Local testing of MSCs

Paul Gastin
LSV, ENS Cachan

Joint work with
Puneet Bhateja, Madhavan Mukund, K Narayan Kumar
CMI, Chennai

ANR DOTS, Bordeaux
31 January 2008
Plan

1. MSC

HMSC

Local testing of HMSC

Undecidability of 1-testability for 2 processes

Undecidability of k-testability

Decidability of 1-testability without message contents
Scenarios

- A scenario describes a pattern of interaction
- Attractive visual formalism
- Telecommunications
 - Message sequence charts (MSC)
 - Messages sent between communicating agents
- UML
 - Sequence diagrams
 - Interaction between objects
 e.g., method invocations etc
An ATM

Customer → ATM → Bank

passwd

ATM

authen

correct

Customer → ATM → Bank

OK

ATM

amount

Bank

funds?

Bank → ATM → Customer

no

Bank → ATM → Customer

sorry

Bank → ATM → Customer

no
An ATM

Customer → ATM → Bank

passwd

authen

correct

OK

funds?

yes

cash

amount
How do we formalize MSCs?

\[p \xrightarrow{m_1} q \xrightarrow{m_2} r \]
An MSC with events

\[e_1 \xrightarrow{m_1} e_2 \]
\[e'_2 \xrightarrow{m_2} e_3 \]
\[e'_1 \xrightarrow{m_3} e'_3 \]
An MSC with labelled events

\[p!q(m_1) \rightarrow e_1 \]

\[m_1 \]

\[q!r(m_2) \rightarrow e'_2 \]

\[q\?p(m_1) \rightarrow e_2 \]

\[m_2 \]

\[r?q(m_2) \rightarrow e_3 \]

\[p!r(m_3) \rightarrow e'_1 \]

\[m_3 \]

\[r?q(m_3) \rightarrow e'_3 \]
MSCs as labelled partial orders

$p!q(m_1) \quad e_1 \quad q?p(m_1) \quad e_2 \quad q!r(m_2) \quad e'_2 \quad r?q(m_2) \quad e_3 \quad r?q(m_3) \quad e'_3$

$p!r(m_3) \quad e'_1 \quad q!r(m_2) \quad e'_2 \quad r?q(m_3) \quad e'_3$
MSCs as labelled partial orders

Linearizations give a word language

\[
p!q(m_1) \ p!r(m_3) \ q?p(m_1) \ q!r(m_2) \ r?q(m_2) \ r?q(m_3),
\]

\[
p!q(m_1) \ q?p(m_1) \ q!r(m_2) \ p!r(m_3) \ r?q(m_2) \ r?q(m_3),
\]

\ldots
MSCs as labelled partial orders

Linearizations give a word language
\[p!q(m_1) \; p!r(m_3) \; q?p(m_1) \; q!r(m_2) \; r?q(m_2) \; r?q(m_3), \]
\[p!q(m_1) \; q?p(m_1) \; q!r(m_2) \; p!r(m_3) \; r?q(m_2) \; r?q(m_3), \ldots \]

A single linearization is sufficient to reconstruct MSC
Plan

MSC

2 HMSC

Local testing of HMSC

Undecidability of 1-testability for 2 processes

Undecidability of k-testability

Decidability of 1-testability without message contents
Collections of MSCs

- Often need to specify a collection of scenarios
- Finite collection can be exhaustively enumerated
- Infinite collection needs a generating mechanism
High level MSCs (HMSCs)

- A finite state automaton
- Each state is labelled by an MSC
- Each (legal) path in the automaton generates an MSC
High level MSCs (HMSCs)

- A finite state automaton
- Each state is labelled by an MSC
- Each (legal) path in the automaton generates an MSC

![Diagram showing a finite state automaton with states labelled by MSCs and transitions between them.](image-url)
High level MSCs (HMSCs)

- A finite state automaton
- Each state is labelled by an MSC
- Each (legal) path in the automaton generates an MSC
High level MSCs (HMSCs)

- A finite state automaton
- Each state is labelled by an MSC
- Each (legal) path in the automaton generates an MSC
HMSC semantics

- All processes must traverse the same path in an HMSC
HMSC semantics

- All processes must traverse the same path in an HMSC
- ... but processes move asynchronously
- Some processes may be (unboundedly) far ahead of others
HMSC semantics

