Local safety and local liveness for distributed systems

Paul Gastin & Volker Diekert

LSV, ENS Cachan, CNRS & FMI, Univ. Stuttgart

Developments and New Tracks in Trace Theory
Cremona, 10 October 2008
Motivations

Aim

Define robust notions of local safety and local liveness for distributed system.

◮ Give topological characterizations
◮ Establish a decomposition theorem.
◮ Characterizations by canonical local temporal logic formulae.
Notations

- \((\Sigma, D)\) dependence alphabet.
- \(I = \Sigma \times \Sigma \setminus D\) independence relation.
- \(t = (V, \leq, \lambda)\) finite or infinite trace.
- \(\mathbb{R}\) set of finite or infinite traces.
- \(\mathbb{M}\) set of finite traces.
- \(s \leq t\) prefix relation over traces

\[
\text{Pref}(t) = \{s \in \mathbb{M} \mid s \leq t\}
\]

- \(\mathbb{P}\) set of prime traces, i.e., finite traces having a single maximal vertex.

\[
\text{Pref}(t) = \text{Pref}(t) \cap \mathbb{P}
\]

- \(\mathbb{R}^1\) is the set of nonempty traces having a single minimal vertex.
Plan

1. Local safety
 - Local temporal logic
 - Local decomposition of first-order languages
 - Local liveness
 - Strong local liveness
 - Concluding remarks
Safety properties

Definition: Safety

- An execution t is **safe** if and only if all partial executions of t are **Good**.
- **Global semantics**: a partial execution is a (global) finite prefix.

 A trace $t \in \mathbb{R}$ is globally safe w.r.t. $\text{Good} \subseteq \mathbb{M}$ if $\text{Pref}(t) \subseteq \text{Good}$.

 A language L is a **global safety** if there exists $\text{Good} \subseteq \mathbb{M}$ such that

 $$L = \{t \in \mathbb{R} \mid \text{Pref}(t) \subseteq \text{Good}\}.$$

- **Local semantics**: a partial execution is a prime prefix.

 A trace $t \in \mathbb{R}$ is locally safe w.r.t. $\text{Good} \subseteq \mathbb{P}$ if $\text{Pref}(t) \subseteq \text{Good}$.

 A language L is a **local safety** if there exists $\text{Good} \subseteq \mathbb{P}$ such that

 $$L = \{t \in \mathbb{R} \mid \text{Pref}(t) \subseteq \text{Good}\}.$$

- Local safety can be enforced locally.
Safety properties

Example: Local safety

\[\Sigma = \{a, b, c\} \text{ and } I = \{(a, b), (b, a)\}. \]

\[L = \{ t \in \mathbb{R} \mid t = ucrscv \text{ with } |r|_c = |s|_c = 0 \text{ implies } |r|_a + |r|_b \neq |s|_a + |s|_b \mod 2 \} \]

is a local safety property.

Example: Global safety

\[\Sigma = \{a, b, c\} \text{ and } I = \{(a, b), (b, a)\}. \]

\[L = \{ t \in \mathbb{R} \mid t = ucrv \text{ with } |r|_c = 0 \text{ implies } |r|_a + |r|_b \leq 3 \} \]

is a global safety property but not a local safety property.
Some Poset properties

Definitions and notations

- \((E, \leq)\) Poset
- \(X \subseteq E\) is coherent if for all \(x, y \in X\) there exists \(z \in E\) with \(x \leq z\) and \(y \leq z\).
- \(X \subseteq E\) is directed if \(X \neq \emptyset\) and for all \(x, y \in X\) there exists \(z \in X\) with \(x \leq z\) and \(y \leq z\).
- \(\sqcup X\) least upper bound of \(X\) when it exists.

