How to get decidability of distributed synthesis for asynchronous systems

Paul Gastin Joint work with Thomas Chatain and Nathalie Sznajder

> January 29-31, 2009 Workshop ACTS

Outline

Synthesis of a reactive system

Two problems

- Decide whether there exists a program st. $P || E \models \varphi$, $\forall E$.
- Synthesis: If so, compute such a program.

For reasonable systems and specifications, the problems are decidable.

Distributed synthesis

Two problems

- Decide the existence of a distributed program such that their joint behavior P₁||P₂||P₃||P₄||E satisfies φ, for all E.
- Synthesis : If it exists, compute such a distributed program.

Distributed synthesis Synchronous or asynchronous semantics?

Synchronous semantics

- At each tick of a global clock, all processes and the environment output their new value
- Introduced in [PnueliRosner90].
- In general undecidable.

Asynchronous semantics

P.G., Benjamin Lerman, Marc Zeitoun

- Behaviors are Mazurkiewicz traces
- Players = controllable actions
- Causal memory
- Specification : regular over Mazurkiewicz traces

Theorem

Synthesis problem is decidable for co-graph dependence alphabets, i.e., for series-parallel systems.

Asynchronous semantics

Our model

- Processes evolve asynchronously for local actions (i.e., communications with the environment)
- They can synchronize by signals = common actions initiated by only one process. A process cannot refuse reception of a signal.
- Specifications :
 - over partial orders
 - will not restrain communication abilities

Decidability Results

Theorem

Synthesis problem is decidable for strongly-connected architectures

The model

Architectures

- Communication graph (*Proc*, *E*)
- Sets of input and output signals for each process : $\bigcup_{i \in Proc} \operatorname{In}_i \cup \bigcup_{i \in Proc} \operatorname{Out}_i = \Gamma$
- Processes choose sets $\Sigma_{i,j}$ for $(i,j) \in E$
- $\Sigma = \Gamma \cup \bigcup_{(i,j) \in E} \Sigma_{i,j}$
- For each process i, Σ_i is the set of signals it can send or receive, and $\Sigma_i^c = \operatorname{Out}_i \cup \bigcup_{j,(i,j) \in E} \Sigma_{i,j}$

The model: runs

Runs

A run is a Mazurkiewicz trace $t = (V, \lambda, \leq)$ over (Σ, D) where *a D b* if there is a process that takes part both in *a* and *b*

The model: strategies

Strategies

- Strategies are partial functions $f_i : \Sigma_i^* \to \Sigma_i^c$ with local memory.
- Signal semantics implies reactivity of processes to events.

The model: strategies

Strategies

- Strategies are partial functions $f_i : \Sigma_i^* \to \Sigma_i^c$ with local memory.
- Signal semantics implies reactivity of processes to events.
- A run respects a strategy f = (f_i)_{i∈Proc} (is an f-run) if each event of process i labelled with a controllable action respects the strategy f_i.
- A run t = (V, λ, ≤) is f-maximal if for each process i either
 V_i = λ⁻¹(Σ_i) is infinite, or f_i is undefined on the maximal event of V_i.

The model

Observable runs

Given a run $t = (V, \lambda, \leq)$, we define the observable run by

 $\pi_{\Gamma}(t) = (\Gamma, \lambda_{|\Gamma}, \leq \cap (\Gamma \times \Gamma))$

The synthesis problem

Given

• $\mathcal{A} = (\operatorname{Proc}, E, \Gamma)$

• φ a specification over $\Gamma\text{-labelled}$ partial orders (observable runs) Do there exist

• sets $\Sigma_{i,j}$ for each $(i,j) \in E$

• and strategies $f_i : \Sigma_i^* \to \Sigma_i^c$ for each $i \in \operatorname{Proc}$

such that every f-maximal f-run t is such that $\pi_{\Gamma}(t) \models \varphi$? If so, compute them

С

Communication induces order relation

Communication induces order relation

Communication induces order relation

Restrictions on specifications

• Specifications should not discriminate between a partial order and its order extensions

Input events are not controllable by processes

Input events are not controllable by processes

Restrictions on specifications

- Specifications should not discriminate between a partial order and its order extensions
- Specifications should not discriminate between a partial order and its "weakenings"

Example of a logic closed by extension and weakening

AlocTL

$$\begin{split} \varphi &::= a \mid \neg a \mid \varphi \lor \varphi \mid \varphi \land \varphi \\ &\mid \mathsf{X}_i \varphi \mid \varphi \, \mathsf{U}_i \varphi \mid \neg \, \mathsf{X}_i \top \mid \varphi \, \widetilde{\mathsf{U}}_i \varphi \\ &\mid \mathsf{Y}_i \varphi \mid \varphi \, \mathsf{S}_i \varphi \mid \neg \, \mathsf{Y}_i \top \mid \varphi \, \widetilde{\mathsf{S}}_i \varphi \\ &\mid \mathsf{F}_{i,j}(\operatorname{Out} \land \varphi) \mid \operatorname{Out} \land \mathsf{H}_{i,j} \varphi \end{split}$$

