Universal semantics and undecidability

Reactive (Game) Semantics
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Region abstraction for ∃-semantics

Regions when π(x) = π(y)

x
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Region abstraction for ∃-semantics

Theorem: Region abstraction

Let D be a DTA. Let RD be its region abstraction.

L∃(D) = L(RD)

and
|RD| ≤ |D| · (2 C + 2)|Z| · |Z|!
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Region abstraction for ∃-semantics

Theorem: Region abstraction

Let D be a DTA. Let RD be its region abstraction.

L∃(D) = L(RD)

and
|RD| ≤ |D| · (2 C + 2)|Z| · |Z|!

Corollary: Negative specifications

Model checking regular negative specifications for DTA’s is decidable.

L∃(D) ∩ Bad = ∅
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Plan

Distributed Timed Automata

Region abstraction and existential semantics

3 Universal semantics and undecidability

Reactive (Game) Semantics
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Undecidability of the universal semantics
Theorem: Undecidability Skip proof.

Let D be a DTA.

emptiness: L∀(D) = ∅ is undecidable.

universality: L∀(D) = Σ∗ is undecidable.

Even for 2 processes, 1 clock each and bounded drifts: ∃α > 0, ∀t > 0,

1 − α ≤
τq(t)

τp(t)
< 1 + α or |τq(t) − τp(t)| ≤ α

τp

τq

τp

τq

Corollary: Positive specifications Good ⊆ L∀(D)

Model checking regular positive specifications for DTA’s is undecidable.
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Undecidability of emptiness

Proof: Reduction from Post Correspondance Problem

◮ Given two morphisms f, g : A+ → {0, 1}+ with A = {a1, . . . , ak}.

◮ Does there exist w ∈ A+ such that f(w) = g(w)?
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Undecidability of emptiness

Proof: Reduction from Post Correspondance Problem

◮ Given two morphisms f, g : A+ → {0, 1}+ with A = {a1, . . . , ak}.

◮ Does there exist w ∈ A+ such that f(w) = g(w)?

Definition: Directions defined by local times

Each pair of local times τ = (τp, τq) is mapped to a word dir(τ) ∈ {0, 1, 2}ω.

τp

τq

0

Next direction of dir(τ) is 0

guard(0) := x = 2 ∧ 1 < y < 2
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Undecidability of emptiness

Proof: Reduction from Post Correspondance Problem

◮ Given two morphisms f, g : A+ → {0, 1}+ with A = {a1, . . . , ak}.

◮ Does there exist w ∈ A+ such that f(w) = g(w)?

Definition: Directions defined by local times

Each pair of local times τ = (τp, τq) is mapped to a word dir(τ) ∈ {0, 1, 2}ω.

τp

τq

2

2

2
Next direction of dir(τ) is 2

guard(0) := x = 2 ∧ 1 < y < 2

guard(1) := 1 < x < 2 ∧ y = 2

guard(2) := (x = 2 ∧ (y ≤ 1 ∨ y = 2)) ∨ (x ≤ 1 ∧ y = 2)
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Directions defined by local times

Clocks x, y are reset when reaching the 2 × 2 square boundary

τp

τq
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Directions defined by local times

Clocks x, y are reset when reaching the 2 × 2 square boundary

τp

τq

dir(τ) = 0100 · · ·
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Undecidability of emptiness

Definition: Macro transition

For a ∈ A and σ = d1d2 . . . dn ∈ {0, 1, 2}+ we define

u

r

s

(a, σ)

From u with x = y = 0, we reach

◮ s with x = y = 0 if local times τ = (τp, τq) evolve according to σ

◮ r otherwise
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Undecidability of emptiness

Definition: Macro transition

For a ∈ A and σ = d1d2 . . . dn ∈ {0, 1, 2}+ we define

u

r

s

(a, σ)

From u with x = y = 0, we reach

◮ s with x = y = 0 if local times τ = (τp, τq) evolve according to σ

◮ r otherwise

u s

r

a, guard(d1) ǫ, guard(d2) ǫ, guard(dn)

{x, y} {x, y} {x, y}

a, guard(d1) ǫ, guard(d2) ǫ, guard(d3) ǫ, guard(dn)

. . .
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Undecidability of emptiness

s0

s2 r2

sf

(ai, g(ai))

b
guard(2)

(ai, g(ai))

Proposition:

L(Dg , τ) = {wb ∈ A+b | g(w)2 ≤ dir(τ)}
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Undecidability of emptiness

s0

s1r1 s2 r2

sf

(ai, f(ai)) (ai, g(ai))

b

guard(2)
b

guard(2)

b

A
(ai, f(ai)) (ai, g(ai))

Proposition: L∀(D) = {wb ∈ A+b | f(w) = g(w)}

◮ s0
w
−→ s1 iff f(w) ≤ dir(τ)

◮ s0
w
−→ r1 iff f(w) 6≤ dir(τ)

◮ s0
w
−→ s2 iff g(w) ≤ dir(τ)
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Plan

Distributed Timed Automata

Region abstraction and existential semantics

Universal semantics and undecidability

4 Reactive (Game) Semantics
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Reactive (Game) Semantics

Remark: Positive Specifications and universal semantics

Good ⊆ L∀(D) does not imply that the system can be controlled in order to exhibit
all Good behaviours, whatever local times are.

s0

s1r1 s2 r2

sf

(ai, f(ai)) (ai, g(ai))

b

guard(2)
b

guard(2)

b

A
(ai, f(ai)) (ai, g(ai))
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Reactive (Game) Semantics

Definition: Reactive (Game) Semantics

◮ Environment controls how local times evolve (time-elapse transitions)

x

y
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y

◮ System observes current region and controls discrete transitions

◮ Not turn-based: system may execute several discrete transitions
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Reactive (Game) Semantics

Definition: Reactive (Game) Semantics

◮ Environment controls how local times evolve (time-elapse transitions)

x

y

◮ System observes current region and controls discrete transitions

◮ Not turn-based: system may execute several discrete transitions

Lreact(D) = {w ∈ Σ∗ | System has a winning strategy}
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Decidability of the reactive semantics

Theorem: Regularity

Let D be a DTA. Lreact(D) is regular.

Proof: construct an alternating automaton with ε-transitions accepting Lreact(D).
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Decidability of the reactive semantics

Theorem: Regularity

Let D be a DTA. Lreact(D) is regular.

Proof: construct an alternating automaton with ε-transitions accepting Lreact(D).

Corollary: Positive specifications

Model checking regular poitive specifications is decidable for the reactive semantics.

Good ⊆ Lreact(D)

Proposition: Reactive vs. Universal
◮ Lreact(D) ⊆ L∀(D) for all DTA’s D.

◮ In general, Lreact(D) ( L∀(D).
Even for DTA’s over 2 processes having 1 clock each.
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Conclusion

Summary
◮ Distributed system using clocks with local times to synchronize.

◮ Regular existential semantics suited for negative specifications

◮ Regular reactive semantics suited for positive specification

◮ Undecidable universal semantics
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Conclusion

Summary
◮ Distributed system using clocks with local times to synchronize.

◮ Regular existential semantics suited for negative specifications

◮ Regular reactive semantics suited for positive specification

◮ Undecidable universal semantics

Further work: Synthesis Problem

Given a regular specification Spec ⊆ Σ∗ and an architecture A,
Construct a DTA D over A such that Lreact(D) = Spec

p q

r s

a, b c

d e, f
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