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We suffer only 2\% of failures.

* Increment numbers in a file
Exams will take place in May 2019. Students should ...
Exams will take place in May 2020. Students should ...

» Reorder arguments (bibtex -> bbl)

Author = {Engelfriet, Joost and Hoogeboom, Hendrik Jan},
Year = {2001},

[EHO1] Joost Engelfriet and Hendrik Jan Hoogeboom.
[EHO1] J. Engelfriet and H.J. Hoogeboom.




SUMMARY

* Operational models (transducers)
« 1DFT = sequential functions
* fINFT = rational functions
» 2DFT = regular functions

» Transducers with registers

* Modular descriptions
 Rational expressions

» Composition




SEQUENTIAL FUNCTIONS - 1DFT

* Deterministic left to right parsing of the input
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SEQUENTIAL FUNCTIONS - 1DFT

Exams will take place in May 2019. Students should ...
Exams will take place in May 2020. Students should ...

Increment is not sequential if the least significant bit (Isb) is on the right

Increment of a number with Isb on the left is sequential.
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* Deterministic left to right parsing of the input

* Produce output along the way

= