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Motivations

Analysis of quantitative systems
Probabilistic Systems
Minimization of costs
Maximization of rewards
Computation of reliability

Optimization of energy consumption

Models (no time)

Probabilistic automata (generative, reactive)

Transition systems with costs or rewards

All are special cases of Weighted Automata.



Motivations

Specification

PCTL: Probabilistic CTL Hansson & Jonsson, '94
PCTL*: Probabilistic CTL* de Alfaro, '98
CTLS: Valued CTL Buchholz & Kemper, '03, '09
wMSO: Weighted MSO Droste & Gastin, '05, '07, '09

Natural Problems
Satisfiability
Model Checking
Expressivity



Qualitative (Boolean) Picture
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Quantitative Picture
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Our aim is to compare and unify these logics
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Semirings

Definition: Semiring
K= (K&, ®,0,1)
(K,®,0) is a commutative monoid,
(K,®,1) is a monoid,
multiplication distributes over addition, and 0 is absorbant.

Examples:
Boolean: B = ({0,1},V,A,0,1)
Natural: (IN,+,-,0,1)
Tropical: (INU {oo}, min, 4, 00, 0)
Probabilistic: Prob = (R>¢,+,-,0,1)
Reliability: ([0, 1], max,-,0,1)



Weighted Automata by Examples

Several paths for v = ab™a:

m=1%4%4...4%54%5¢
weight(m) =417 L = L

If n is even: . .
m=1$2%3%2 256
weight(ms) = ¢ - 1" & = =
Probabilistic: Prob = (R>¢,+,-,0,1)

1 1

L + L ifnisodd
A _ )20 " 3a2m
[A](v) {%+ﬁﬁ if 1 is even

Reliability: ([0, 1], max,-,0,1)

max (o, =) if n is odd
[Al(v) = PRI
max(sg, 357) if nis even




Reactive Probabilistic Finite Automata
Definition: RPFA on Prob = (Rxo, +,+,0,1)

A reactive probabilistic finite automaton (RPFA ) is a weighted automaton
A= (Q, qo, pt, F) over Prob such that, for all g € Q and a € &,

> wlg,a,q") €{0,1}

EQ




Generative Probabilistic Finite Automata

Definition: GPFA on Prob = (R>¢,+,,0,1)

A generative probabilistic finite automaton (GPFA ) is a weighted automaton
A = (Q, qo, i, F') over Prob such that, for all ¢ € Q,

> ulgae,q)e{0,1}

(a,¢")€EXXQ



Plan

Weighted Automata

© Weighted MSO Logic

Weighted CTL" and PCTL"

Weighted CTL" versus weighted MSO

Conclusion and Open problems

A



Weighted MSO

Short history

Introduced by Droste & Gastin (ICALP’05)
Aim: Logical characterization of weighted automata.
Generalization of Elgot's and Biichi's theorems.

Extended to

Trees Droste & Vogler
Infinite words Droste & Kuske, Droste & Rahonis
Pictures Fischtner
Traces Meinecke
Distributed systems Bollig & Meinecke

No link with quantitative temporal logics such as PCTL or CTLS$.



Weighted Trees

Semantics of weighted MSO is on weighted trees
which are unfoldings of weighted automata

Definition: Weighted Trees: Trees(D, K, X)

t: D* = Kx¥%
u = (Re(w), be(u))



Extended Weighted MSO

Definition: Syntax of wMSO(K, X, C)

K(‘L) | N(‘rjl gy [rjaril,y(bd))
| Po(z) |z <y|xeX|3zp|IXp|Vr.o|VX.@

where k € K, a € X, x,y are first-order variables, X is a set variable and 1 € C.

pu=k

C is a vocabulary of symbols >t € C with arity () € IN.
C={V,A}
C={n~=}
Each symbol 1 € C is given a semantics [ : K2 %) ~ [
Vl=e
[N =@
1 ifk=0
(k) =
[F1(k) {0 otherwise
Probabilistic: [-](k) =1 —k or [-](k) = max(0,1 — k)
Ordered semiring: [<] : K* — {0,1}



Extended Weighted MSO
Definition: Syntax of wMSO(K, X, C)

P = k | /Q(J?) | N((Pl, 0 -;(parity(bd))
| Po(z) |z <y|xzeX|3zp|IX.p|Vr.o|VX.@

Definition: Semantics: [¢]y : Trees(D, K, ¥y) = K
Let V be a finite set of first-order and second-order variables with Free(y) C V.