Theorem: G. & Rozoy, TCS 93

- \((\mathbb{R}, \leq)\) is coherently complete, i.e., any coherent set has a lub.
- \(\text{Pref}(t)\) is coherent and \(t = \sqcup \text{Pref}(t)\) for all \(t \in \mathbb{R}\).
- \(\text{Pref}(t)\) is directed and \(t = \sqcup \text{Pref}(t)\) for all \(t \in \mathbb{R}\).
Local closure

Definition: Local closure

$\overline{L} \subseteq R$ is **locally closed** if it is closed under prime prefixes and lub of coherent subsets:

$\text{Pref}(L) \subseteq L$ and $\bigsqcup K \in L$ for all coherent $K \subseteq L$

Remark: if L is locally closed then $\text{Pref}(L) \subseteq L$.

The **local closure** \overline{L}^ℓ is the smallest set which is locally closed and contains L.

Remark: $1 = \bigsqcup \emptyset \in \overline{L}^\ell$

Proposition: Local closure

$\overline{L}^\ell = \{ t \in R \mid \text{Pref}(t) \subseteq \text{Pref}(L) \}$.

$L \subseteq R$ is a local safety property if and only if it is locally closed.
Global closure

Definition: Global closure = Scott closure

- $L \subseteq \mathbb{R}$ is Scott closed if it is closed under prefixes and lub of directed subsets:
 \[\text{Pref}(L) \subseteq L \quad \text{and} \quad \bigcup K \in L \quad \text{for all directed } K \subseteq L \]

Remark: if L is locally closed then it is Scott closed.

- The Scott closure \overline{L}^σ is the smallest set which is Scott closed and contains L.

Remark: $\overline{L}^\sigma \subseteq \overline{L}^\ell$

Proposition: Global closure

- $\overline{L}^\sigma = \{ t \in \mathbb{R} \mid \text{Pref}(t) \subseteq \text{Pref}(L) \}$.
- $L \subseteq \mathbb{R}$ is a global safety property if and only if it is Scott closed.
- Every local safety property is also a global safety property.
Plan

Local safety

Local temporal logic

Local decomposition of first-order languages

Local liveness

Strong local liveness

Concluding remarks
Local temporal logic

Definition: Syntax of $\text{LocTL}_\Sigma[\text{EX, U, EY, S}]$

$$\varphi ::= \top \mid a \mid \neg \varphi \mid \varphi \lor \varphi \mid \text{EX} \varphi \mid \varphi \text{ U } \varphi \mid \text{EY} \varphi \mid \varphi \text{ S } \varphi$$

where a ranges over Σ.

Definition: Semantics: $t = [V, \leq, \lambda] \in \mathbb{R} \setminus \{1\}$ and $x \in V$

\[
\begin{align*}
t, x &\models a \quad \text{if} \quad \lambda(x) = a \\
t, x &\models \text{EX} \varphi \quad \text{if} \quad \exists y \in t \ (x < y \text{ and } t, y \models \varphi) \\
t, x &\models \varphi \text{ U } \psi \quad \text{if} \quad \exists z \in t \ (x \leq z \text{ and } t, z \models \psi \text{ and } \forall y \in t \ (x \leq y < z \Rightarrow t, y \models \varphi)) \\
t, x &\models \text{EY} \varphi \quad \text{if} \quad \exists y \in t \ (y < x \text{ and } t, y \models \varphi) \\
t, x &\models \varphi \text{ S } \psi \quad \text{if} \quad \exists z \in t \ (z \leq x \text{ and } t, z \models \psi \text{ and } \forall y \in t \ (z < y \leq x \Rightarrow t, y \models \varphi))
\end{align*}
\]

Abbreviations

- $F \varphi = \top \text{ U } \varphi$
- $G \varphi = \neg F \neg \varphi$
Local temporal logic

Definition: Future formulae

Future formulae: \(\text{LocTL}_\Sigma[\text{EX}, \text{U}] \)

Remark: if \(\varphi \in \text{LocTL}_\Sigma[\text{EX}, \text{U}] \) then for all \(t \in \mathbb{R} \setminus \{1\} \) and \(x \in t \) we have

\[
 t, x \models \varphi \quad \text{iff} \quad \uparrow x, x \models \varphi
\]

