How to get decidability of distributed synthesis for asynchronous systems

Paul Gastin

Joint work with Thomas Chatain and Nathalie Sznajder

January 29-31, 2009 Workshop ACTS

Outline

- Introduction
- 2 Model
- Specification
- Decidability Results

Synthesis of a reactive system

Synthesis of a reactive system

Two problems

- Decide whether there exists a program st. $P||E \models \varphi$, $\forall E$.
- Synthesis: If so, compute such a program.

For reasonable systems and specifications, the problems are decidable.

Distributed synthesis

Distributed synthesis

Two problems

- Decide the existence of a distributed program such that their joint behavior $P_1||P_2||P_3||P_4||E$ satisfies φ , for all E.
- Synthesis: If it exists, compute such a distributed program.

Distributed synthesis Synchronous or asynchronous semantics?

Synchronous semantics

- At each tick of a global clock, all processes and the environment output their new value
- Introduced in [PnueliRosner90].
- In general undecidable.

Distributed synthesis Synchronous or asynchronous semantics?

Synchronous semantics

- At each tick of a global clock, all processes and the environment output their new value
- Introduced in [PnueliRosner90].
- In general undecidable.

Distributed synthesis Synchronous or asynchronous semantics?

Synchronous semantics

- At each tick of a global clock, all processes and the environment output their new value
- Introduced in [PnueliRosner90].
- In general undecidable.

P.G., Benjamin Lerman, Marc Zeitoun

- Behaviors are Mazurkiewicz traces
- Players = controllable actions
- Causal memory
- Specification : regular over Mazurkiewicz traces

P.G., Benjamin Lerman, Marc Zeitoun

- Behaviors are Mazurkiewicz traces
- Players = controllable actions
- Causal memory
- Specification: regular over Mazurkiewicz traces

Theorem

Synthesis problem is decidable for co-graph dependence alphabets, i.e., for series-parallel systems.

Our model

 Processes evolve asynchronously for local actions (i.e., communications with the environment)

Our model

- Processes evolve asynchronously for local actions (i.e., communications with the environment)
- They can synchronize by signals = common actions initiated by only one process. A process cannot refuse reception of a signal.

Our model

- Processes evolve asynchronously for local actions (i.e., communications with the environment)
- They can synchronize by signals = common actions initiated by only one process. A process cannot refuse reception of a signal.
- Specifications :
 - over partial orders

Our model

- Processes evolve asynchronously for local actions (i.e., communications with the environment)
- They can synchronize by signals = common actions initiated by only one process. A process cannot refuse reception of a signal.
- Specifications :
 - over partial orders
 - will not restrain communication abilities

Decidability Results

Theorem

Synthesis problem is decidable for strongly-connected architectures

Outline

- Introduction
- 2 Model
- Specification
- Decidability Results

Architectures

• Communication graph (Proc, E)

- Communication graph (Proc, E)
- Sets of input and output signals for each process : $\bigcup_{i \in Proc} \operatorname{In}_i \cup \bigcup_{i \in Proc} \operatorname{Out}_i = \Gamma$

- Communication graph (Proc, E)
- Sets of input and output signals for each process : $\bigcup_{i \in Proc} \operatorname{In}_i \cup \bigcup_{i \in Proc} \operatorname{Out}_i = \Gamma$
- Processes choose sets $\Sigma_{i,j}$ for $(i,j) \in E$

- Communication graph (Proc, E)
- Sets of input and output signals for each process : $\bigcup_{i \in Proc} \operatorname{In}_i \cup \bigcup_{i \in Proc} \operatorname{Out}_i = \Gamma$
- Processes choose sets $\Sigma_{i,j}$ for $(i,j) \in E$
- $\Sigma = \Gamma \cup \bigcup_{(i,j) \in E} \Sigma_{i,j}$

