Reconciling Weighted MSO and Probabilistic CTL

Benedikt Bollig and Paul Gastin

LSV, ENS Cachan, INRIA, CNRS, FRANCE

Chennai, 1 February 2010 Invited talk at DLT'09

Motivations

Analysis of quantitative systems

- Probabilistic Systems
- Minimization of costs
- Maximization of rewards
- Computation of reliability
- Optimization of energy consumption
- . .

Models (no time)

- Probabilistic automata (generative, reactive)
- Transition systems with costs or rewards
- ▶ ...

All are special cases of Weighted Automata.

Motivations

Specification

PCTL: Probabilistic CTL

PCTL*: Probabilistic CTL*

CTL\$: Valued CTL

wMSO: Weighted MSO

Hansson & Jonsson, '94

de Alfaro, '98

Buchholz & Kemper, '03, '09

Droste & Gastin, '05, '07, '09

Natural Problems

- Satisfiability
- Model Checking
 - Expressivity

Qualitative (Boolean) Picture

Quantitative Picture

Our aim is to compare and unify these logics

Plan

Weighted Automata

Weighted MSO Logic

Weighted CTL* and PCTL*

Weighted CTL* versus weighted MSO

Conclusion and Open problems

Semirings

Definition: Semiring

- $\mathbb{K} = (K, \oplus, \otimes, \mathbf{0}, \mathbf{1})$
- $(K, \oplus, \mathbf{0})$ is a commutative monoid,
- $(K, \otimes, \mathbf{1})$ is a monoid,
- \sim multiplication distributes over addition, and 0 is absorbant.

Examples:

- ▶ Boolean: $\mathbb{B} = (\{\mathbf{0}, \mathbf{1}\}, \lor, \land, \mathbf{0}, \mathbf{1})$
- Natural: $(\mathbb{N}, +, \cdot, 0, 1)$
- For Tropical: $(\mathbb{N} \cup \{\infty\}, \min, +, \infty, 0)$
- Probabilistic: $\mathbb{P}rob = (\mathbb{R}_{\geq 0}, +, \cdot, 0, 1)$
- Reliability: $([0,1], \max, \cdot, 0, 1)$

Weighted Automata by Examples

Several paths for $v = ab^n a$:

$$\pi_1 = 1 \xrightarrow{a} 4 \xrightarrow{b} 4 \cdots 4 \xrightarrow{b} 4 \xrightarrow{a} 6$$

weight(π_1) = $\frac{1}{2} \cdot 1^n \cdot \frac{1}{10} = \frac{1}{20}$

$$\pi_2 = 1 \xrightarrow{a} 5 \xrightarrow{b} 5 \cdots 5 \xrightarrow{b} 5 \xrightarrow{a} 6$$

weight(π_2) = $\frac{1}{3} \cdot (\frac{1}{2})^n \cdot 1 = \frac{1}{3 \cdot 2^n}$

If n is even:

$$\pi_3 = 1 \xrightarrow{a} 2 \xrightarrow{b} 3 \xrightarrow{b} 2 \cdots 2 \xrightarrow{a} 6$$

weight $(\pi_3) = \frac{1}{6} \cdot 1^n \cdot \frac{9}{10} = \frac{3}{20}$

Probabilistic: $\mathbb{P}rob = (\mathbb{R}_{>0}, +, \cdot, 0, 1)$

$$\llbracket \mathcal{A} \rrbracket(v) = \begin{cases} \frac{1}{20} + \frac{1}{3 \cdot 2^n} & \text{if } n \text{ is odd} \\ \frac{1}{5} + \frac{1}{3 \cdot 2^n} & \text{if } n \text{ is even} \end{cases}$$

Reliability:
$$([0,1], \max, \cdot, 0, 1)$$

$$\llbracket \mathcal{A} \rrbracket(v) = \begin{cases} \max(\frac{1}{20}, \frac{1}{3 \cdot 2^n}) & \text{if } n \text{ is odd} \\ \max(\frac{3}{20}, \frac{1}{3 \cdot 2^n}) & \text{if } n \text{ is even} \end{cases}$$