- All processes must traverse the same path in an HMSC
- ...but processes move asynchronously
- Some processes may be (unboundedly) far ahead of others

\[M_1 \Rightarrow M_2 \]

After \(k \) iterations, we could have \(r \) and \(s \) in the final copy of \(M_2 \) while \(p \) and \(q \) are in the first copy of \(M_1 \)
Regular MSC languages

- An MSC is (uniquely) determined by its linearizations
 - Set of strings over send actions $p!q(m)$ and receive actions $p?q(m)$
- Collection of MSCs \iff word language over send/receive actions
- Regular collection of MSCs \triangleq linearizations form a regular language
HMSCs and regularity

- HMSC specifications may not be regular
HMSCs and regularity

- HMSC specifications may not be regular
- **Problem 1** Unbounded buffers
HMSCs and regularity

- HMSC specifications may not be regular
- **Problem 1** Unbounded buffers
- **Problem 2** Global synchronization yields context-free behaviours
HMSCs and regularity

- HMSC specifications may not be regular
- **Problem 1** Unbounded buffers
- **Problem 2** Global synchronization yields context-free behaviours
- Sufficient structural conditions on HMSCs to guarantee regularity...
 - Locally synchronized

[AY99,MP99]
HMSCs and regularity

- HMSC specifications may not be regular
- **Problem 1** Unbounded buffers
- **Problem 2** Global synchronization yields context-free behaviours
- Sufficient structural conditions on HMSCs to guarantee regularity...
 - Locally synchronized
- ... but checking if an HMSC specification is regular is undecidable

 [AY99, MP99]

 [HMNST05]
HMSCs and regularity

- HMSC specifications may not be regular
- **Problem 1** Unbounded buffers
- **Problem 2** Global synchronization yields context-free behaviours
- Sufficient structural conditions on HMSCs to guarantee regularity...
 - Locally synchronized
- ...but checking if an HMSC specification is regular is undecidable

Every regular MSC language can be implemented as network of communicating finite-state automata with bounded channels
Plan

MSC

HMSC

3. Local testing of HMSC

Undecidability of 1-testability for 2 processes

Undecidability of k-testability

Decidability of 1-testability without message contents
(Local) testing using scenarios

- Does an implementation conform to an HMSC specification?
(Local) testing using scenarios

- Does an implementation conform to an HMSC specification?
- Local testing
(Local) testing using scenarios

- Does an implementation conform to an HMSC specification?
- Local testing
 - Inject messages from some process(es) and observe the response
(Local) testing using scenarios

- Does an implementation conform to an HMSC specification?
- Local testing
 - Inject messages from some process(es) and observe the response
 - For each process p, local observer records sequence of events at p
 - If each local observation is consistent with some MSC defined by the HMSC, the implementation passes the test
(Local) testing using scenarios

- Does an implementation conform to an HMSC specification?
- Local testing
 - Inject messages from some process(es) and observe the response
 - For each process p, local observer records sequence of events at p
 - If each local observation is consistent with some MSC defined by the HMSC, the implementation passes the test
- Does local testing suffice to check conformance of (regular) HMSC languages?
Implied scenarios \cite{AEY00}
Implied scenarios [AEY00]

- p and q believe M is M_1
- r and s believe M is M_2
Implied scenarios [AEY00]

- \(p \) and \(q \) believe \(M \) is \(M_1 \)
- \(r \) and \(s \) believe \(M \) is \(M_2 \)
- MSC \(M \) is implied by \(L \) if for each process \(p \), the \(p \)-projection of \(M \) matches the \(p \)-projection of some MSC in \(L \)
Implied scenarios [AEY00]

- p and q believe M is M_1
- r and s believe M is M_2
- MSC M is implied by L if for each process p, the p-projection of M matches the p-projection of some MSC in L
- An MSC language is locally testable if it is closed with respect to implied MSCs
Implied scenarios [AEY00]

- p and q believe M is M₁
- r and s believe M is M₂
- MSC M is implied by L if for each process p, the p-projection of M matches the p-projection of some MSC in L
- An MSC language is locally testable if it is closed with respect to implied MSCs
- Originally studied in context of realizability
Even for regular MSC languages, checking local testability is undecidable! [AEY01]
Implied scenarios . . .