- Communication graph (Proc, E)
- Sets of input and output signals for each process : $\bigcup_{i \in Proc} \operatorname{In}_i \cup \bigcup_{i \in Proc} \operatorname{Out}_i = \Gamma$
- Processes choose sets $\Sigma_{i,j}$ for $(i,j) \in E$
- $\Sigma = \Gamma \cup \bigcup_{(i,j) \in E} \Sigma_{i,j}$
- For each process i, Σ_i is the set of signals it can send or receive, and $\Sigma_i^c = \operatorname{Out}_i \cup \bigcup_{j,(i,j) \in E} \Sigma_{i,j}$

Runs

Runs

Runs

A run is a Mazurkiewicz trace $t = (V, \lambda, \leq)$ over (Σ, D) where $a \ D \ b$ if there is a process that takes part both in a and b

(ロ) (部) (目) (目) (目) (900)

Runs

Runs

Runs

Runs

Runs

Runs

Strategies

• Strategies are partial functions $f_i: \Sigma_i^* \to \Sigma_i^c$ with local memory.

- Strategies are partial functions $f_i: \Sigma_i^* \to \Sigma_i^c$ with local memory.
- Signal semantics implies reactivity of processes to events.

- Strategies are partial functions $f_i: \Sigma_i^* \to \Sigma_i^c$ with local memory.
- Signal semantics implies reactivity of processes to events.

- Strategies are partial functions $f_i: \Sigma_i^* \to \Sigma_i^c$ with local memory.
- Signal semantics implies reactivity of processes to events.

- Strategies are partial functions $f_i: \Sigma_i^* \to \Sigma_i^c$ with local memory.
- Signal semantics implies reactivity of processes to events.

- Strategies are partial functions $f_i: \Sigma_i^* \to \Sigma_i^c$ with local memory.
- Signal semantics implies reactivity of processes to events.

- Strategies are partial functions $f_i: \Sigma_i^* \to \Sigma_i^c$ with local memory.
- Signal semantics implies reactivity of processes to events.

- Strategies are partial functions $f_i: \Sigma_i^* \to \Sigma_i^c$ with local memory.
- Signal semantics implies reactivity of processes to events.

- Strategies are partial functions $f_i: \Sigma_i^* \to \Sigma_i^c$ with local memory.
- Signal semantics implies reactivity of processes to events.
- A run respects a strategy $f = (f_i)_{i \in Proc}$ (is an f-run) if each event of process i labelled with a controllable action respects the strategy f_i .

- Strategies are partial functions $f_i: \Sigma_i^* \to \Sigma_i^c$ with local memory.
- Signal semantics implies reactivity of processes to events.
- A run respects a strategy $f = (f_i)_{i \in Proc}$ (is an f-run) if each event of process i labelled with a controllable action respects the strategy f_i .

- Strategies are partial functions $f_i: \Sigma_i^* \to \Sigma_i^c$ with local memory.
- Signal semantics implies reactivity of processes to events.
- A run respects a strategy $f = (f_i)_{i \in Proc}$ (is an f-run) if each event of process i labelled with a controllable action respects the strategy f_i .

- Strategies are partial functions $f_i: \Sigma_i^* \to \Sigma_i^c$ with local memory.
- Signal semantics implies reactivity of processes to events.
- A run respects a strategy $f = (f_i)_{i \in Proc}$ (is an f-run) if each event of process i labelled with a controllable action respects the strategy f_i .

- Strategies are partial functions $f_i: \Sigma_i^* \to \Sigma_i^c$ with local memory.
- Signal semantics implies reactivity of processes to events.
- A run respects a strategy $f = (f_i)_{i \in Proc}$ (is an f-run) if each event of process i labelled with a controllable action respects the strategy f_i .
- A run $t = (V, \lambda, \leq)$ is f-maximal if for each process i either $V_i = \lambda^{-1}(\Sigma_i)$ is infinite, or f_i is undefined on the maximal event of V_i .