with $a \in \Gamma$ and $i, j \in Proc$

Example of a logic closed by extension and weakening

AlocTL

$$\begin{split} \varphi &::= a \mid \neg a \mid \varphi \lor \varphi \mid \varphi \land \varphi \\ &\mid \mathsf{X}_i \varphi \mid \varphi \, \mathsf{U}_i \varphi \mid \neg \, \mathsf{X}_i \top \mid \varphi \, \widetilde{\mathsf{U}}_i \varphi \\ &\mid \mathsf{Y}_i \varphi \mid \varphi \, \mathsf{S}_i \varphi \mid \neg \, \mathsf{Y}_i \top \mid \varphi \, \widetilde{\mathsf{S}}_i \varphi \\ &\mid \mathsf{F}_{i,j}(\operatorname{Out} \land \varphi) \mid \operatorname{Out} \land \mathsf{H}_{i,j} \varphi \end{split}$$

with $a \in \Gamma$ and $i, j \in Proc$

Example of a logic closed by extension and weakening

AlocTL

$$\varphi ::= \mathbf{a} \mid \neg \mathbf{a} \mid \varphi \lor \varphi \mid \varphi \land \varphi$$
$$\mid \mathsf{X}_{i} \varphi \mid \varphi \mathsf{U}_{i} \varphi \mid \neg \mathsf{X}_{i} \top \mid \varphi \widetilde{\mathsf{U}}_{i} \varphi$$
$$\mid \mathsf{Y}_{i} \varphi \mid \varphi \mathsf{S}_{i} \varphi \mid \neg \mathsf{Y}_{i} \top \mid \varphi \widetilde{\mathsf{S}}_{i} \varphi$$
$$\mid \mathsf{F}_{i,i}(\operatorname{Out} \land \varphi) \mid \operatorname{Out} \land \mathsf{H}_{i,i} \varphi$$

with $a \in \Gamma$ and $i, j \in Proc$

Formulae

•
$$G_1(\texttt{request} \longrightarrow F_{1,2}(\texttt{Out} \land \texttt{grant}))$$

•
$$G_2(\texttt{grant} \longrightarrow (\text{Out} \land \mathsf{H}_{2,1} \texttt{request}))$$

Theorem

 AlocTL is closed under extension and weakening

Closure by extension

•
$$\neg \mathsf{F}_{i,j} \varphi$$
 forbidden!

$$\wedge \neg \, \mathsf{F}_{1,2} \, \mathit{b}$$

Closure by extension

- $\neg \mathsf{F}_{i,j} \varphi$ forbidden!
- $X_{i,j}\varphi$ forbidden!

Closure by extension

- $\neg \mathsf{F}_{i,j} \varphi$ forbidden!
- $X_{i,j}\varphi$ forbidden!

Specification is not allowed to require concurrency

Closure by weakening

Ensured by $F_{i,j} \wedge Out$ and $Out \wedge H_{i,j} \varphi$.

Decidability Results

Theorem

The synthesis problem over singleton architectures is decidable for regular specifications.

Theorem

The distributed synthesis problem over strongly connected architectures is decidable for AlocTL specifications.

Proof

By reduction to the singleton case.

Strongly connected architectures (2)

Proposition

If there are communication sets $\Sigma_{i,j}$ for $(i,j) \in E$ and a winning distributed strategy on the strongly connected architecture, then there is a winning strategy on the singleton.

Proof Easy.

Strongly connected architectures

Proposition

If there is a winning strategy f over the singleton architecture then one can define internal signals sets and a distributed winning strategy for the strongly connected architecture.

We select a master process and a cycle.

- The master process will centralize information in order to simulate *f* and tell other processes which value to output
- Aim: create a run that will be a weakening of some *f*-run over the singleton

Centralize information

Example

 $\mathsf{Specification:} \ \mathrm{req}_3 \to \mathsf{F}_{32}(\neg \, \mathsf{Y}_2 \, \mathrm{alert} \leftrightarrow \mathrm{grant})$

Strategy for the singleton: $f(\sigma) = \text{grant}$ iff σ contains req₃ but no alert

Master collect information by sending a signal Msg through the cycle

Tell processes what to output

Example

Specification: $\operatorname{req}_3 \to F_{32}(\neg Y_2 \operatorname{alert} \leftrightarrow \operatorname{grant})$

Strategy for the singleton: $f(\sigma) = \text{grant}$ iff σ contains req₃ but no alert

Master sends orders to other processes to simulate the strategy f

Tell processes what to ouptut (2)

Example

Specification: $\operatorname{req}_3 \to F_{32}(\neg Y_2 \operatorname{alert} \leftrightarrow \operatorname{grant})$

Strategy for the singleton: $f(\sigma) = \text{grant}$ iff σ contains req₃ but no alert

Master sends orders to other processes to simulate the strategy f

Proof - end

Lemma

t' is an extension of $\pi_{\Gamma}(t)$.

Lemma

t' is an f-maximal f-run.

Lemma

If
$$x <' y$$
 in t' and $x \parallel y$ in $\pi_{\Gamma}(t)$ then $\lambda(y) \in \text{In.}$

Corollary

 $\pi_{\Gamma}(t)$ is a weakening of t'.

Conclusion

Then $t' \models \varphi$ and, by closure property $\pi_{\Gamma}(t) \models \varphi$.

Conclusion

- Asynchrony removes undecidability causes
- We have defined a new model of communication
- We have identified a class of decidable architectures
- Hopefully, many more to come!