Theorem: Diekert & G., IC 06

Let \(L \subseteq \mathbb{R} \) be a first-order definable real trace language. Then there is a future formula \(\varphi \in \text{LocTL}_\Sigma[\text{EX}, \text{U}] \) such that

\[
 L \cap \mathbb{R}^1 = \{ t \in \mathbb{R}^1 \mid t, \min(t) \models \varphi \}
\]
Local temporal logic

Definition: Past formulae

Past formulae: $\text{LocTL}_\Sigma[\text{EY}, S]$

Remark: if $\varphi \in \text{LocTL}_\Sigma[\text{EY}, S]$ then for all $t \in \mathbb{R} \setminus \{1\}$ and $x \in t$ we have

$$t, x \models \varphi \quad \text{iff} \quad \downarrow x, x \models \varphi$$

Corollary: Diekert & G., IC 06

Let $L \subseteq \mathbb{R}$ be a first-order definable real trace language. Then there is a past formula $\varphi \in \text{LocTL}_\Sigma[\text{EY}, S]$ such that

$$L \cap \mathbb{P} = \{t \in \mathbb{P} \mid t, \max(t) \models \psi\}$$
Plan

Local safety

Local temporal logic

Local decomposition of first-order languages

Local liveness

Strong local liveness

Concluding remarks
Definition: Direct semantics for F and G

\[
\begin{align*}
t \models^\ell F \varphi & \quad \text{if} \quad \exists x \in t, \; t, x \models \varphi \\
t \models^\ell G \psi & \quad \text{if} \quad \forall x \in t, \; t, x \models \psi.
\end{align*}
\]

Remark: 1 \models G \varphi \text{ but } 1 \not\models F \varphi \text{ for all } \varphi \in \text{LocTL}_\Sigma

Extension to any boolean combination \(\gamma \) of F and G formulae.

\[
\mathcal{L}(\gamma) = \{ t \in \mathbb{R} \mid t \models^\ell \gamma \}
\]
Concurrent modality

Definition: Local decomposition of traces

Let \(t = [V, \leq, \lambda] \in \mathbb{R} \) and \(x \in t \)

\[
\Downarrow x \quad \parallel x \quad \Uparrow x
\]

Definition: Concurrent modality

Let \(\gamma \) be any Boolean combination of F and G formulae. Then, \(\text{CO} \, \gamma \) is a concurrent formula with semantics

\[
t, x \models \text{CO} \, \gamma \text{ if } \parallel x \models \ell \, \gamma.
\]
A decompositi\(\text{on formula} \) is a disjunction

\[\delta = \bigvee_{j \in J} a_j \land \psi_j \land \varphi_j \land \text{CO} \gamma_j \]

where \(J \) is some finite index set, and for each \(j \in J \)

- \(a_j \in \Sigma \)
- \(\psi_j \in \text{LocTL}_\Sigma(\text{EY}, S) \) is a past formula
- \(\varphi_j \in \text{LocTL}_\Sigma(\text{EX}, U) \) is a future formula
- \(\gamma_j \) is an F or G formula

Note that, if \(J = \emptyset \) then we get \(\delta = \bot \) by convention.
Local decomposition

Theorem: Decomposition

Let $L \subseteq \mathbb{R}$ be a first-order definable real trace language. There exists a decomposition formula

$$\delta = \bigvee_{j \in J} a_j \land \psi_j \land \varphi_j \land \text{CO} \gamma_j$$

such that

1. $L \cup \{1\} = \mathcal{L}(G \delta)$,
2. $L \setminus \{1\} = \mathcal{L}(F \delta)$,
3. $\text{Pref}(L) = \{r \in \mathbb{P} \mid r, \text{max}(r) \models \bigvee_{j \in J} a_j \land \psi_j\}$,
4. for each $j \in J$, the formula $a_j \land \psi_j \land \varphi_j \land \text{CO} \gamma_j$ is satisfiable.
Local decomposition: proof sketch

The proof uses

Theorem: Ebinger & Muscholl, TCS 96

A language $L \subseteq \mathbb{R}$ is a first-order definable if and only if it is aperiodic.