The model

Observable runs

Given a run $t = (V, \lambda, \leq)$, we define the observable run by

$$\pi_{\Gamma}(t) = (\Gamma, \lambda_{|\Gamma}, \leq \cap (\Gamma \times \Gamma))$$

The model

Observable runs

Given a run $t = (V, \lambda, \leq)$, we define the observable run by

$$\pi_{\Gamma}(t) = (\Gamma, \lambda_{|\Gamma}, \leq \cap (\Gamma \times \Gamma))$$

The model

Observable runs

Given a run $t = (V, \lambda, \leq)$, we define the observable run by

$$\pi_{\Gamma}(t) = (\Gamma, \lambda_{|\Gamma}, \leq \cap (\Gamma \times \Gamma))$$

Given

• $\mathcal{A} = (\operatorname{Proc}, E, \Gamma)$

Given

- $\mathcal{A} = (\operatorname{Proc}, \mathcal{E}, \Gamma)$
- φ a specification over Γ -labelled partial orders (observable runs)

Given

- $\mathcal{A} = (\operatorname{Proc}, E, \Gamma)$
- φ a specification over Γ -labelled partial orders (observable runs)

Do there exist

• sets $\Sigma_{i,j}$ for each $(i,j) \in E$

Given

- $\mathcal{A} = (\operatorname{Proc}, E, \Gamma)$
- φ a specification over Γ -labelled partial orders (observable runs)

Do there exist

- sets $\Sigma_{i,j}$ for each $(i,j) \in E$
- and strategies $f_i: \Sigma_i^* \to \Sigma_i^c$ for each $i \in \text{Proc}$

Given

- $\mathcal{A} = (\operatorname{Proc}, E, \Gamma)$
- φ a specification over Γ -labelled partial orders (observable runs)

Do there exist

- sets $\Sigma_{i,i}$ for each $(i,j) \in E$
- and strategies $f_i: \Sigma_i^* \to \Sigma_i^c$ for each $i \in \operatorname{Proc}$
- such that every f-maximal f-run t is such that $\pi_{\Gamma}(t) \models \varphi$?

Given

- $\mathcal{A} = (\operatorname{Proc}, E, \Gamma)$
- φ a specification over Γ -labelled partial orders (observable runs)

Do there exist

- sets $\Sigma_{i,i}$ for each $(i,j) \in E$
- and strategies $f_i: \Sigma_i^* \to \Sigma_i^c$ for each $i \in \operatorname{Proc}$

such that every f-maximal f-run t is such that $\pi_{\Gamma}(t) \models \varphi$? If so, compute them

Outline

- Introduction
- 2 Model
- Specification
- Decidability Results

Restrictions on specifications

 Specifications should not discriminate between a partial order and its order extensions

Restrictions on specifications

 Specifications should not discriminate between a partial order and its order extensions

Restrictions on specifications

 Specifications should not discriminate between a partial order and its order extensions

Restrictions on specifications

- Specifications should not discriminate between a partial order and its order extensions
- Specifications should not discriminate between a partial order and its "weakenings"

Restrictions on specifications

- Specifications should not discriminate between a partial order and its order extensions
- Specifications should not discriminate between a partial order and its "weakenings"

Restrictions on specifications

- Specifications should not discriminate between a partial order and its order extensions
- Specifications should not discriminate between a partial order and its "weakenings"

AlocTL

$$\varphi ::= a \mid \neg a \mid \varphi \lor \varphi \mid \varphi \land \varphi$$
$$\mid X_{i} \varphi \mid \varphi U_{i} \varphi \mid \neg X_{i} \top \mid \varphi \widetilde{U}_{i} \varphi$$
$$\mid Y_{i} \varphi \mid \varphi S_{i} \varphi \mid \neg Y_{i} \top \mid \varphi \widetilde{S}_{i} \varphi$$
$$\mid F_{i,i}(\operatorname{Out} \land \varphi) \mid \operatorname{Out} \land \mathsf{H}_{i,i} \varphi$$