Reactive Probabilistic Finite Automata

Definition: RPFA on $\mathbb{P}rob = (\mathbb{R}_{\geq 0}, +, \cdot, 0, 1)$

A reactive probabilistic finite automaton (RPFA) is a weighted automaton $\mathcal{A}=(Q,q_0,\mu,F)$ over \mathbb{P} rob such that, for all $q\in Q$ and $a\in \Sigma$,

$$\sum_{q'\in Q}\mu(q,a,q')\in\{0,1\}$$

Generative Probabilistic Finite Automata

Definition: GPFA on $\mathbb{P}rob = (\mathbb{R}_{\geq 0}, +, \cdot, 0, 1)$

A generative probabilistic finite automaton (GPFA) is a weighted automaton $\mathcal{A} = (Q, q_0, \mu, F)$ over \mathbb{P} rob such that, for all $q \in Q$,

$$\sum_{(a,q')\in\Sigma\times Q}\mu(q,a,q')\in\{0,1\}$$

Plan

Weighted Automata

Weighted MSO Logic

Weighted CTL* and PCTL*

Weighted CTL* versus weighted MSO

Conclusion and Open problems

Weighted MSO

Short history

Introduced by Droste & Gastin (ICALP'05)

Aim: Logical characterization of weighted automata.

Generalization of Elgot's and Büchi's theorems.

Extended to

Trees	Droste & Vogler
-------	-----------------

Infinite words Droste & Kuske, Droste & Rahonis

Pictures Fischtner

Traces Meinecke

Distributed systems Bollig & Meinecke

▶ ...

No link with quantitative temporal logics such as PCTL or CTL\$.

Weighted Trees

Semantics of weighted MSO is on weighted trees which are unfoldings of weighted automata

Definition: Weighted Trees: $Trees(D, \mathbb{K}, \Sigma)$

$$t: D^* \longrightarrow K \times \Sigma$$

 $u \mapsto (\kappa_t(u), \ell_t(u))$

Definition: Syntax of wMSO($\mathbb{K}, \Sigma, \mathcal{C}$)

$$\varphi ::= k \mid \kappa(x) \mid \bowtie (\varphi_1, \dots, \varphi_{\operatorname{arity}(\bowtie)})$$
$$\mid P_a(x) \mid x \leq y \mid x \in X \mid \exists x. \varphi \mid \exists X. \varphi \mid \forall x. \varphi \mid \forall X. \varphi$$

where $k \in K$, $a \in \Sigma$, x, y are first-order variables, X is a set variable and $\bowtie \in \mathcal{C}$.

- $\mathcal C$ is a vocabulary of symbols \bowtie \in $\mathcal C$ with $\operatorname{arity}(\bowtie) \in \mathbb N$.
 - $\mathcal{C} = \{ \lor, \land, \lnot \}$
 - $\mathcal{C} = \{\land, \lnot, \prec\}$
- Each symbol \bowtie \in \mathcal{C} is given a semantics $\llbracket\bowtie
 rbracket{}
 ceil$: $K^{\mathrm{arity}(\bowtie)}
 ightharpoonup K$.
 - $\llbracket \lor \rrbracket = \oplus$
 - $\llbracket \wedge \rrbracket = \otimes$
 - $\llbracket \lnot
 rbracket(k) = egin{cases} 1 & ext{if } k = 0 \ 0 & ext{otherwise} \end{cases}$
 - Probabilistic: $\llbracket \neg \rrbracket(k) = 1 k \text{ or } \llbracket \neg \rrbracket(k) = \max(0, 1 k)$
 - Ordered semiring: $\llbracket \prec \rrbracket : K^2 \to \{\mathbf{0}, \mathbf{1}\}$

Definition: Syntax of wMSO($\mathbb{K}, \Sigma, \mathcal{C}$)

$$\varphi ::= k \mid \kappa(x) \mid \bowtie(\varphi_1, \dots, \varphi_{\operatorname{arity}(\bowtie)})$$
$$\mid P_a(x) \mid x \le y \mid x \in X \mid \exists x. \varphi \mid \exists X. \varphi \mid \forall x. \varphi \mid \forall X. \varphi$$

Definition: Semantics: $[\![\varphi]\!]_{\mathcal{V}}: Trees(D, \mathbb{K}, \Sigma_{\mathcal{V}}) \rightharpoonup K$

Let $\mathcal V$ be a finite set of first-order and second-order variables with $\operatorname{Free}(\varphi)\subseteq \mathcal V.$

Let $t: D^* \to K \times \Sigma$ be a weighted tree and σ a (\mathcal{V}, t) -assignment. $u \to (\kappa_t(u), \ell_t(u))$

Definition: Syntax of wMSO($\mathbb{K}, \Sigma, \mathcal{C}$)

$$\varphi ::= k \mid \kappa(x) \mid \bowtie (\varphi_1, \dots, \varphi_{\operatorname{arity}(\bowtie)})$$
$$\mid P_a(x) \mid x \leq y \mid x \in X \mid \exists x. \varphi \mid \exists X. \varphi \mid \forall x. \varphi \mid \forall X. \varphi$$

Definition: Semantics: $[\![\varphi]\!]_{\mathcal{V}}: Trees(D, \mathbb{K}, \Sigma_{\mathcal{V}}) \rightharpoonup K$

Let $\mathcal V$ be a finite set of first-order and second-order variables with $\operatorname{Free}(\varphi)\subseteq \mathcal V.$

Let $t: D^* \rightharpoonup K \times \Sigma$ be a weighted tree and σ a (\mathcal{V}, t) -assignment. $u \mapsto (\kappa_t(u), \ell_t(u))$

$$[\![k]\!]_{\mathcal{V}}(t,\sigma) = k$$

$$[\![\kappa(x)]\!]_{\mathcal{V}}(t,\sigma) = \kappa_t(\sigma(x))$$

$$\llbracket \bowtie(\varphi_1, \dots, \varphi_r) \rrbracket_{\mathcal{V}}(t, \sigma) = \llbracket \bowtie \rrbracket(\llbracket \varphi_1 \rrbracket_{\mathcal{V}}(t, \sigma), \dots, \llbracket \varphi_r \rrbracket_{\mathcal{V}}(t, \sigma)) \quad \text{if arity}(\bowtie) = r$$

Recall that
$$\llbracket \lor \rrbracket = \oplus$$
 and $\llbracket \land \rrbracket = \otimes$

Definition: Syntax of wMSO($\mathbb{K}, \Sigma, \mathcal{C}$)

$$\varphi ::= k \mid \kappa(x) \mid \bowtie(\varphi_1, \dots, \varphi_{\operatorname{arity}(\bowtie)})$$
$$\mid P_a(x) \mid x \leq y \mid x \in X \mid \exists x. \varphi \mid \exists X. \varphi \mid \forall x. \varphi \mid \forall X. \varphi$$

Definition: Semantics: $[\![\varphi]\!]_{\mathcal{V}}: Trees(D, \mathbb{K}, \Sigma_{\mathcal{V}}) \rightharpoonup K$

Let
$$\mathcal V$$
 be a finite set of first-order and second-order variables with $\operatorname{Free}(\varphi)\subseteq \mathcal V$. Let $t:\ D^*\ \rightharpoonup\ K\times \Sigma$ be a weighted tree and σ a $(\mathcal V,t)$ -assignment.

$$u \to (\kappa_t(u), \ell_t(u))$$

$$\llbracket \exists x. \varphi \rrbracket_{\mathcal{V}}(t, \sigma) = \bigoplus_{u \in \text{dom}(t)} \llbracket \varphi \rrbracket_{\mathcal{V} \cup \{x\}}(t, \sigma[x \to u])$$

$$\llbracket \exists X. \varphi \rrbracket_{\mathcal{V}}(t,\sigma) = \bigoplus_{U \subseteq \mathrm{dom}(t)} \llbracket \varphi \rrbracket_{\mathcal{V} \cup \{X\}}(t,\sigma[X \to U])$$

$$\llbracket \forall x. \varphi \rrbracket_{\mathcal{V}}(t, \sigma) = \bigotimes_{u \in \text{dom}(t)} \llbracket \varphi \rrbracket_{\mathcal{V} \cup \{x\}}(t, \sigma[x \to u])$$

$$\llbracket \forall X. \varphi \rrbracket_{\mathcal{V}}(t, \sigma) = \bigotimes_{U \subset \text{dom}(t)} \llbracket \varphi \rrbracket_{\mathcal{V} \cup \{X\}}(t, \sigma[X \to U])$$

First Example

Example:

Let
$$\varphi_1 = \exists x. (P_b(x) \land (\kappa(x) > 0)).$$

$$\llbracket \varphi_1 \rrbracket(t) = \bigoplus_{u \in \text{dom}(t)} (\ell_t(u) = b) \otimes (\kappa_t(u) > 0)$$

is the number of nodes labeled b and having a positive weight.

Examples and Macros

Definition: Useful macro

$$\varphi_1 \xrightarrow{+} \varphi_2 \stackrel{\text{def}}{=} \neg \varphi_1 \lor (\varphi_1 \land \varphi_2)$$

If φ_1 is boolean (i.e., if $\llbracket \varphi_1 \rrbracket$ takes values in $\{0,1\}$), we have

$$\llbracket \varphi_1 \xrightarrow{+} \varphi_2 \rrbracket_{\mathcal{V}}(t,\sigma) = \begin{cases} \llbracket \varphi_2 \rrbracket_{\mathcal{V}}(t,\sigma) & \text{if } \llbracket \varphi_1 \rrbracket_{\mathcal{V}}(t,\sigma) = \mathbf{1} \\ \mathbf{1} & \text{otherwise}. \end{cases}$$

If φ_1, φ_2 are boolean, then $\varphi_1 \xrightarrow{+} \varphi_2$ is the usual boolean implication.

Example:

Let
$$\varphi_2 = \forall x.((P_a(x) \land (\kappa(x) > 0)) \xrightarrow{+} \kappa(x)).$$

$$\llbracket \varphi_2 \rrbracket(t) = \bigotimes_{u \in \text{dom}(t)} ((P_a(u) \land (\kappa_t(u) > 0)) \xrightarrow{+} \kappa_t(u))$$

multiplies the positive values of a-labeled nodes.

Examples and Macros

Definition: Macros for Boolean formulas

$$\varphi_1 \underline{\vee} \varphi_2 \stackrel{\text{def}}{=} \neg (\neg \varphi_1 \land \neg \varphi_2)$$
$$\underline{\exists} x. \varphi \stackrel{\text{def}}{=} \neg \forall x. \neg \varphi$$
$$\underline{\exists} X. \varphi \stackrel{\text{def}}{=} \neg \forall X. \neg \varphi$$

Hence, we can easily define boolean formulas for all MSO properties.

Example:

- Let path(x, X) be a boolean formula stating that X is a maximal path starting from node x,
- The following boolean formula checks if X satisfies a SU b, $\psi(x,X) = \underline{\exists} \, z. (z \in X \land x < z \land P_b(z) \land \forall y. (x < y < z \xrightarrow{+} P_a(y)))$
- The quantitative formula $\xi(x,X) = \forall y.((y \in X \land x < y) \xrightarrow{+} \kappa(y))$ computes the weight of path X, i.e., the product of weights of nodes in $X \setminus \{x\}$.

Then, we compute the sum of weights of paths from x satisfying $a \, \mathrm{SU} \, b$ with

$$\exists X. (\operatorname{path}(x, X) \land \psi(x, X) \land \xi(x, X))$$

Original Weighted MSO

Definition: Original Weighted MSO

Droste & Gastin

$$\mathcal{C} = \{ \vee, \wedge \}$$

- negations over atomic formulas only
- models are unweighted finite words
 - $\kappa(x)$ is not allowed

Theorem: Droste & Gastin

From any w-Aut $\mathcal A$ we can construct a formula φ in sREMSO s.t. $[\![\varphi]\!] = [\![\mathcal A]\!]$,

From any formula φ in sREMSO we can construct a w-Aut $\mathcal A$ s.t. $[\![\varphi]\!] = [\![\mathcal A]\!]$.

sREMSO is a syntactic restriction of the existential fragment.

Definition: Satisfiability (for good semirings)

A formula φ is satisfiable if $\llbracket \varphi \rrbracket(w) \neq \mathbf{0}$ for some word w.

Corollary: Satisfiability

The satisfiability problem is decidable for sREMSO.

Proposition: Satisfiability

The satisfiability problem for wMSO($\mathbb{P}rob, \Sigma, \{\lor, \land, \neg, <\}$) is undecidable.

Proof:

Let $\mathcal{A} = (Q, q_0, \mu, F)$ be a reactive probabilistic finite automaton over Σ .

By [DG], $\exists \varphi \in \mathrm{sREMSO}(\mathbb{P}\mathrm{rob}, \Sigma, \{\vee, \wedge, \neg\})$ such that $[\![\varphi]\!](w) = [\![\mathcal{A}]\!](w)$ for all unweighted words $w \in \Sigma^*$.

Since φ does not use $\kappa(x)$, considering weighted or unweighted words or trees does not make any difference.

Now, for $p \in [0,1]$ and $w \in \Sigma^*$ we have $[p < \varphi](w) \neq 0$ iff [A](w) > p.

Hence, $p<\varphi$ is satisfiable iff the automaton $\mathcal A$ with threshold p accepts a nonempty language. By , A. Paz (1971) this is undecidable.

Plan

Weighted Automata

Weighted MSO Logic

Weighted CTL* and PCTL*

Weighted CTL* versus weighted MSO

Conclusion and Open problems

Weighted CTL*

Definition: Syntax of wCTL*(\mathbb{K} , Prop, \mathcal{C})

Boolean path formulas: $\psi ::= \varphi \mid \psi \wedge \psi \mid \neg \psi \mid \psi \text{ SU } \psi$

where $p \in Prop$, $k \in K$, $\bowtie \in C$.

Definition: Semantics for Boolean path formulas

 $t: \quad D^* \quad \xrightarrow{} \quad K \times \Sigma \qquad \text{weighted tree, } w \text{ branch of } t, \ u \text{ node on } w.$ $u \quad \xrightarrow{} \quad (\kappa_t(u), \ell_t(u))$

$$t, w, u \models \varphi$$
 if $\llbracket \varphi \rrbracket (t, u) \neq \mathbf{0}$

$$t, w, u \models \psi_1 \land \psi_2$$
 if $t, w, u \models \psi_1$ and $t, w, u \models \psi_2$

$$t, w, u \models \neg \psi$$
 if $t, w, u \not\models \psi$

$$t, w, u \models \psi_1 \text{ SU } \psi_2 \text{ if } \exists u < v \leq w : (t, w, v \models \psi_2 \text{ and } \forall u < v' < v : t, w, v' \models \psi_1)$$

Weighted CTL*

Definition: Syntax of wCTL*(\mathbb{K} , Prop, \mathcal{C})

Boolean path formulas:
$$\psi ::= \varphi \mid \psi \wedge \psi \mid \neg \psi \mid \psi \text{ SU } \psi$$

Quantitative state formulas:
$$\varphi ::= k \mid \kappa \mid p \mid \bowtie(\varphi_1, \dots, \varphi_{\operatorname{arity}(\bowtie)}) \mid \mu(\psi)$$

where $p \in Prop$, $k \in K$, $\bowtie \in C$.

Definition: Semantics for quantitative state formulas

Example for $\mu(\psi)$ on a finite tree

Example:

$$\llbracket \mu(\psi) \rrbracket(t, u) = \bigoplus_{w \in \text{Branches}(t) \mid t, w, u \models \psi} \bigotimes_{v \mid u < v \le w} \kappa_t(v)$$

$$[\![\mu(p \ \mathsf{SU} \ r)]\!](t) = \frac{2}{3} \cdot \frac{2}{3} \cdot \frac{1}{3} + \frac{2}{3} \cdot \frac{1}{3} \cdot \left(\frac{1}{6} + \frac{5}{6}\right) + \frac{1}{3} \cdot (1) = \frac{19}{27}$$

Unfoldings are infinite (regular) trees

We need infinite sums and products

Example:

$$\llbracket \mu(\mathsf{F}\,b) \rrbracket(t,\varepsilon) = \bigoplus_{w \text{ left branch}} \bigotimes_{v \mid \varepsilon < v \le w} \kappa_t(v) = \sum_{n \ge 0} \frac{1}{2^n} \cdot \frac{1}{4} \cdot 1 = \frac{1}{2}$$

Infinite sums and products

Some well-defined infinite sums or products

- $\bigoplus_{i \in I} k_i \text{ is well defined if } |\{i \in I \mid k_i \neq 0\}| < \infty,$
- $\bigotimes_{i \in I} k_i \text{ is well defined if } |\{i \in I \mid k_i \neq 1\}| < \infty\text{,}$
- $igotimes_{i\in I} k_i$ is well defined if $k_i=0$ for some $i\in I$,
- $\sum_{i>0} \frac{1}{2^i}$

Unfoldings of gPFA

Probability measure

- The weight of each branch is an infinite product which converges to 0.
- The sum of the weights of all branches starting from any node should be 1.
- To define $[\![\mu(\psi)]\!]$, we use the probability measure on the sequence space.

We get
$$[\![\mu(p\,\mathrm{SU}\,r)]\!](t,\varepsilon) = \sum_{n\geq 0} \left(\frac{2}{3}\right)^n \cdot \frac{1}{3} = 1.$$

PCTL* is a boolean fragment of wCTL*

Definition: Probabilistic computation tree logic PCTL* de Alfaro '98

The syntax of PCTL* is given by:

Boolean path formulas: $\psi ::= \varphi \mid \psi \land \psi \mid \neg \psi \mid \psi \text{ SU}^{\leq n} \psi$

Boolean state formulas: $\varphi ::= 0 \mid p \mid \neg \varphi \mid \varphi \land \varphi \mid \mu(\psi) \geq k \mid \mu(\psi) > k$

where $n \in \mathbb{N} \cup \{\infty\}$, $p \in Prop$, $k \in [0, 1]$.

Recall: Syntax of wCTL*($\mathbb{P}rob, Prop, \{\neg, \land, \geq\}$)

Boolean path formulas: $\psi ::= \varphi \mid \psi \land \psi \mid \neg \psi \mid \psi \text{ SU } \psi$

Quantitative state formulas: $\varphi := k \mid \kappa \mid p \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi \geq \varphi \mid \mu(\psi)$

where $p \in Prop$, $k \in \mathbb{R}$.

Remark: PCTL* is a boolean fragment of wCTL*

State formulas are restricted:

do not use κ .

use \geq and $\mu(\psi)$ only in comparisons of the form: $(\mu(\psi) \geq k)$ or $\neg(k \geq \mu(\psi))$

wCTL is a fragment of wCTL*

Definition: Syntax of wCTL(\mathbb{K} , Prop, \mathcal{C})

Only quantitative state formulas:

$$\varphi ::= k \mid \kappa \mid p \mid \bowtie(\varphi_1, \dots, \varphi_{\operatorname{arity}(\bowtie)}) \mid \mu(\varphi \operatorname{SU}^{\leq n} \varphi)$$

where $p \in Prop$, $k \in K$, $\bowtie \in \mathcal{C}$, $n \in \mathbb{N} \cup \{\infty\}$.

Recall: Syntax of wCTL*(\mathbb{K} , Prop, \mathcal{C})

Boolean path formulas: $\psi ::= \varphi \mid \psi \wedge \psi \mid \neg \psi \mid \psi \text{ SU } \psi$

Quantitative state formulas: $\varphi ::= k \mid \kappa \mid p \mid \bowtie (\varphi_1, \dots, \varphi_{\operatorname{arity}(\bowtie)}) \mid \mu(\psi)$

where $p \in Prop$, $k \in K$, $\bowtie \in C$.

Remark: wCTL is a fragment of wCTL*(\mathbb{K} , Prop, \mathcal{C})

Boolean path formulas are restricted to $\psi := \varphi \operatorname{SU}^{\leq n} \varphi$

PCTL is a fragment of wCTL

Definition: Probabilistic CTL

Hansson & Jonsson '94

Only Boolean state formulas:

$$\varphi ::= 0 \mid p \mid \neg \varphi \mid \varphi \wedge \varphi \mid \mu(\varphi \ \mathsf{SU}^{\leq n} \ \varphi) \geq k \mid \mu(\varphi \ \mathsf{SU}^{\leq n} \ \varphi) > k$$

where $n \in \mathbb{N} \cup \{\infty\}$, $p \in Prop$, $k \in [0, 1]$.

Recall: Syntax of wCTL($\mathbb{P}rob, Prop, \{\neg, \land, \geq\}$)

Only quantitative state formulas:

$$\varphi ::= k \mid \kappa \mid p \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi \ge \varphi \mid \mu(\varphi \mathsf{SU}^{\le n} \varphi)$$

where $p \in Prop$, $k \in [0,1]$, $n \in \mathbb{N} \cup \{\infty\}$.

Remark: PCTL is a fragment of wCTL($\mathbb{P}rob, Prop, \{\neg, \land, \geq\}$)

Plan

Weighted Automata

Weighted MSO Logic

Weighted CTL* and PCTL*

Weighted CTL* versus weighted MSO

Conclusion and Open problems

wCTL* is a fragment of wMSO

Theorem:

wCTL* is a fragment of wMSO for finite trees and arbitrary semirings.

Proof: Translation of boolean path formulas

$$\psi ::= \varphi \mid \psi \wedge \psi \mid \neg \psi \mid \psi \text{ SU } \psi$$

Implicitely, ψ has two free variables, the path (set of nodes) and the current node. We build a boolean MSO formula $\psi(x,X)\in \mathsf{bMSO}(\mathbb{K},\Sigma,\mathcal{C}).$

$$\begin{split} \underline{\varphi}(x,X) &= (\overline{\varphi}(x) \neq \mathbf{0}) \\ \underline{\psi_1 \wedge \psi_2}(x,X) &= \underline{\psi_1}(x,X) \wedge \underline{\psi_2}(x,X) \\ \underline{\neg \psi}(x,X) &= \neg \underline{\psi}(x,X) \\ \psi_1 \text{ SU } \psi_2(x,X) &= \underline{\exists} \, z. (z \in X \wedge x < z \wedge \psi_2(z,X) \wedge \forall y. ((x < y < z) \xrightarrow{+} \psi_1(y,X))) \end{split}$$

We assume that the interpretation of X is indeed a path.

We use $\underline{\exists}$, $\underline{\lor}$ and $\overset{+}{\rightarrow}$ to get boolean formulas.

wCTL* is a fragment of wMSO

Proof: Translation of quantitative state formulas

$$\varphi ::= k \mid \kappa \mid p \mid \bowtie(\varphi_1, \dots, \varphi_{\operatorname{arity}(\bowtie)}) \mid \mu(\psi)$$

Here, φ only has an implicit free variable, the current node.

We build a weighted MSO formula $\overline{\varphi}(x) \in \mathsf{bMSO}(\mathbb{K}, \Sigma, \mathcal{C})$.

$$\llbracket \mu(\psi) \rrbracket(t,u) = \bigoplus_{w \in \text{Branches}(t) \mid t,w,u \models \psi} \bigotimes_{v \mid u < v \leq w} \kappa_t(v)$$

$$\overline{\mu(\psi)}(x) = \exists X. (\text{path}(x,X) \land \underline{\psi}(x,X) \land \xi(x,X))$$

$$\text{path}(x,X) = x \in X$$

$$\land \forall z. (z \in X \xrightarrow{+} (z = x \veebar \exists y. (y \in X \land y \lessdot z)))$$

$$\land \neg \exists y, z, z' \in X. (y \lessdot z \land y \lessdot z' \land z \neq z')$$

$$\land \forall y. ((y \in X \land \exists z. (y \lessdot z)) \xrightarrow{+} \exists z. (z \in X \land y \lessdot z))$$

$$\xi(x,X) = \forall y. ((y \in X \land x \lessdot y) \xrightarrow{+} \kappa(y))$$

wCTL is a fragment of wMSO on gPFA

Theorem:

wCTL is a fragment of wMSO on probabilistic systems (GPFA).