- Even for regular MSC languages, checking local testability is undecidable! [AEY01]
- Even if the original language has bounded channels, its implied scenarios may not
Implied scenarios . . .

- Even for regular MSC languages, checking local testability is undecidable! [AEY01]
- Even if the original language has bounded channels, its implied scenarios may not
Implied scenarios . . .

- Even for regular MSC languages, checking local testability is undecidable! [AEY01]
- Even if the original language has bounded channels, its implied scenarios may not

\[
\begin{align*}
M & \quad M' \\
\end{align*}
\]
Implied scenarios . . .

- Even for regular MSC languages, checking local testability is undecidable! [AEY01]
- Even if the original language has bounded channels, its implied scenarios may not
Implied scenarios . . .

▶ Even for regular MSC languages, checking local testability is undecidable! [AEY01]

▶ Even if the original language has bounded channels, its implied scenarios may not

Confusing $M^{2k}M'^k$ and M'^kM^{2k} generates upto k messages in $p \rightarrow s$ channel.
Joint observations

What if we have observers who can record the behaviours of sets of processes?
What if we have observers who can record the behaviours of sets of processes?
Joint observations

- What if we have observers who can record the behaviours of sets of processes?

\[M_1 \]

\[M_2 \]

\[M \]

- \(M \) is detected as an illegal MSC by \(\{p, s\} \).
What if we have observers who can record the behaviours of sets of processes?

M is detected as an illegal MSC by $\{p, s\}$.

Joint observers have more discriminating power.
Joint observations . . .

- Fix some observers P_1, P_2, \ldots, P_r
- Each observer records the events on the processes in the set P_i
Joint observations . . .

- Fix some observers P_1, P_2, \ldots, P_r
- Each observer records the events on the processes in the set P_i

*Given a HMSC G, is its language testable with observers P_1, P_2, \ldots, P_r?
P-Observations

\(M\) an MSC, \(P\) a set of processes

\(P\)-observation of \(M\) \(\triangleq \) tuple of projections of \(M\) on each process in \(P\)

\(M|_P : \) \(P\)-observation of \(M\).

\(L|_P = \{M|_P | M \in L\} : \) \(P\)-observation of a language \(L\)

\[
M|_{p,s} = \langle p!q(m)p!s(m), s?r(m)s?p(m) \rangle.
\]
k-testability

- Record P-observations for every set P of processes of size k.
- Record P-observations for every set P of processes of size k.
- k-closure of a language $L \triangleq \{ M \mid \forall P \text{ s.t. } |P| = k, M|_P \in L|_P \}$

k-testability

- Record P-observations for every set P of processes of size k.
- k-closure of a language $L \triangleq \{M \mid \forall P \text{ s.t. } |P| = k, \ M|_P \in L|_P\}$
- Scenario k-implied by $L \triangleq$ MSC in the k-closure of L but not in L
k-testability

- Record P-observations for every set P of processes of size k.
- k-closure of a language L is defined as $\{M \mid \forall P \text{ s.t. } |P| = k, M|_P \in L|_P\}$.
- Scenario k-implied by L is MSC in the k-closure of L but not in L.
- A language is k-testable if it equals its k-closure.
k-testability

- Record P-observations for every set P of processes of size k.
- k-closure of a language $L \triangleq \{M \mid \forall P \text{ s.t. } |P| = k, M \upharpoonright P \in L \upharpoonright P\}$
- Scenario k-implied by $L \triangleq$ MSC in the k-closure of L but not in L
- A language is k-testable if it equals its k-closure
- Local testability is 1-testability
The set \(\{M_1, M_2\} \) is 2-testable but not 1-testable.
k-testability . . .

- 1-testability is undecidable for 4 or more processes. [AEY 01]
k-testability . . .

- 1-testability is undecidable for 4 or more processes. [AEY 01]
- n-testability is trivial
k-testability . . .

- 1-testability is undecidable for 4 or more processes. [AEY 01]
- n-testability is trivial
- What about k-testability for $1 < k < n$?
k-testability . . .

- 1-testability is undecidable for 4 or more processes. [AEY 01]
- n-testability is trivial
- What about k-testability for $1 < k < n$?
- What is the smallest $k \leq n$ such that k-testability is decidable?
For all n and $k < n$ there are regular HMSC languages over n processes that are not k-testable.
Our results

- For all n and $k < n$ there are regular HMSC languages over n processes that are not k-testable
- k-testability is undecidable for $n \geq 3$ processes and $1 < k < n$
Our results

- For all n and $k < n$ there are regular HMSC languages over n processes that are not k-testable
- k-testability is undecidable for $n \geq 3$ processes and $1 < k < n$
- 1-testability is undecidable for 2 processes
Our results

- For all n and $k < n$ there are regular HMSC languages over n processes that are not k-testable.
- k-testability is undecidable for $n \geq 3$ processes and $1 < k < n$.
- 1-testability is undecidable for 2 processes.
 - Improves result from 4 processes in [AEY01].
Our results

- For all n and $k < n$ there are regular HMSC languages over n processes that are not k-testable
- k-testability is undecidable for $n \geq 3$ processes and $1 < k < n$
- 1-testability is undecidable for 2 processes
 - Improves result from 4 processes in [AEY01]
- k-testability remains undecidable for $n \geq 3$ processes and $1 < k < n$ even without message contents
Our results

- For all n and $k < n$ there are regular HMSC languages over n processes that are not k-testable.
- k-testability is undecidable for $n \geq 3$ processes and $1 < k < n$.
- 1-testability is undecidable for 2 processes.
 - Improves result from 4 processes in [AEY01].
- k-testability remains undecidable for $n \geq 3$ processes and $1 < k < n$ even without message contents.
- 1-testability is decidable without message contents.
Plan

MSC

HMSC

Local testing of HMSC

Undecidability of 1-testability for 2 processes

Undecidability of k-testability

Decidability of 1-testability without message contents
1-testability for 2 processes

Theorem: For $n \geq 2$, 1-testability is undecidable for regular 4-bounded MSG-definable languages over n processes.

Proof: Reduction to Modified Post Correspondence Problem (MPCP).
Modified Post Correspondence Problem

Definition: MPCP

Instance: sequence $(v_1, w_1), (v_2, w_2), \ldots, (v_r, w_r)$ of pairs of words such that

- $1 \leq |v_i| \leq 4$ and $1 \leq |w_i| \leq 4$ for $1 \leq i \leq r$,
- $w_1 < v_1$ and is shorter by at least 2 letters.

Solution: sequence $1 = i_1, i_2, i_3, \ldots, i_m$ of indices from $\{1, 2, \ldots, r\}$ such that

$$w_{i_1} w_{i_2} \cdots w_{i_m} = v_{i_1} v_{i_2} \cdots v_{i_m}$$

and for $k < m$,

$$w_{i_1} w_{i_2} \cdots w_{i_k} < v_{i_1} v_{i_2} \cdots v_{i_k}$$

Theorem: MPCP

The Modified Post Correspondence Problem is undecidable.
Proof:
Let $\Delta = (v_1, w_1), (v_2, w_2), \ldots, (v_t, w_t)$ be an instance of the MPCP.
Proof:
Let $\Delta = (v_1, w_1), (v_2, w_2), \ldots, (v_t, w_t)$ be an instance of the MPCP.

M_{v_ℓ} with $v_\ell = a_1 a_2 \ldots a_r$
Proof:

Let $\Delta = (v_1, w_1), (v_2, w_2), \ldots, (v_t, w_t)$ be an instance of the MPCP.

M_{v_ℓ} with $v_\ell = a_1 a_2 \ldots a_r$

M_{w_ℓ} with $w_\ell = b_1 b_2 \ldots b_s$
Proof:

Let $\Delta = (v_1, w_1), (v_2, w_2), \ldots, (v_t, w_t)$ be an instance of the MPCP.

$L_{\Delta} = M_{v_1} \cdot \{M_{v_1}, \ldots, M_{v_t}\}^* + M_{w_1} \cdot \{M_{w_1}, \ldots, M_{w_t}\}^*$
Proof:

Let $\Delta = (v_1, w_1), (v_2, w_2), \ldots, (v_t, w_t)$ be an instance of the MPCP.

Lemma:

The MPCP Δ has a solution iff L_Δ has some 1-implied scenario.
Proof: Let $1 = i_1, i_2, \ldots, i_m$ be a solution of MPCP

$$v_i_1 v_i_2 \ldots v_i_m = a_1 a_2 \ldots a_\ell = w_i_1 w_i_2 \ldots w_i_m$$
Undecidability: Reduction

Proof: Let $1 = i_1, i_2, \ldots, i_m$ be a solution of MPCP

$v_{i_1} v_{i_2} \ldots v_{i_m} = a_1 a_2 \ldots a_\ell = w_{i_1} w_{i_2} \ldots w_{i_m}$
Proof: Let $1 = i_1, i_2, \ldots, i_m$ be a solution of MPCP

$$v_{i_1} v_{i_2} \ldots v_{i_m} = a_1 a_2 \ldots a_\ell = w_{i_1} w_{i_2} \ldots w_{i_m}$$
Proof: Let \(1 = i_1, i_2, \ldots, i_m \) be a solution of MPCP.

\[
v_{i_1} v_{i_2} \cdots v_{i_m} = a_1 a_2 \cdots a_\ell = w_{i_1} w_{i_2} \cdots w_{i_m}
\]
Proof: Let $1 = i_1, i_2, \ldots, i_m$ be a solution of MPCP

$$v_{i_1} v_{i_2} \ldots v_{i_m} = a_1 a_2 \ldots a_\ell = w_{i_1} w_{i_2} \ldots w_{i_m}$$

$$L = M_{v_1} \cdot \{M_{v_1}, \ldots, M_{v_t}\}^* + M_{w_1} \cdot \{M_{w_1}, \ldots, M_{w_t}\}^*$$

$\rightarrow M \notin L$
Proof: Let \(1 = i_1, i_2, \ldots, i_m \) be a solution of MPCP

\[
v_{i_1} v_{i_2} \cdots v_{i_m} = a_1 a_2 \cdots a_{\ell} = w_{i_1} w_{i_2} \cdots w_{i_m}
\]

\[
L = M_{v_1} \{M_{v_1}, \ldots, M_{v_t}\}^* + M_{w_1} \{M_{w_1}, \ldots, M_{w_t}\}^*
\]

- \(M \not\in L \)
- \(M \upharpoonright_1 = (M_{v_{i_1}} M_{v_{i_2}} \cdots M_{v_{i_m}}) \upharpoonright_1 \in L \upharpoonright_1 \)
Undecidability: Reduction

Proof: Let $1 = i_1, i_2, \ldots, i_m$ be a solution of MPCP

$v_{i_1} v_{i_2} \cdots v_{i_m} = a_1 a_2 \cdots a_\ell = w_{i_1} w_{i_2} \cdots w_{i_m}$

$L = M_{v_1} \cdot \{M_{v_1}, \ldots, M_{v_t}\}^* + M_{w_1} \cdot \{M_{w_1}, \ldots, M_{w_t}\}^*$

- $M \notin L$
- $M \upharpoonright_1 = (M_{v_{i_1}} M_{v_{i_2}} \cdots M_{v_{i_m}}) \upharpoonright_1 \in L \upharpoonright_1$
- $M \upharpoonright_2 = (M_{w_{i_1}} M_{w_{i_2}} \cdots M_{w_{i_m}}) \upharpoonright_2 \in L \upharpoonright_2$
Plan

MSC

HMSC

Local testing of HMSC

Undecidability of 1-testability for 2 processes

Undecidability of k-testability

Decidability of 1-testability without message contents
Theorem: k-testability

For $1 < k < n$, k-testability is undecidable for regular 1-bounded MSG-definable languages over n processes.

Proof:

Reduction to Modified Post Correspondence Problem (MPCP).
Undecidability: Reduction

A basic MSC

\[i \quad i + 1 \quad i + 2 \quad j - 2 \quad j - 1 \quad j \]

\[
\begin{array}{c}
\vdots \\
\vdots \\
\vdots \\
\end{array}
\]
Undecidability: Reduction

A basic MSC

\[i \quad i + 1 \quad i + 2 \quad j - 2 \quad j - 1 \quad j \]

\[m \quad m \quad m \quad m \quad m \quad m \]

\[i \quad i + 1 \quad i + 2 \quad j - 2 \quad j - 1 \quad j \]

\[m \]

\[m \]
Let $\Delta = (v_1, w_1), (v_2, w_2), \ldots, (v_t, w_t)$ be an instance of the MPCP.
Let $\Delta = \{(v_1, w_1), (v_2, w_2), \ldots, (v_t, w_t)\}$ be an instance of the MPCP.