AlocTL

$$\varphi ::= a \mid \neg a \mid \varphi \lor \varphi \mid \varphi \land \varphi$$

$$\mid \mathsf{X}_{i} \varphi \mid \varphi \mathsf{U}_{i} \varphi \mid \neg \mathsf{X}_{i} \top \mid \varphi \widetilde{\mathsf{U}}_{i} \varphi$$

$$\mid \mathsf{Y}_{i} \varphi \mid \varphi \mathsf{S}_{i} \varphi \mid \neg \mathsf{Y}_{i} \top \mid \varphi \widetilde{\mathsf{S}}_{i} \varphi$$

$$\mid \mathsf{F}_{i,j}(\mathrm{Out} \land \varphi) \mid \mathrm{Out} \land \mathsf{H}_{i,j} \varphi$$

AlocTL

$$\varphi ::= a \mid \neg a \mid \varphi \lor \varphi \mid \varphi \land \varphi$$

$$\mid \mathsf{X}_{i} \varphi \mid \varphi \mathsf{U}_{i} \varphi \mid \neg \mathsf{X}_{i} \top \mid \varphi \widetilde{\mathsf{U}}_{i} \varphi$$

$$\mid \mathsf{Y}_{i} \varphi \mid \varphi \mathsf{S}_{i} \varphi \mid \neg \mathsf{Y}_{i} \top \mid \varphi \widetilde{\mathsf{S}}_{i} \varphi$$

$$\mid \mathsf{F}_{i,j}(\mathrm{Out} \land \varphi) \mid \mathrm{Out} \land \mathsf{H}_{i,j} \varphi$$

AlocTL

$$\varphi ::= a \mid \neg a \mid \varphi \lor \varphi \mid \varphi \land \varphi$$
$$\mid X_{i} \varphi \mid \varphi U_{i} \varphi \mid \neg X_{i} \top \mid \varphi \widetilde{U}_{i} \varphi$$
$$\mid Y_{i} \varphi \mid \varphi S_{i} \varphi \mid \neg Y_{i} \top \mid \varphi \widetilde{S}_{i} \varphi$$
$$\mid F_{i,j}(Out \land \varphi) \mid Out \land H_{i,j} \varphi$$

AlocTL

$$\varphi ::= a \mid \neg a \mid \varphi \lor \varphi \mid \varphi \land \varphi$$
$$\mid X_{i} \varphi \mid \varphi \cup_{i} \varphi \mid \neg X_{i} \top \mid \varphi \widetilde{\cup}_{i} \varphi$$
$$\mid Y_{i} \varphi \mid \varphi \cup_{i} \varphi \mid \neg Y_{i} \top \mid \varphi \widetilde{\cup}_{i} \varphi$$
$$\mid F_{i,j}(\operatorname{Out} \land \varphi) \mid \operatorname{Out} \land \mathsf{H}_{i,j} \varphi$$

AlocTL

$$\varphi ::= a \mid \neg a \mid \varphi \lor \varphi \mid \varphi \land \varphi$$
$$\mid X_{i} \varphi \mid \varphi \cup_{i} \varphi \mid \neg X_{i} \top \mid \varphi \widetilde{\cup}_{i} \varphi$$
$$\mid Y_{i} \varphi \mid \varphi \cup_{i} \varphi \mid \neg Y_{i} \top \mid \varphi \widetilde{\cup}_{i} \varphi$$
$$\mid F_{i,j}(\operatorname{Out} \land \varphi) \mid \operatorname{Out} \land \mathsf{H}_{i,j} \varphi$$

AlocTL

$$\varphi ::= a \mid \neg a \mid \varphi \lor \varphi \mid \varphi \land \varphi$$
$$\mid X_{i} \varphi \mid \varphi \cup_{i} \varphi \mid \neg X_{i} \top \mid \varphi \widetilde{\cup}_{i} \varphi$$
$$\mid Y_{i} \varphi \mid \varphi \cup_{i} \varphi \mid \neg Y_{i} \top \mid \varphi \widetilde{\cup}_{i} \varphi$$
$$\mid F_{i,j}(\operatorname{Out} \land \varphi) \mid \operatorname{Out} \land \mathsf{H}_{i,j} \varphi$$