Let $h : \mathbb{M}(\Sigma, D) \to S$ be a morphism recognizing L with S finite aperiodic monoid. Assume h alphabetic.

Let $t \in L \setminus \{1\}$ and $x \in t$. Then,

$$t \in [\downarrow x] \cdot \lambda(x) \cdot [\| x] \cdot [\uparrow x] \subseteq L$$

Let $J = \{(\lambda(x), [\downarrow x], [\| x], [\uparrow x]) \mid t \in L \setminus \{1\} \text{ and } x \in t\}$ finite index set.
Local decomposition: proof sketch

Let $h : \mathbb{M}(\Sigma, D) \to S$ be a morphism recognizing L with S finite aperiodic monoid. Let $t \in L \setminus \{1\}$ and $x \in t$. Then,

$$t \in [\downarrow x] \cdot \lambda(x) \cdot [\| x] \cdot [\uparrow x] \subseteq L$$

Let $J = \{(\lambda(x), [\downarrow x], [\| x], [\uparrow x]) \mid t \in L \setminus \{1\}$ and $x \in t\}$ finite index set.

Fix $j = (a_j, L_j^\downarrow, L_j^\|, L_j^\uparrow) \in J$.

There exists a future formula φ_j and a past formula ψ_j such that

$$a_j \cdot L_j^\uparrow \cap R^1 = \{s \in R^1 \mid s, \min(s) \models \varphi_j\}$$

$$L_j^\downarrow \cdot a_j \cap P = \{r \in P \mid r, \max(r) \models \psi_j\}.$$

By induction on the alphabet, we find a decomposition formula δ_j for $L_j^\|$.

Let $\gamma_j = \begin{cases} G \delta_j & \text{if } 1 \in L_j^\| \\ F \delta_j & \text{otherwise.} \end{cases}$

Claim: the decomposition formula $\delta = \bigvee_{j \in J} a_j \wedge \psi_j \wedge \varphi_j \wedge \text{CO} \gamma_j$

satisfies statements (1–4) of the decomposition theorem.
Definition:
A *canonical local safety formula* is a formula of type $G \psi$ where $\psi \in \text{LocTL}_\Sigma[\text{EY}, S]$ is a past formula.

Theorem: local safety
A first-order definable language is a local safety property if and only if it can be expressed by a canonical local safety formula.

More precisely:
1. Let $\psi \in \text{LocTL}_\Sigma[\text{EY}, S]$. Then, $\mathcal{L}(G \psi)$ is locally closed.
2. Let $L \subseteq \mathbb{R}$ be a first-order definable language.
 Let $\delta = \bigvee_{j \in J} a_j \land \psi_j \land \varphi_j \land \text{CO} \gamma_j$ be a decomposition formula for L.
 Then,
 $$\overline{L}^\ell = \mathcal{L} \left(G \bigvee_{j \in J} a_j \land \psi_j \right)$$
Canonical local safety formulae

Example:

Let $\Sigma = \{a, b, c\}$ and $I = \{(a, b), (b, a)\}$.

$L = \{ t \in \mathbb{R} \mid t = ucrscv \text{ with } |r|_c = |s|_c = 0 \text{ implies } |r|_a + |r|_b \neq |s|_a + |s|_b \mod 2 \}$

is a local safety property but is not first-order definable.

Example:

$L = \{ t \in \mathbb{R} \mid t = ucrscv \text{ with } |r|_c = 0 \text{ implies } |r|_a \leq 2 \land |r|_b \leq 2 \}$

is a local safety property which is first-order definable.

It is defined by the canonical local safety formula

$$G(c \land EY(\top S c) \longrightarrow \neg EY(a \land EY(a \land EY a)) \land \neg EY(b \land EY(b \land EY b)))$$
Plan

Local safety

Local temporal logic

Local decomposition of first-order languages

Local liveness

Strong local liveness

Concluding remarks
Definition: Liveness

- **A** partial execution r is **live** if it can be extended to some **Good** execution.