Unfoldings of probabilistic systems (GPFA) are infinite.

The translation of $\overline{\mu(\psi)}(x)$ given above does not work.

We need to be careful with the induced infinite sums and products.

wCTL is a fragment of wMSO on gPFA

Proof: Translation of $\mu(\varphi_1 \operatorname{SU}^{\leq n} \varphi_2)$

$$\overline{\mu(\varphi_1 \operatorname{SU}^{\leq n} \varphi_2)}(x) = \exists X. (\operatorname{path}^{\leq n}(x, X) \land \underline{\psi}(x, X) \land \xi(x, X))$$

$$\operatorname{path}^{\leq \infty}(x, X) = x \in X$$

$$\land \forall z. (z \in X \xrightarrow{+} (z = x \lor \exists y. (y \in X \land y \lessdot z)))$$

$$\land \neg \exists y. z. z' \in X. (y \lessdot z \land y \lessdot z' \land z \neq z')$$

if $n \in \mathbb{N}$, $\operatorname{path}^{\leq n}(x, X) = \operatorname{path}^{\leq \infty}(x, X) \land \neg \underline{\exists} x_0 \dots \underline{\exists} x_n$.

$$(x_0 \in X \land \dots \land x_n \in X \land x < x_0 < x_1 < \dots < x_n)$$

$$\psi = (\varphi_1 \land \neg \varphi_2) \mathsf{SU} (\varphi_2 \land \neg (\mathbf{0} \mathsf{SU} \mathbf{1}))$$

$$\xi(x, X) = \forall y.((y \in X \land x < y) \xrightarrow{+} \kappa(y))$$

 $\operatorname{path}^{\leq n}(x,X) \wedge \underline{\psi}(x,X)$ is a boolean formula which holds if and only if X is a minimal path satisfying $\varphi_1 \operatorname{SU}^{\leq n} \varphi_2$.

 $\xi(x,X)$ computes the probability of this finite path.

 $\exists X$ computes the sum of the probability of such paths.

Plan

Weighted Automata

Weighted MSO Logic

Weighted CTL* and PCTL*

Weighted CTL* versus weighted MSO

5 Conclusion and Open problems

Conclusion

- ▶ There is a very rich theory for probabilistic systems.
 - Various logics for specification
 - Efficient algorithms for model checking
 - ▶ and much more (probabilistic bisimulation, ...)
- Analysis of other quantitative properties is more and more important.
 Reliability, energy consumption, . . .
- ► We should develop a strong theory for analysis of various quantitative aspects

 Building upon existing theory of weighted automata
 and the large experience in analysing probabilistic systems.

Open problems

Problems on wMSO

- Identify fragments for which satisfiability and model checking are decidable.
- Compare expressivity of wCTL* (or PCTL*) and wMSO on GPFA.
- Compare expressivity of wCTL* (or PCTL*) and wMSO on RPFA.
- Extend the comparison to other semirings.
 - E.g. the Expectation semiring
 Useful to compute expected rewards.

Eisner '01

Find a weighted μ -calculus which contains wCTL and compare its expressivity with wMSO.

Weighted μ -calculus on words

Meinecke, DLT'09

Weighted μ -calculus for quantitative games

Fischer, Grädel & Kaiser '08

Open problems

Quantitative bisimulation

- Probabilistic bisimulation Larsen & Skou, '91 It is not quantitative, it defines a boolean relation on states.
- Generalized to weighted automata and CTL\$ Buchholz & Kemper '09 But still not quantitative.
- We need to study bisimulation distances expressing how close two states are.

 See Fahrenberg, Larsen & Thrane '09