Local safety and local liveness for distributed systems

Paul Gastin & Volker Diekert

LSV, ENS Cachan, CNRS & FMI, Univ. Stuttgart

Developments and New Tracks in Trace Theory Cremona, 10 October 2008

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ へ ○ 1/36

Motivations

Aim

Define robust notions of local safety and local liveness for distributed system.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣 ◆ ○ ♀ 2/36

Give topological characterizations

Establish a decomposition theorem.

Characterizations by canonical local temporal logic formulae.

Mazurkiewicz traces

Notations

- (Σ, D) dependence alphabet.
- $I = \Sigma \times \Sigma \setminus D$ independence relation.
- $t = (V, \leq, \lambda)$ finite or infinite trace.
- $\ensuremath{\mathbb{R}}$ set of finite or infinite traces.
- ${\mathbb M}$ set of finite traces.
- $s \leq t$ prefix relation over traces

$$\operatorname{Pref}(t) = \{s \in \mathbb{M} \mid s \le t\}$$

 \mathbb{P} set of prime traces, i.e., finite traces having a single maximal vertex.

 $\mathbb{P}\mathrm{ref}(t) = \mathrm{Pref}(t) \cap \mathbb{P}$

 \mathbb{R}^1 is the set of nonempty traces having a single minimal vertex.

Plan

1 Local safety

- Local temporal logic
- Local decomposition of first-order languages
- **Local liveness**
- **Strong local liveness**
- **Concluding remarks**

Safety properties

Definition: Safety

An execution t is safe if and only if all partial executions of t are Good. Global semantics: a partial execution is a (global) finite prefix.

- A trace $t \in \mathbb{R}$ is globally safe w.r.t. Good $\subseteq \mathbb{M}$ if $\operatorname{Pref}(t) \subseteq \operatorname{Good}$.
- A language L is a global safety if there exists $Good \subseteq M$ such that

 $L = \{t \in \mathbb{R} \mid \operatorname{Pref}(t) \subseteq \operatorname{Good}\}.$

Local semantics: a partial execution is a prime prefix.

A trace $t \in \mathbb{R}$ is locally safe w.r.t. Good $\subseteq \mathbb{P}$ if $\mathbb{P}ref(t) \subseteq Good$.

A language L is a local safety if there exists $Good \subseteq \mathbb{P}$ such that

$$L = \{t \in \mathbb{R} \mid \mathbb{P}\mathrm{ref}(t) \subseteq \mathbf{G}\mathrm{ood}\}.$$

Local safety can be enforced locally.

Safety properties

Example: Local safety $\Sigma = \{a, b, c\} \text{ and } I = \{(a, b), (b, a)\}.$ $L = \{t \in \mathbb{R} \mid t = ucrcscv \text{ with } |r|_c = |s|_c = 0 \text{ implies}$ $|r|_a + |r|_b \neq |s|_a + |s|_b \mod 2\}$

is a local safety property.

Example: Global safety

$$\Sigma = \{a, b, c\}$$
 and $I = \{(a, b), (b, a)\}.$

 $L = \{t \in \mathbb{R} \mid t = ucrv \text{ with } |r|_c = 0 \text{ implies } |r|_a + |r|_b \le 3\}$

is a global safety property but not a local safety property.

Some Poset properties

Definitions and notations

 (E, \leq) Poset $X \subseteq E$ is coherent if for all $x, y \in X$ there exists $z \in E$ with $x \leq z$ and $y \leq z$. $X \subseteq E$ is directed if $X \neq \emptyset$ and for all $x, y \in X$ there exists $z \in X$ with $x \leq z$ and $y \leq z$.

 $\sqcup X$ least upper bound of X when it exists.

Theorem: G. & Rozoy, TCS 93

 (\mathbb{R}, \leq) is coherently complete, i.e., any coherent set has a lub.

 \mathbb{P} ref(t) is coherent and $t = \sqcup \mathbb{P}$ ref(t) for all $t \in \mathbb{R}$.

 $\operatorname{Pref}(t)$ is directed and $t = \sqcup \operatorname{Pref}(t)$ for all $t \in \mathbb{R}$.