- **Global semantics:** a partial execution is a (global) finite prefix.

A trace $r \in \mathbb{M}$ is **globally live w.r.t.** $\text{Good} \subseteq \mathbb{R}$ if $r \in \text{Pref}(\text{Good})$.

$L \subseteq \mathbb{R}$ is a **global liveness property** if all partial executions are live w.r.t. L:

$$\text{Pref}(L) = \mathbb{M}$$

- **Local semantics:** a partial execution is a **prime prefix**.

A trace $r \in \mathbb{P}$ is **locally live w.r.t.** $\text{Good} \subseteq \mathbb{R}$ if $r \in \text{Pref}(\text{Good})$.

$L \subseteq \mathbb{R}$ is a **local liveness property** if all partial executions are live w.r.t. L:

$$\text{Pref}(L) = \mathbb{P}$$

- **Any global liveness property is also a local liveness property.**
Liveness properties

Example: Local liveness

Let $\Sigma = \{a, b\}$ with $(a, b) \in I$.

The language $L = \{a^\omega, b^\omega\}$ is a local liveness property since

$$P = a^+ \cup b^+ = \text{Pref}(L)$$

But L is not a global liveness property since

$$\text{Pref}(L) = \text{Pref}(L) \neq M$$

Example: Global liveness

The language $L = \{(ab)^\omega\}$ is a global liveness property, hence also a local liveness property.
Definition: Local density

A language $L \subseteq \mathbb{R}$ is locally dense if

$$\overline{L}^l = \mathbb{R}$$

Recall that \overline{L}^l is the smallest set which is locally closed and contains L:

$$\overline{L}^l = \{ t \in \mathbb{R} | \text{Pref}(t) \subseteq \text{Pref}(L) \}$$

Proposition: local density

A trace language $L \subseteq \mathbb{R}$ is a local liveness property if and only if it is locally dense.
Canonical local liveness formulae

Definition:

A **canonical local liveness formula** is of the form $F \delta$ where

$$\delta = \bigvee_{j \in J} a_j \land \psi_j \land \varphi_j \land \text{CO} \gamma_j$$

is a decomposition formula such that

- $\psi = \bigvee_{j \in J} a_j \land \psi_j$ is valid,
- $a_j \land \varphi_j \land \text{CO} \gamma_j$ is satisfiable for all $j \in J$.

Proposition: local liveness

Let $F \delta$ be a canonical local liveness formula. Then the language $L = \mathcal{L}(F \delta)$ is a local liveness property.
Proof: Sketch

Let $r \in \mathbb{P}$.

Let $j \in J$ with $r, \max(r) \models a_j \land \psi_j$

Let $t \in \mathbb{R} \setminus \{1\}$ and $x \in t$ such that $t, x \models a_j \land \varphi_j \land \text{CO } \gamma_j$

$(\psi \text{ valid})$

$(satisfiable)$
Canonical local liveness formulae

Proof: Sketch

Let \(r \in \mathbb{P} \).

Let \(j \in J \) with \(r, \max(r) \models a_j \land \psi_j \)

Let \(t \in \mathbb{R} \setminus \{1\} \) and \(x \in t \) such that \(t, x \models a_j \land \varphi_j \land \text{CO} \gamma_j \) \hspace{2cm} (\psi \text{ valid}) \hspace{2cm} (\text{satisfiable})

Then,

\[
 r \cdot \|x \cdot \uparrow x \models F \delta.
\]
Theorem: Local liveness

Let $L \subseteq \mathbb{R}$ be a first-order definable real trace language and let

$$
\delta = \bigvee_{j \in J} a_j \land \psi_j \land \varphi_j \land \text{CO} \gamma_j
$$

be a decomposition formula for L. Let also $\psi = \bigvee_{j \in J} a_j \land \psi_j$. Then,

1. $\overline{L}^\ell = \mathcal{L}(\text{G } \psi)$.
2. If L is a local liveness property, then ψ is a valid formula and $L \setminus \{1\} = \mathcal{L}(\text{F } \delta)$ is defined by a canonical local liveness formula.
3. $\text{F}(\neg \psi \lor \delta)$ is a canonical local liveness formula.