Let t: D* — KXxX be a weighted tree and o a (V, t)-assignment.
u = (ke(w), li(w))

1 ifl(o(x)) =a
0 otherwise

[Pa(z)]v(t,0) = {

1 ifo(z) <o(y) < is the prefix
[z <ylv(t, o) = {0 o ordering on dom(t)

if o(x) € 0(X)
otherwise



Extended Weighted MSO

Definition: Syntax of wMSO(K, X, C)

P = k | /Q(JI) | N((Pl, 0 -;(parity(bd))
| Po(z) |z <y|axeX|3zp|IX.p|Vr.o|VX.@

Definition: Semantics: [¢]y : Trees(D, K, 2y) = K

Let V be a finite set of first-order and second-order variables with Free(y) C V.

Let t: D* — KxX be a weighted tree and o a (V,t)-assignment.
u = (ke(w), li(w))

[[k]]V(ta U) =k
[k(x)]v (¢, o)
[[N(Spla SERE) (pr)]]V(t’ U)

ki(o(2))
<l ([e1lv (@, o), - [or]v (s 0)) if arity(q) = r

Recall that [V] = & and [A] = ®



Extended Weighted MSO
Definition: Syntax of wMSO(K, X, C)

P = k | :‘i(iﬂ) | N(wly ceey Qparity(m))
| Po(z) |z <y|xeX|3zp|IXp|Vr.o|VX.@
Definition: Semantics: [¢]y : Trees(D, K, X)) = K

Let V be a finite set of first-order and second-order variables with Free(y) C V.

Let t: D* — KXxX be a weighted tree and o a (V, t)-assignment.
u = (ke(w), b (w))

Brelvto)= P lelvowt olz — ul)

uedom(t)

[[HXSD]]V(taa) = @ [[SD]]VU{X}(t7J[X — U])
UCdom(t)

[[Vx.go]]v(t,a) = ® [[@]]Vu{m}(tag[x — U])
u€edom(t)

VX elvt,o)= @ lelvurxy(tolX = V)
UCdom(t)



First Example

Example:
Let 1 = 3z.(By(z) A (k(z) > 0)).

[plt)= P ((w) =b) ® (ke(u) > 0)

u€edom(t)

is the number of nodes labeled b and having a positive weight.



Examples and Macros

Definition: Useful macro
def
O1 5 02 F 1 V (01 A o)

If 1 is boolean (i.e., if [i1] takes values in {0,1}), we have

[er 5 @alv(t, o) = {EQPQ]]V@J) :tEirlv]Q/‘i)sS’ o)=1

If 1,2 are boolean, then ¢ =+ o is the usual boolean implication.

Example:

Let gy = Va.((Pa(z) A (k(z) > 0)) = k(x)).

[eal() = @ (Palu) A (re(u) > 0) 5 ri(u)

uedom(t)

multiplies the positive values of a-labeled nodes.



Examples and Macros
Definition: Macros for Boolean formulas
1Y 92 E ~(=p1 A —p2)
2.0 Vr.—p
IX.o ¥ VX~

Hence, we can easily define boolean formulas for all MSO properties.

Example:

Let path(z, X) be a boolean formula stating that X is a maximal path
starting from node «z,

The following boolean formula checks if X satisfies a SU b,
W, X)=32.(2€ XAz <z2AP(2) AVy.(z <y < 2z > Py(y)))

The quantitative formula &(z, X) = Vy.((y € X Az < y) - k(y)) computes
the weight of path X, i.e., the product of weights of nodes in X \ {z}.

Then, we compute the sum of weights of paths from x satisfying a SU b with

IX.(path(z, X) A (x, X) Aé(z, X))



Original Weighted MSO

Definition: Original Weighted MSO Droste & Gastin
C={Vv,A}
negations over atomic formulas only
models are unweighted finite words

k(x) is not allowed

Theorem: Droste & Gastin
From any w-Aut A we can construct a formula ¢ in sSREMSO s.t. [¢] = [A],
From any formula ¢ in SREMSO we can construct a w-Aut A s.t. [¢] = [A].

sREMSO is a syntactic restriction of the existential fragment.

Definition: Satisfiability (for good semirings)
A formula ¢ is satisfiable if [¢](w) # 0 for some word w.

Corollary: Satisfiability
The satisfiability problem is decidable for sSREMSO.



Extended Weighted MSO

Proposition: Satisfiability
The satisfiability problem for wMSO(Prob, ¥, {V, A, =, <}) is undecidable.

Proof:

Let A= (Q,qo, 1, F) be a reactive probabilistic finite automaton over .

By [DG], 3p € sREMSO(Prob, X, {V, A, —}) such that [¢](w) = [A](w) for all
unweighted words w € ¥*.

Since ¢ does not use k(x), considering weighted or unweighted words or trees does
not make any difference.

Now, for p € [0,1] and w € ¥* we have [p < ¢](w) # 0 iff [A](w) > p.