Local closure

Definition: Local closure

 $L \subseteq \mathbb{R}$ is locally closed if it is closed under prime prefixes and lub of coherent subsets:

 $\mathbb{P}\mathrm{ref}(L) \subseteq L$ and $\sqcup K \in L$ for all coherent $K \subseteq L$

Remark: if L is locally closed then $Pref(L) \subseteq L$.

The local closure \overline{L}^{ℓ} is the smallest set which is locally closed and contains L. Remark: $1 = \sqcup \emptyset \in \overline{L}^{\ell}$

Proposition: Local closure

 $\overline{L}^{\ell} = \{ t \in \mathbb{R} \mid \operatorname{Pref}(t) \subseteq \operatorname{Pref}(L) \}.$

 $L \subseteq \mathbb{R}$ is a local safety property if and only if it is locally closed.

Global closure

Definition: Global closure = Scott closure

 $L \subseteq \mathbb{R}$ is Scott closed if it is closed under prefixes and lub of directed subsets:

 $\operatorname{Pref}(L) \subseteq L$ and $\sqcup K \in L$ for all directed $K \subseteq L$

Remark: if L is locally closed then it is Scott closed.

The Scott closure \overline{L}^{σ} is the smallest set which is Scott closed and contains L. Remark: $\overline{L}^{\sigma} \subseteq \overline{L}^{\ell}$

Proposition: Global closure

 $\overline{L}^{\sigma} = \{ t \in \mathbb{R} \mid \operatorname{Pref}(t) \subseteq \operatorname{Pref}(L) \}.$

 $L \subseteq \mathbb{R}$ is a global safety property if and only if it is Scott closed.

Every local safety property is also a global safety property.

Plan

Local safety

- 2 Local temporal logic
 - Local decomposition of first-order languages
 - **Local liveness**
 - **Strong local liveness**
 - **Concluding remarks**

Local temporal logic

Definition: Syntax of $LocTL_{\Sigma}[EX, U, EY, S]$

$$\varphi ::= \top \mid a \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{EX}\, \varphi \mid \varphi \,\mathsf{U}\, \varphi \mid \mathsf{EY}\, \varphi \mid \varphi \,\mathsf{S}\, \varphi$$

where a ranges over Σ .

Definition: Semantics: $t = [V, \leq, \lambda] \in \mathbb{R} \setminus \{1\}$ and $x \in V$

 $\begin{array}{lll} t,x \models a & \text{if} & \lambda(x) = a \\ t,x \models \mathsf{EX}\,\varphi & \text{if} & \exists y \in t \, (x \lessdot y \text{ and } t, y \models \varphi) \\ t,x \models \varphi \, \mathsf{U}\,\psi & \text{if} & \exists z \in t \, (x \le z \text{ and } t, z \models \psi \text{ and } \forall y \in t \, (x \le y \lt z \Rightarrow t, y \models \varphi)) \\ t,x \models \mathsf{EY}\,\varphi & \text{if} & \exists y \in t \, (y \lessdot x \text{ and } t, y \models \varphi) \\ t,x \models \varphi \, \mathsf{S}\,\psi & \text{if} & \exists z \in t \, (z \le x \text{ and } t, z \models \psi \text{ and } \forall y \in t \, (z \lt y \le x \Rightarrow t, y \models \varphi)) \end{array}$

Abbreviations

Local temporal logic

Definition: Future formulae

```
Future formulae: LocTL_{\Sigma}[EX, U]
```

Remark: if $\varphi \in \text{LocTL}_{\Sigma}[\mathsf{EX},\mathsf{U}]$ then for all $t \in \mathbb{R} \setminus \{1\}$ and $x \in t$ we have

 $t,x\models \varphi \qquad ext{iff} \qquad {\uparrow} x,x\models \varphi$

Theorem: Diekert & G., IC 06

Let $L \subseteq \mathbb{R}$ be a first-order definable real trace language. Then there is a future formula $\varphi \in \text{LocTL}_{\Sigma}[\mathsf{EX},\mathsf{U}]$ such that

$$L \cap \mathbb{R}^1 = \{ t \in \mathbb{R}^1 \mid t, \min(t) \models \varphi \}$$