M_{v_ℓ} with $v_\ell = a_1 a_2 \ldots a_r$
Undecidability: Reduction

Let \(\Delta = (v_1, w_1), (v_2, w_2), \ldots, (v_t, w_t) \) be an instance of the MPCP.

\[M_{v_\ell} \text{ with } v_\ell = a_1 a_2 \ldots a_r \]

\[M_{w_\ell} \text{ with } w_\ell = b_1 b_2 \ldots b_s \]
Let $\Delta = (v_1, w_1), (v_2, w_2), \ldots, (v_t, w_t)$ be an instance of the MPCP.

$M^j_{v_\ell, w_\ell}$ with $v_\ell = a_1a_2\ldots a_r$ and $w_\ell = b_1b_2\ldots b_s$
Let $\Delta = (v_1, w_1), (v_2, w_2), \ldots, (v_t, w_t)$ be an instance of the MPCP.

$M^j_{v_\ell, w_\ell}$ with $v_\ell = a_1 a_2 \ldots a_r$ and $w_\ell = b_1 b_2 \ldots b_s$
Let $\Delta = (v_1, w_1), (v_2, w_2), \ldots, (v_t, w_t)$ be an instance of the MPCP.

$L_\Delta = M_{v_1} \cdot \{M_{v_1}, \ldots, M_{v_t}\}^* \cup M_{w_1} \cdot \{M_{w_1}, \ldots, M_{w_t}\}^*$

$\cup \bigcup_j M^j_{v_1, w_1} \cdot \{M^j_{v_1, w_1}, \ldots, M^j_{v_t, w_t}\}^*$
Lemma:
The MPCP \(\Delta \) has a solution iff \(L_\Delta \) has some \((k - 1)\)-implied scenario.

Proof: Let \(1 = i_1, i_2, \ldots, i_m \) be a solution of MPCP

\[
v_{i_1}v_{i_2}\ldots v_{i_m} = a_1a_2\ldots a_\ell = w_{i_1}w_{i_2}\ldots w_{i_m}
\]

We build an MSC \(M \notin L_\Delta \) which is \((k - 1)\)-implied by \(L_\Delta \).
Undecidability: Reduction

Proof: Let $1 = i_1, i_2, \ldots, i_m$ be a solution of MPCP

$$v_{i_1} v_{i_2} \ldots v_{i_m} = a_1 a_2 \ldots a_{\ell} = w_{i_1} w_{i_2} \ldots w_{i_m}$$
Proof: Let $1 = i_1, i_2, \ldots, i_m$ be a solution of MPCP

$$v_{i_1} v_{i_2} \ldots v_{i_m} = a_1 a_2 \ldots a_\ell = w_{i_1} w_{i_2} \ldots w_{i_m}$$
Proof: Let $1 = i_1, i_2, \ldots, i_m$ be a solution of MPCP

$$v_{i_1} v_{i_2} \ldots v_{i_m} = a_1 a_2 \ldots a_\ell = w_{i_1} w_{i_2} \ldots w_{i_m}$$
Proof: Let $1 = i_1, i_2, \ldots, i_m$ be a solution of MPCP

$$v_{i_1} v_{i_2} \ldots v_{i_m} = a_1 a_2 \ldots a_{\ell} = w_{i_1} w_{i_2} \ldots w_{i_m}$$

$M \notin L_\Delta$
Proof: Let \(1 = i_1, i_2, \ldots, i_m\) be a solution of MPCP

\[
v_{i_1} v_{i_2} \ldots v_{i_m} = a_1 a_2 \ldots a_\ell = w_{i_1} w_{i_2} \ldots w_{i_m}
\]

\[
M|_{1,\ldots,k-1} = (M_{v_{i_1}} M_{v_{i_2}} \ldots M_{v_{i_m}})|_{1,\ldots,k-1}
\]
Proof: Let $1 = i_1, i_2, \ldots, i_m$ be a solution of MPCP

$$v_{i_1} v_{i_2} \ldots v_{i_m} = a_1 a_2 \ldots a_\ell = w_{i_1} w_{i_2} \ldots w_{i_m}$$

$$M|_{2,\ldots,k} = (M_{w_{i_1}} M_{w_{i_2}} \ldots M_{w_{i_m}})|_{2,\ldots,k}$$
Proof: Let $1 = i_1, i_2, \ldots, i_m$ be a solution of MPCP

$$v_{i_1}v_{i_2}\ldots v_{i_m} = a_1a_2\ldots a_\ell = w_{i_1}w_{i_2}\ldots w_{i_m}$$

$$M\upharpoonright_{1,\ldots,j-1,j+1,\ldots,k} = (M_{v_{i_1}}^{j},w_{i_1}M_{v_{i_2}}^{j},w_{i_2}\ldots M_{v_{i_m}}^{j},w_{i_m})\upharpoonright_{1,\ldots,j-1,j+1,\ldots,k}$$
Plan