Hence, p < ¢ is satisfiable iff the automaton 4 with threshold p accepts a nonempty
language. By , A. Paz (1971) this is undecidable.
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Weighted CTL*

Definition: Syntax of wCTL*(K, Prop,C)

Boolean path formulas: Y= |vAY || SUY

Quantitative state formulas: @ ==k | & | p | (01, - ., Qarity(s)) | #(¥)
where p € Prop, k € K, < €C.

Definition: Semantics for Boolean path formulas

t: D¥ — KxX weighted tree, w branch of ¢, u node on w.
u = (ke(u), le(u))

hwubye i [plu) £0

tw,u =11 Ao if tw,u =1y and w,u = iy

t,w,u E if t,w,u b=

t,w,u =11 SUs if Ju<v<w: (t,w,v e and Vu < v’ <v:t,w,v' 1)



Weighted CTL*

Definition: Syntax of wCTL*(K, Prop,C)

Boolean path formulas: Yu=@ |YvAY || SUYp

Quantitative state formulas: @ =k | k| p [ >(01, .. ., Parity()) | ()
where p € Prop, k € K, < €C.

Definition: Semantics for quantitative state formulas
t: D* =~ KxX weighted tree, u node of t, ¥ = 27707,
u = (ke(w), be(u))

1 ifpel(u)
0 otherwise

[[p]](t,u) = {

[Palprs - -5 0r)l(E w) = ATl w), - Tor ) (8 w))  if arity(ba) = 7

()] (¢, ) = P 0

wéEBranches(t) | t,w,ul=yY v |u<v<w



Example for ;(¢)) on a finite tree

Example:

[t u) = &) X i)

wéEBranches(t) | t,w,ul=y  v|u<v<w

le

T

3{p} 3{r}

/N /N

TS 0! M D

/NN /N /N

ot 3l 5o 3Hr} e} 3} sle} {r}

[[u(pSUT)]](t)=g-z-1+g-1-(é+g>+%-(1)=;—g



Unfoldings are infinite (regular) trees

(SIS
S
[u—
S
N
S
N[=
S
N
S

la la la 1b : la la




We need infinite sums and products

Example:
1 1 1
w left branch v |e<v<w n>0

le

/ |
e ta ia
o |
1a 1b %(L %a %a 1a
N N




Infinite sums and products

Some well-defined infinite sums or products

@D ki is well defined if [{i € I | k; # 0}| < o0,
el
Q) ki is well defined if [{i € I | k; # 1}| < o0,
el
®ki is well defined if k; = 0 for some i € I,
el

1

2i
i>0



Unfoldings of gPFA

2p) e
() 30} 5}
%{p}%{’“} 2{p}/ \l{r} l{p}/ \é{r}
3 3 6 6
() /N /N
» Hpb 30h P} HOY O EHR) H0) B0} 3

gir}

Probability measure
The weight of each branch is an infinite product which converges to 0.
The sum of the weights of all branches starting from any node should be 1.

To define [u(v))], we use the probability measure on the sequence space.

We get [u(p SUD](t,2) = 3 (;)n Lo

n>0



PCTL" is a boolean fragment of wCTL"

Definition: Probabilistic computation tree logic PCTL*  de Alfaro '98
The syntax of PCTL" is given by:

Boolean path formulas: V=@ | A || SUS"

Boolean state formulas: eu=0|p|-p|leAe|pn@)>k]|u) >k

where n € NU {oo}, p € Prop, k € [0,1].

Recall: Syntax of wCTL*(Prob, Prop, {—, A, >})

Boolean path formulas: Y= |vAY || SUY
Quantitative state formulas: @ =k |x|p|—@| oA | o> ¢ | u)
where p € Prop, k € R.

Remark: PCTL" is a boolean fragment of wCTL"
State formulas are restricted:
do not use ~,

use > and (1)) only in comparisons of the form: (u(v) > k) or =(k > u(v)))



wCTL is a fragment of wCTL"

Definition: Syntax of wCTL(K, Prop,C)
Only quantitative state formulas:
u=k|k|p|x(e1, ..., Paritya) | 1l SUS" @)
where p € Prop, k € K, <€ C, n € NU {co}.
Recall: Syntax of wCTL*(K, Prop,C)
Boolean path formulas: Yu=@ |YvAY || SUYp

Quantitative state formulas: @ =k | |p|>(p1,. .., Paritye=)) | 1(1)
where p € Prop, k € K, < €C.

Remark: wCTL is a fragment of wCTL*(K, Prop,C)

Boolean path formulas are restricted to ¢ ::= ¢ SUS"



PCTL is a fragment of wCTL

Definition: Probabilistic CTL Hansson & Jonsson '94

Only Boolean state formulas:
u=0|pl-p|eAe|ueSUs" o) > k| ulpSUS"¢) >k

where n € NU {oo}, p € Prop, k € [0,1].