Local temporal logic

Definition: Past formulae

```
Past formulae: LocTL_{\Sigma}[EY, S]
```

Remark: if $\varphi \in LocTL_{\Sigma}[EY, S]$ then for all $t \in \mathbb{R} \setminus \{1\}$ and $x \in t$ we have

 $t,x\models \varphi \quad \text{ iff } \quad \downarrow x,x\models \varphi$

Corollary: Diekert & G., IC 06

Let $L \subseteq \mathbb{R}$ be a first-order definable real trace language. Then there is a past formula $\varphi \in \text{LocTL}_{\Sigma}[\text{EY}, S]$ such that

$$L \cap \mathbb{P} = \{t \in \mathbb{P} \mid t, \max(t) \models \psi\}$$

Plan

- Local safety
- Local temporal logic
- 3 Local decomposition of first-order languages
 - **Local liveness**
- **Strong local liveness**
- **Concluding remarks**

F and G formulae

Definition: Direct semantics for F and G

 $\begin{array}{ll} t \models_{\ell} \mathsf{F} \varphi & \text{if} \quad \exists x \in t, \ t, x \models \varphi \\ t \models_{\ell} \mathsf{G} \psi & \text{if} \quad \forall x \in t, \ t, x \models \psi. \end{array}$

Remark: $1 \models \mathsf{G} \varphi$ but $1 \not\models \mathsf{F} \varphi$ for all $\varphi \in \operatorname{LocTL}_{\Sigma}$

Extension to any boolean combination γ of F and G formulae.

 $\mathcal{L}(\gamma) = \{ t \in \mathbb{R} \mid t \models_{\ell} \gamma \}$

Concurrent modality

Definition: Local decompotion of traces Let $t = [V, \leq, \lambda] \in \mathbb{R}$ and $x \in t$

Definition: Concurrent modality

Let γ be any Boolean combination of F and G formulae. Then, CO γ is a concurrent formula with semantics

$$t, x \models \mathsf{CO} \gamma \quad \text{if} \quad ||x \models_{\ell} \gamma.$$

Decomposition formulae

Definition:

A decomposition formula is a disjunction

$$\delta = \bigvee_{j \in J} a_j \wedge \psi_j \wedge \varphi_j \wedge \operatorname{CO} \gamma_j$$

where J is some finite index set, and for each $j \in J$

$$\begin{array}{l} a_j \in \Sigma \\ \psi_j \in \operatorname{LocTL}_{\Sigma}(\mathsf{EY},\mathsf{S}) \text{ is a past formula} \\ \varphi_j \in \operatorname{LocTL}_{\Sigma}(\mathsf{EX},\mathsf{U}) \text{ is a future formula} \\ \gamma_j \text{ is an } \mathsf{F} \text{ or } \mathsf{G} \text{ formula} \end{array}$$

Note that, if $J = \emptyset$ then we get $\delta = \bot$ by convention.

Local decomposition

Theorem: Decomposition

Let $L \subseteq \mathbb{R}$ be a first-order definable real trace language. There exists a *decomposition formula*

$$\delta = \bigvee_{j \in J} a_j \wedge \psi_j \wedge \varphi_j \wedge \mathsf{CO}\,\gamma_j$$

such that

L ∪ {1} = L(G δ),
 L \ {1} = L(F δ),
 Pref(L) = {r ∈ P | r, max(r) ⊨ V_{j∈J} a_j ∧ ψ_j},
 for each j ∈ J, the formula a_i ∧ ψ_i ∧ φ_i ∧ CO γ_i is satisfiable.

Local decomposition: proof sketch

The proof uses

Theorem: Ebinger & Muscholl, TCS 96

A language $L \subseteq \mathbb{R}$ is a first-order definable if and only if it is aperiodic.

Let $h:\mathbb{M}(\Sigma,D)\to S$ be a morphism recognizing L with S finite aperiodic monoid. Assume h alphabetic.