MSC

HMSC

Local testing of HMSC

Undecidability of 1-testability for 2 processes

Undecidability of κ-testability

Decidability of 1-testability without message contents
1-testability over the singleton alphabet

- Each channel behaves as counter
1-testability over the singleton alphabet

- Each channel behaves as counter
- Encode the behaviours of the HMSC as a Petri Net
1-testability over the singleton alphabet

- Each channel behaves as counter
- Encode the behaviours of the HMSC as a Petri Net
- HMSC defines a regular language \Rightarrow channels are bounded by some constant B
1-testability over the singleton alphabet

- Each channel behaves as counter
- Encode the behaviours of the HMSC as a Petri Net
- HMSC defines a regular language \(\Rightarrow \) channels are bounded by some constant \(B \)
 1. Check if net has \(B + 1 \) messages in a channel en route to final marking
1-testability over the singleton alphabet

- Each channel behaves as counter
- Encode the behaviours of the HMSC as a Petri Net
- HMSC defines a regular language \Rightarrow channels are bounded by some constant B
 1. Check if net has $B + 1$ messages in a channel en route to final marking
 2. If yes, implied scenario exists
1-testability over the singleton alphabet

- Each channel behaves as counter
- Encode the behaviours of the HMSC as a Petri Net
- HMSC defines a regular language \Rightarrow channels are bounded by some constant B
 1. Check if net has $B + 1$ messages in a channel en route to final marking
 2. If yes, implied scenario exists
 3. Otherwise, language of net is regular
1-testability over the singleton alphabet

- Each channel behaves as counter
- Encode the behaviours of the HMSC as a Petri Net
- HMSC defines a regular language \Rightarrow channels are bounded by some constant B
 1. Check if net has $B + 1$ messages in a channel en route to final marking
 2. If yes, implied scenario exists
 3. Otherwise, language of net is regular
 - Check if net exhibits any behaviour not described by HMSC
1-testability over the singleton alphabet

- Each channel behaves as counter
- Encode the behaviours of the HMSC as a Petri Net
- HMSC defines a regular language \Rightarrow channels are bounded by some constant B
 1. Check if net has $B + 1$ messages in a channel en route to final marking
 2. If yes, implied scenario exists
 3. Otherwise, language of net is regular
 - Check if net exhibits any behaviour not described by HMSC
- Special case of a result due to Morin [M02]
Future work

- Local testability is undecidable in most situations
Future work

- Local testability is undecidable in most situations
- Look for sufficient conditions that indicate violation of testability
Future work

- Local testability is undecidable in most situations
- Look for sufficient conditions that indicate violation of testability
- Testability by piggybacking auxiliary information?
Future work

- Local testability is undecidable in most situations
- Look for sufficient conditions that indicate violation of testability
- Testability by piggybacking auxiliary information?

By tagging auxiliary information to \(m \),
\(p \) informs \(s \) whether it has sent a message to \(q \)
This rules out the implied scenario \(M \)
Future work

- Local testability is undecidable in most situations
- Look for sufficient conditions that indicate violation of testability
- Testability by piggybacking auxiliary information?

By tagging auxiliary information to m, p informs s whether it has sent a message to q
This rules out the implied scenario M

- Can we piggyback a bounded amount of auxiliary information to ensure testability?
Future work

- Local testability is undecidable in most situations
- Look for sufficient conditions that indicate violation of testability
- Testability by piggybacking auxiliary information?

By tagging auxiliary information to m, p informs s whether it has sent a message to q
This rules out the implied scenario M

- Can we piggyback a bounded amount of auxiliary information to ensure testability?
- Bounded auxiliary information suffices to check causal closure [AMNN05]