Recall: Syntax of wCTL(Prob, Prop, {—, A, >})

Only quantitative state formulas:
pu=k|r|p|-pleAe|e>e|ulpSUs" o)
where p € Prop, k € [0,1], n € NU {oc}.

Remark: PCTL is a fragment of wCTL(Prob, Prop, {—,A,>})
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wCTL" is a fragment of wMSO

Theorem:

wCTL" is a fragment of wMSO for finite trees and arbitrary semirings.

Proof: Translation of boolean path formulas

Y=g |YAY | |YSUy

Implicitely, ¢ has two free variables, the path (set of nodes) and the current node.

We build a boolean MSO formula ¥ (z, X)) € bMSO(K, X, C).

#(z,X) = (@(z) #0)
Y1 A o(x, X) = 1 (z, X) A 2z, X)
—¥(z, X) = ¢(z, X)
1 SU a(z, X) = 32.(2 € X Az < 2 Aoz, X) AVy.((z <y < 2) 5 ¢y,

We assume that the interpretation of X is indeed a path.

We use 3, V and 1o get boolean formulas.

X))



wCTL" is a fragment of wMSO

Proof: Translation of quantitative state formulas

pu=k|k|p|ea(pr,. .., atye) | H(V)
Here, ¢ only has an implicit free variable, the current node.
We build a weighted MSO formula 3(z) € bMSO(K, 3, C).

[ ()], u) = ) Q) rilv)
weEBranches(t) | t,w,ulE=y v |u<v<w
) (@) = IX.(path(z, X) A (z, X) A&z, X))
path(z, X) =2z € X
AVz.(z€ X 5 (z=2VvIy.(ye X Ay < z)))
A=y, 2,2 e X(y<zAhy<2 Nz #2)
AVy.((ye X ANIz.(y < 2)) i>ﬂz(z eXANy<z))

£z, X) =Vy.(ye X Az <y) 5 k()



wCTL is a fragment of wMSO on gPFA

Theorem:
wCTL is a fragment of wMSO on probabilistic systems (GPFA).

Unfoldings of probabilistic systems (GPFA) are infinite.

The translation of x(1)(x) given above does not work.

We need to be careful with the induced infinite sums and products.



wCTL is a fragment of wMSO on gPFA

Proof: Translation of 11 SUS™ )

11(01 SUS™ 9)(z) = 3X . (path=" (2, X) A ¢b(, X) A &(x, X))
pathS®(z, X) =z € X

AVz.(z€ X 5 (z=2VvIy.(y€ X Ay < 2)))

A=y, 2,2 e X(y<zAhy<2 Nz #2)
ifnelN, pathS"(z, X) = pathS®(z, X) A=3z...Jz,.

(o€ XN Nz, € XNax<zog<z1 < - <Ty)
¥ = (p1 A p2) SU (p2 A (0 SU 1))
&(@,X) =Vy.((y € X Nz <y) 5 5(y))

path="(z, X) A (z, X) is a boolean formula which holds if and only if
X is a minimal path satisfying ¢ SUS"™ .
&(x, X)) computes the probability of this finite path.

3X computes the sum of the probability of such paths.
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Conclusion

» There is a very rich theory for probabilistic systems.

» Various logics for specification
» Efficient algorithms for model checking
» and much more (probabilistic bisimulation, ...)

» Analysis of other quantitative properties is more and more important.
Reliability, energy consumption, ...

» We should develop a strong theory for analysis of various quantitative aspects

Building upon existing theory of weighted automata
and the large experience in analysing probabilistic systems.



Open problems

Problems on wMSO
Identify fragments for which satisfiability and model checking are decidable.
Compare expressivity of wCTL* (or PCTL") and wMSO on GPFA.
Compare expressivity of wCTL* (or PCTL*) and wMSO on RPFA.

Extend the comparison to other semirings.
E.g. the Expectation semiring Eisner '01
Useful to compute expected rewards.

Find a weighted p-calculus which contains wCTL and compare its expressivity
with wMSO.

Weighted p-calculus on words Meinecke, DLT'09
Weighted p-calculus for quantitative games Fischer, Gradel & Kaiser '08



Open problems

Quantitative bisimulation

Probabilistic bisimulation Larsen & Skou, '91
It is not quantitative, it defines a boolean relation on states.

Generalized to weighted automata and CTL$ Buchholz & Kemper '09
But still not quantitative.

We need to study bisimulation distances expressing how close two states are.
See Fahrenberg, Larsen & Thrane '09
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