Let $t \in L \setminus \{1\}$ and $x \in t$. Then,

$$t \in [\Downarrow x] \cdot \lambda(x) \cdot [\lVert x] \cdot [\Uparrow x] \subseteq L$$

Let $J = \{(\lambda(x), [\Downarrow x], [\lVert x], [\Uparrow x]) \mid t \in L \setminus \{1\} \text{ and } x \in t\}$ finite index set.

Local decomposition: proof sketch

Let $h : \mathbb{M}(\Sigma, D) \to S$ be a morphism recognizing L with S finite aperiodic monoid. Let $t \in L \setminus \{1\}$ and $x \in t$. Then,

 $t\in [\Downarrow x]\cdot\lambda(x)\cdot[\lVert x]\cdot[\Uparrow x]\subseteq L$

Let $J = \{(\lambda(x), [\Downarrow x], [\Uparrow x], [\Uparrow x]) \mid t \in L \setminus \{1\} \text{ and } x \in t\}$ finite index set.

Fix $j = (a_j, L_j^{\Downarrow}, L_j^{\uparrow}, L_j^{\uparrow}) \in J$. There exists a future formula φ_j and a past formula ψ_j such that

$$a_j \cdot L_j^{\uparrow} \cap \mathbb{R}^1 = \{ s \in \mathbb{R}^1 \mid s, \min(s) \models \varphi_j \}$$
$$L_j^{\downarrow} \cdot a_j \cap \mathbb{P} = \{ r \in \mathbb{P} \mid r, \max(r) \models \psi_j \}.$$

By induction on the alphabet, we find a decomposition formula δ_j for L_j^{\parallel} .

 $\text{Let } \gamma_j = \begin{cases} \mathsf{G}\,\delta_j & \text{if } 1 \in L_j^{\parallel} \\ \mathsf{F}\,\delta_j & \text{otherwise.} \end{cases}$

Claim: the decomposition formula $\delta = \bigvee_{j \in J} a_j \wedge \psi_j \wedge \varphi_j \wedge \operatorname{CO} \gamma_j$ satisfies statements (1–4) of the decomposition theorem.

Canonical local safety formulae

Definition:

A canonical local safety formula is a formula of type $G \psi$ where $\psi \in LocTL_{\Sigma}[EY, S]$ is a past formula.

Theorem: local safety

A first-order definable language is a local safety property if and only if it can be expressed by a canonical local safety formula.

More precisely:

- 1. Let $\psi \in \text{LocTL}_{\Sigma}[\text{EY}, S]$. Then, $\mathcal{L}(\mathsf{G}\psi)$ is locally closed.
- 2. Let $L \subseteq \mathbb{R}$ be a first-order definable language. Let $\delta = \bigvee_{j \in J} a_j \wedge \psi_j \wedge \varphi_j \wedge \operatorname{CO} \gamma_j$ be a decomposition formula for L. Then,

$$\overline{L}^\ell = \mathcal{L}\left(\mathsf{G}igvee_{j\in J}a_j\wedge\psi_j
ight)$$

Canonical local safety formulae

Example:

Let
$$\Sigma = \{a, b, c\}$$
 and $I = \{(a, b), (b, a)\}.$

$$\begin{split} L = \{t \in \mathbb{R} \mid t = ucrcscv \text{ with } |r|_c = |s|_c = 0 \text{ implies} \\ |r|_a + |r|_b \neq |s|_a + |s|_b \mod 2 \} \end{split}$$

is a local safety property but is not first-order definable.

Example:

$$L = \{t \in \mathbb{R} \mid t = ucrcv \text{ with } |r|_c = 0 \text{ implies } |r|_a \le 2 \land |r|_b \le 2\}$$

is a local safety property which is first-order definable. It is defined by the canonical local safety formula

 $\mathsf{G}(c \land \mathsf{EY}(\top \mathsf{S} c) \longrightarrow \neg \mathsf{EY}(a \land \mathsf{EY}(a \land \mathsf{EY} a)) \land \neg \mathsf{EY}(b \land \mathsf{EY}(b \land \mathsf{EY} b)))$

Plan

- Local safety
- Local temporal logic
- Local decomposition of first-order languages
- Local liveness
- **Strong local liveness**
- **Concluding remarks**

Liveness properties

Definition: Liveness

A partial execution r is live if it can be extended to some Good execution. Global semantics: a partial execution is a (global) finite prefix.