Moreover, $\widetilde{L} = \mathcal{L}(\text{F}(\neg \psi \lor \delta)) = (L \setminus \{1\}) \cup (\mathbb{R} \setminus \overline{L}^\ell)$ is a local liveness property. Moreover, \widetilde{L} is the largest set K such that $L \setminus \{1\} = \overline{L}^\ell \cap K$.
Plan

Local safety

Local temporal logic

Local decomposition of first-order languages

Local liveness

Strong local liveness

Concluding remarks
Local liveness

Example: Motivation

Let $\Sigma = \{a, b\}$ with $(a, b) \in I$.

The language $L = \{a^\omega, b^\omega\}$ is a local liveness property.

Consider the global partial execution a^3b^2.

The local partial executions are a^3 and b^2.

Both local partial execution are locally live.

But the global partial execution is not live.
Definition: Strong local liveness

$L \subseteq \mathbb{R}$ is a strong local liveness property (SLLP) if

- L is a local liveness property (LLP)
- for all $t = raus \in \mathbb{R} \setminus \{1\}$ with $ra \in \mathbb{P}$, $a \in \Sigma$, $as \in \mathbb{R}^1$ and $\text{alph}(u) \subseteq I(a)$,

 \[raus \in L \iff ras \in L \]

If $(a, b) \in I$ then $L = a^\omega b^\infty \cup a^\infty b^\omega$ is a SLLP.

Proposition: Various liveness

\[\text{SLLP} \subsetneq \text{GLP} \subsetneq \text{LLP}. \]

If $(a, b) \in I$ then $L = (ab)^\omega$ is a GLP but not a SLLP.
Strong local liveness

Theorem: Canonical formulae

$L \subseteq \mathbb{R}$ is a first-order definable strong local liveness property if and only if there is a finite decomposition formula with no concurrent part

$$\delta = \bigvee_{j \in J} a_j \land \psi_j \land \varphi_j$$

such that

- $\psi = \bigvee_{j \in J} a_j \land \psi_j$ valid,
- $a_j \land \psi_j \land \varphi_j$ satisfiable for each $j \in J$

and such that

$$L \setminus \{1\} = \mathcal{L}(F \delta) \quad \text{and} \quad L \cup \{1\} = \mathcal{L}(G \delta)$$
Plan

Local safety

Local temporal logic

Local decomposition of first-order languages

Local liveness

Strong local liveness

Concluding remarks
Any property $L \subseteq \mathbb{R}$ is the intersection of a local safety and a local liveness:

$$L = \overline{L}^l \cap (L \cup \mathbb{R} \setminus \overline{L}^l)$$

Remark:
If we wish that every language is the intersection of a local safety property and a liveness property then each locally dense language must be a liveness property.

$$\text{SLLP} \subsetneq \text{GLP} \subsetneq \text{LLP} = \text{LD}$$

Proof:
Let L be locally dense.
Assume that $L = K_1 \cap K_2$ with K_1 local safety and K_2 liveness.
Then $\mathbb{R} = \overline{L}^l \subseteq \overline{K_1}^l = K_1$.
We deduce $L = K_2$ is a liveness property.
Local separation

With a proof similar to the decomposition theorem, we obtain

Theorem: Separation

Let φ be a first-order formula with one free variable. Then there exists a decomposition formula

$$\delta = \bigvee_{j \in J} a_j \land \psi_j \land \varphi_j \land \text{CO} \gamma_j$$

such that for all $t \in \mathbb{R} \setminus \{1\}$ and all $x \in t$ we have

$$t, x \models \varphi(x) \text{ if and only if } t, x \models \delta$$