AlocTL

$$\varphi ::= a \mid \neg a \mid \varphi \lor \varphi \mid \varphi \land \varphi$$

$$\mid \mathsf{X}_{i} \varphi \mid \varphi \mathsf{U}_{i} \varphi \mid \neg \mathsf{X}_{i} \top \mid \varphi \widetilde{\mathsf{U}}_{i} \varphi$$

$$\mid \mathsf{Y}_{i} \varphi \mid \varphi \mathsf{S}_{i} \varphi \mid \neg \mathsf{Y}_{i} \top \mid \varphi \widetilde{\mathsf{S}}_{i} \varphi$$

$$\mid \mathsf{F}_{i,j}(\mathrm{Out} \land \varphi) \mid \mathrm{Out} \land \mathsf{H}_{i,j} \varphi$$

AlocTL

$$\varphi ::= a \mid \neg a \mid \varphi \lor \varphi \mid \varphi \land \varphi$$

$$\mid X_{i} \varphi \mid \varphi \cup_{i} \varphi \mid \neg X_{i} \top \mid \varphi \widetilde{\cup}_{i} \varphi$$

$$\mid Y_{i} \varphi \mid \varphi S_{i} \varphi \mid \neg Y_{i} \top \mid \varphi \widetilde{S}_{i} \varphi$$

$$\mid F_{i,j}(\text{Out } \land \varphi) \mid \text{Out } \land \mathsf{H}_{i,j} \varphi$$

with $a \in \Gamma$ and $i, j \in \operatorname{Proc}$

Formulae

- $G_1(\text{request} \longrightarrow F_{1,2}(\text{Out} \land \text{grant}))$
- $G_2(grant \longrightarrow (Out \land H_{2,1} request))$

AlocTL

$$\varphi ::= a \mid \neg a \mid \varphi \lor \varphi \mid \varphi \land \varphi$$
$$\mid X_{i} \varphi \mid \varphi U_{i} \varphi \mid \neg X_{i} \top \mid \varphi \widetilde{U}_{i} \varphi$$
$$\mid Y_{i} \varphi \mid \varphi S_{i} \varphi \mid \neg Y_{i} \top \mid \varphi \widetilde{S}_{i} \varphi$$
$$\mid F_{i,j}(Out \land \varphi) \mid Out \land H_{i,j} \varphi$$

with $a \in \Gamma$ and $i, j \in \text{Proc}$

Formulae

- $G_1(\text{request} \longrightarrow F_{1,2}(\text{Out} \land \text{grant}))$
- $G_2(grant \longrightarrow (Out \land H_{2,1} request))$

Theorem

AlocTL is closed under extension and weakening

• $\neg \mathsf{F}_{i,j} \varphi$ forbidden!

• $\neg \mathsf{F}_{i,j} \varphi$ forbidden!

• $\neg \mathsf{F}_{i,j} \varphi$ forbidden!

- $\neg F_{i,j} \varphi$ forbidden!
- $X_{i,j}\varphi$ forbidden!

- $\neg F_{i,j} \varphi$ forbidden!
- $X_{i,j}\varphi$ forbidden!

- $\neg \mathsf{F}_{i,j} \varphi$ forbidden!
- $X_{i,j}\varphi$ forbidden!

- $\neg F_{i,j} \varphi$ forbidden!
- $X_{i,j}\varphi$ forbidden!

Specification is not allowed to require concurrency

- $\neg \mathsf{F}_{i,j} \varphi$ forbidden!
- $X_{i,j}\varphi$ forbidden!

Specification is not allowed to require concurrency

Closure by weakening

Ensured by $F_{i,j} \wedge \text{Out}$ and $\text{Out} \wedge H_{i,j} \varphi$.