A trace $r \in \mathbb{M}$ is globally live w.r.t. Good $\subseteq \mathbb{R}$ if $r \in \operatorname{Pref}(\operatorname{Good})$.

 $L \subseteq \mathbb{R}$ is a global liveness property if all partial executions are live w.r.t. L:

 $\operatorname{Pref}(L) = \mathbb{M}$

Local semantics: a partial execution is a prime prefix.

A trace $r \in \mathbb{P}$ is locally live w.r.t. Good $\subseteq \mathbb{R}$ if $r \in \mathbb{P}ref(Good)$.

 $L \subseteq \mathbb{R}$ is a local liveness property if all partial executions are live w.r.t. L:

 $\mathbb{P}\mathrm{ref}(L) = \mathbb{P}$

Any global liveness property is also a local liveness property.

Liveness properties

Example: Local liveness

Let $\Sigma = \{a, b\}$ with $(a, b) \in I$. The language $L = \{a^{\omega}, b^{\omega}\}$ is a local liveness property since

$$\mathbb{P} = a^+ \cup b^+ = \mathbb{P}\mathrm{ref}(L)$$

But L is not a global liveness property since

$$\operatorname{Pref}(L) = \operatorname{Pref}(L) \neq \mathbb{M}$$

Example: Global liveness

The language $L = \{(ab)^{\omega}\}$ is a global liveness property, hence also a local liveness property.

Local density

Definition: Local density

A language $L \subseteq \mathbb{R}$ is locally dense if

$$\overline{L}^{\ell} = \mathbb{R}$$

Recall that \overline{L}^{ℓ} is the smallest set which is locally closed and contains L:

$$\overline{L}^{\ell} = \{t \in \mathbb{R} \mid \operatorname{Pref}(t) \subseteq \operatorname{Pref}(L)\}$$

Proposition: local density

A trace language $L \subseteq \mathbb{R}$ is a local liveness property if and only if it is locally dense.

Canonical local liveness formulae

Definition:

A canonical local liveness formula is of the form F δ where

$$\delta = \bigvee_{j \in J} a_j \wedge \psi_j \wedge \varphi_j \wedge \operatorname{CO} \gamma_j$$

is a decompotion formula such that

$$\begin{split} \psi = \bigvee_{j \in J} a_j \wedge \psi_j \text{ is valid,} \\ a_j \wedge \varphi_j \wedge \operatorname{CO} \gamma_j \text{ is satisfiable for all } j \in J. \end{split}$$

Proposition: local liveness

Let F δ be a canonical local liveness formula. Then the language $L = \mathcal{L}(F \delta)$ is a local liveness property.

Canonical local liveness formulae

Proof: Sketch Let $r \in \mathbb{P}$. Let $j \in J$ with $r, \max(r) \models a_j \land \psi_j$ Let $t \in \mathbb{R} \setminus \{1\}$ and $x \in t$ such that $t, x \models a_j \land \varphi_j \land CO \gamma_j$

 $(\psi \text{ valid})$

(satisfiable)

Canonical local liveness formulae

Proof: Sketch Let $r \in \mathbb{P}$. Let $j \in J$ with $r, \max(r) \models a_j \land \psi_j$ Let $t \in \mathbb{R} \setminus \{1\}$ and $x \in t$ such that $t, x \models a_j \land \varphi_j \land CO \gamma_j$

 $(\psi \text{ valid})$ (satisfiable)

Then,

 $r \cdot \| x \cdot \Uparrow x \models \mathsf{F} \, \delta.$

Local liveness

Theorem: Local liveness

Let $L\subseteq \mathbb{R}$ be a first-order definable real trace language and let

$$\delta = \bigvee_{j \in J} a_j \wedge \psi_j \wedge \varphi_j \wedge \mathsf{CO}\,\gamma_j$$

be a decomposition formula for L. Let also $\psi = \bigvee_{i \in J} a_j \wedge \psi_j$. Then,

1.
$$\overline{L}^{\ell} = \mathcal{L}(\mathsf{G}\,\psi).$$

- 2. If L is a local liveness property, then ψ is a valid formula and $L \setminus \{1\} = \mathcal{L}(\mathsf{F}\,\delta)$ is defined by a canonical local liveness formula.
- 3. $\mathsf{F}(\neg \psi \lor \delta)$ is a canonical local liveness formula. $\widetilde{L} = \mathcal{L}(\mathsf{F}(\neg \psi \lor \delta)) = (L \setminus \{1\}) \cup (\mathbb{R} \setminus \overline{L}^{\ell})$ is a local liveness property. Moreover, \widetilde{L} is the largest set K such that $L \setminus \{1\} = \overline{L}^{\ell} \cap K$.

Plan

- Local safety
- Local temporal logic
- Local decomposition of first-order languages
- **Local liveness**
- 5 Strong local liveness
 - **Concluding remarks**

Local liveness

Example: Motivation

Let $\Sigma = \{a, b\}$ with $(a, b) \in I$.

The language $L = \{a^{\omega}, b^{\omega}\}$ is a local liveness property.

Consider the global partial execution a^3b^2 .

The local partial executions are a^3 and b^2 .

Both local partial execution are locally live.

But the global partial execution is not live.

Strong local liveness

Definition: Strong local liveness $L \subseteq \mathbb{R}$ is a strong local liveness property (SLLP) if L is a local liveness property (LLP) for all $t = raus \in \mathbb{R} \setminus \{1\}$ with $ra \in \mathbb{P}$, $a \in \Sigma$, $as \in \mathbb{R}^1$ and $alph(u) \subseteq I(a)$, $raus \in L \iff ras \in L$ If $(a, b) \in I$ then $L = a^{\omega}b^{\infty} \cup a^{\infty}b^{\omega}$ is a SLLP. Proposition: Various liveness

 $SLLP \subsetneq GLP \subsetneq LLP.$

If $(a,b) \in I$ then $L = (ab)^{\omega}$ is a GLP but not a SLLP.

Strong local liveness

Theorem: Canonical formulae

 $L \subseteq \mathbb{R}$ is a first-order definable strong local liveness property if and only if there is a finite decomposition formula with no concurrent part

$$\delta = \bigvee_{j \in J} a_j \wedge \psi_j \wedge \varphi_j$$

such that

 $\psi = \bigvee_{j \in J} a_j \wedge \psi_j \text{ valid,}$ $a_j \wedge \psi_j \wedge \varphi_j \text{ satisfiable for each } j \in J$ and such that

 $L \setminus \{1\} = \mathcal{L}(\mathsf{F}\,\delta)$ and $L \cup \{1\} = \mathcal{L}(\mathsf{G}\,\delta)$

Plan

- Local safety
- Local temporal logic
- Local decomposition of first-order languages
- **Local liveness**
- **Strong local liveness**
- 6 Concluding remarks

Strong or not?

Any property $L \subseteq \mathbb{R}$ is the intersection of a local safety and a local liveness:

$$L = \overline{L}^{\ell} \cap (L \cup \mathbb{R} \setminus \overline{L}^{\ell})$$

Remark:

If we wish that every language is the intersection of a local safety property and a liveness property then each locally dense language must be a liveness property.

 $\mathrm{SLLP}\subsetneq\mathrm{GLP}\subsetneq\mathrm{LLP}=\mathrm{LD}$

Proof:

Let L be locally dense. Assume that $L = K_1 \cap K_2$ with K_1 local safety and K_2 liveness. Then $\mathbb{R} = \overline{L}^{\ell} \subseteq \overline{K}_1^{\ell} = K_1$. We deduce $L = K_2$ is a liveness property.

Local separation

With a proof similar to the decomposition theorem, we obtain Theorem: Separation

Let φ be a first-order formula with one free variable. Then there exists a decomposition formula

$$\delta = \bigvee_{j \in J} a_j \wedge \psi_j \wedge \varphi_j \wedge \mathsf{CO}\,\gamma_j$$

such that for all $t \in \mathbb{R} \setminus \{1\}$ and all $x \in t$ we have

 $t,x\models \varphi(x)$ if and only if $t,x\models \delta$