Outline

- Introduction
- 2 Model
- Specification
- 4 Decidability Results

Decidability Results

Theorem

The synthesis problem over singleton architectures is decidable for regular specifications.

Decidability Results

Theorem

The synthesis problem over singleton architectures is decidable for regular specifications.

Theorem

The distributed synthesis problem over strongly connected architectures is decidable for ${\rm Aloc}{\rm TL}$ specifications.

Decidability Results

Theorem

The synthesis problem over singleton architectures is decidable for regular specifications.

Theorem

The distributed synthesis problem over strongly connected architectures is decidable for ${\rm Aloc}{\rm TL}$ specifications.

Proof

By reduction to the singleton case.

Strongly connected architectures (2)

Proposition

If there are communication sets $\Sigma_{i,j}$ for $(i,j) \in E$ and a winning distributed strategy on the strongly connected architecture, then there is a winning strategy on the singleton.

Proof

Easy.

Strongly connected architectures

Proposition

If there is a winning strategy f over the singleton architecture then one can define internal signals sets and a distributed winning strategy for the strongly connected architecture.

Strongly connected architectures

Proposition

If there is a winning strategy f over the singleton architecture then one can define internal signals sets and a distributed winning strategy for the strongly connected architecture.

Proof

• We select a master process and a cycle.

Strongly connected architectures

Proposition

If there is a winning strategy f over the singleton architecture then one can define internal signals sets and a distributed winning strategy for the strongly connected architecture.

Proof

- We select a master process and a cycle.
- The master process will centralize information in order to simulate f and tell other processes which value to output

Strongly connected architectures

Proposition

If there is a winning strategy f over the singleton architecture then one can define internal signals sets and a distributed winning strategy for the strongly connected architecture.

Proof

- We select a master process and a cycle.
- The master process will centralize information in order to simulate f and tell other processes which value to output
- Aim: create a run that will be a weakening of some *f*-run over the singleton

Example

Specification: $\operatorname{req}_3 \to \mathsf{F}_{32} (\neg \, \mathsf{Y}_2 \operatorname{alert} \leftrightarrow \operatorname{grant})$

Strategy for the singleton: $f(\sigma) = \text{grant iff } \sigma \text{ contains } \text{req}_3 \text{ but no alert}$

Master collect information by sending a signal Msg through the cycle

1-----

t: 2

3 ———

t': -

Example

Specification: $\operatorname{req}_3 \to \mathsf{F}_{32} (\neg \, \mathsf{Y}_2 \operatorname{alert} \leftrightarrow \operatorname{grant})$

Strategy for the singleton: $f(\sigma) = \text{grant iff } \sigma \text{ contains req}_3 \text{ but no alert}$

Master collect information by sending a signal Msg through the cycle

Example

Specification: $\operatorname{req}_3 \to \mathsf{F}_{32}(\neg\,\mathsf{Y}_2\operatorname{alert} \leftrightarrow \operatorname{grant})$

Strategy for the singleton: $f(\sigma) = \text{grant iff } \sigma \text{ contains } \text{req}_3 \text{ but no alert}$

Master collect information by sending a signal Msg through the cycle

t': —

Example

Specification: $\operatorname{req}_3 \to \mathsf{F}_{32}(\neg\,\mathsf{Y}_2\operatorname{alert} \leftrightarrow \operatorname{grant})$

Strategy for the singleton: $f(\sigma) = \operatorname{grant}$ iff σ contains req_3 but no alert

Master collect information by sending a signal Msg through the cycle

t': -

Example

Specification: $\operatorname{req}_3 \to \mathsf{F}_{32}(\neg\,\mathsf{Y}_2\operatorname{alert} \leftrightarrow \operatorname{grant})$

Strategy for the singleton: $f(\sigma) = \text{grant iff } \sigma \text{ contains req}_3 \text{ but no alert}$

Master collect information by sending a signal Msg through the cycle

t': —

Example

Specification: $\operatorname{req}_3 \to \mathsf{F}_{32}(\neg\,\mathsf{Y}_2\operatorname{alert} \leftrightarrow \operatorname{grant})$

Strategy for the singleton: $f(\sigma) = \text{grant iff } \sigma \text{ contains } \text{req}_3 \text{ but no alert}$

Master collect information by sending a signal Msg through the cycle

Example

Specification: $\operatorname{req}_3 \to F_{32}(\neg Y_2 \operatorname{alert} \leftrightarrow \operatorname{grant})$

Strategy for the singleton: $f(\sigma) = \text{grant iff } \sigma \text{ contains req}_3 \text{ but no alert}$

Master collect information by sending a signal Msg through the cycle

Example

Specification: $\operatorname{req}_3 \to \mathsf{F}_{32}(\neg\,\mathsf{Y}_2\operatorname{alert} \leftrightarrow \operatorname{grant})$

Strategy for the singleton: $f(\sigma) = \text{grant iff } \sigma \text{ contains req}_3 \text{ but no alert}$

Master sends orders to other processes to simulate the strategy f

Example

Specification: $\operatorname{req}_3 \to \mathsf{F}_{32}(\neg\,\mathsf{Y}_2\operatorname{alert} \leftrightarrow \operatorname{grant})$

Strategy for the singleton: $f(\sigma) = \text{grant iff } \sigma \text{ contains req}_3 \text{ but no alert}$

Master sends orders to other processes to simulate the strategy f

Example

Specification: $\operatorname{req}_3 \to \mathsf{F}_{32}(\neg\,\mathsf{Y}_2\operatorname{alert} \leftrightarrow \operatorname{grant})$

Strategy for the singleton: $f(\sigma) = \text{grant iff } \sigma \text{ contains } \text{req}_3 \text{ but no alert}$

Master sends orders to other processes to simulate the strategy f

Example

Specification: $\operatorname{req}_3 \to F_{32}(\neg Y_2 \operatorname{alert} \leftrightarrow \operatorname{grant})$

Strategy for the singleton: $f(\sigma) = \text{grant iff } \sigma \text{ contains } \text{req}_3 \text{ but no alert}$

Master sends orders to other processes to simulate the strategy f

Example

Specification: $\operatorname{req}_3 \to \mathsf{F}_{32}(\neg\,\mathsf{Y}_2\operatorname{alert} \leftrightarrow \operatorname{grant})$

Strategy for the singleton: $f(\sigma) = \text{grant iff } \sigma \text{ contains } \text{req}_3 \text{ but no alert}$

Master sends orders to other processes to simulate the strategy f

Example

Specification: $\operatorname{req}_3 \to \mathsf{F}_{32}(\neg\,\mathsf{Y}_2\operatorname{alert} \leftrightarrow \operatorname{grant})$

Strategy for the singleton: $f(\sigma) = \text{grant iff } \sigma \text{ contains } \text{req}_3 \text{ but no alert}$

Master sends orders to other processes to simulate the strategy f

t': a a c c req₃ b a

Example

Specification: $\operatorname{req}_3 \to \mathsf{F}_{32}(\neg\,\mathsf{Y}_2\operatorname{alert} \leftrightarrow \operatorname{grant})$

Strategy for the singleton: $f(\sigma) = \text{grant iff } \sigma \text{ contains req}_3 \text{ but no alert}$

Master sends orders to other processes to simulate the strategy f

Example

Specification: $\operatorname{req}_3 \to \mathsf{F}_{32}(\neg\,\mathsf{Y}_2\operatorname{alert} \leftrightarrow \operatorname{grant})$

Strategy for the singleton: $f(\sigma) = \text{grant iff } \sigma \text{ contains req}_3 \text{ but no alert}$

Master sends orders to other processes to simulate the strategy f

Example

Specification: $\operatorname{req}_3 \to \mathsf{F}_{32}(\neg\,\mathsf{Y}_2\operatorname{alert} \leftrightarrow \operatorname{grant})$

Strategy for the singleton: $f(\sigma) = \text{grant iff } \sigma \text{ contains req}_3 \text{ but no alert}$

Master sends orders to other processes to simulate the strategy f

Example

Specification: $\operatorname{req}_3 \to \mathsf{F}_{32}(\neg\,\mathsf{Y}_2\operatorname{alert} \leftrightarrow \operatorname{grant})$

Strategy for the singleton: $f(\sigma) = \text{grant iff } \sigma \text{ contains req}_3 \text{ but no alert}$

Master sends orders to other processes to simulate the strategy f

Example

Specification: $\operatorname{req}_3 \to \mathsf{F}_{32}(\neg\,\mathsf{Y}_2\operatorname{alert} \leftrightarrow \operatorname{grant})$

Strategy for the singleton: $f(\sigma) = \text{grant iff } \sigma \text{ contains } \text{req}_3 \text{ but no alert}$

Master sends orders to other processes to simulate the strategy f

Example

Specification: $\operatorname{req}_3 \to \mathsf{F}_{32}(\neg\,\mathsf{Y}_2\operatorname{alert} \leftrightarrow \operatorname{grant})$

Strategy for the singleton: $f(\sigma) = \operatorname{grant}$ iff σ contains req_3 but no alert

Master sends orders to other processes to simulate the strategy f

Example

Specification: $\operatorname{req}_3 \to \mathsf{F}_{32}(\neg\,\mathsf{Y}_2\operatorname{alert} \leftrightarrow \operatorname{grant})$

Strategy for the singleton: $f(\sigma) = \operatorname{grant}$ iff σ contains req_3 but no alert

Master sends orders to other processes to simulate the strategy f

Example

Specification: $\operatorname{req}_3 \to \mathsf{F}_{32}(\neg\,\mathsf{Y}_2\operatorname{alert} \leftrightarrow \operatorname{grant})$

Strategy for the singleton: $f(\sigma) = \text{grant iff } \sigma \text{ contains req}_3 \text{ but no alert}$

Master sends orders to other processes to simulate the strategy f

Example

Specification: $\operatorname{req}_3 \to \mathsf{F}_{32}(\neg\,\mathsf{Y}_2\operatorname{alert} \leftrightarrow \operatorname{grant})$

Strategy for the singleton: $f(\sigma) = \text{grant iff } \sigma \text{ contains req}_3 \text{ but no alert}$

Master sends orders to other processes to simulate the strategy f

Lemma

t' is an extension of $\pi_{\Gamma}(t)$.

Lemma

t' is an extension of $\pi_{\Gamma}(t)$.

Lemma

t' is an f-maximal f-run.

Lemma

t' is an extension of $\pi_{\Gamma}(t)$.

Lemma

t' is an f-maximal f-run.

Lemma

If x <' y in t' and $x \parallel y$ in $\pi_{\Gamma}(t)$ then $\lambda(y) \in \text{In.}$

Lemma

t' is an extension of $\pi_{\Gamma}(t)$.

Lemma

t' is an f-maximal f-run.

Lemma

If x <' y in t' and $x \parallel y$ in $\pi_{\Gamma}(t)$ then $\lambda(y) \in \text{In.}$

Corollary

 $\pi_{\Gamma}(t)$ is a weakening of t'.

Lemma

t' is an extension of $\pi_{\Gamma}(t)$.

Lemma

t' is an f-maximal f-run.

Lemma

If x <' y in t' and $x \parallel y$ in $\pi_{\Gamma}(t)$ then $\lambda(y) \in \text{In.}$

Corollary

 $\pi_{\Gamma}(t)$ is a weakening of t'.

Conclusion

Then $t' \models \varphi$ and, by closure property $\pi_{\Gamma}(t) \models \varphi$.

Conclusion

- Asynchrony removes undecidability causes
- We have defined a new model of communication
- We have identified a class of decidable architectures
- Hopefully, many more to come!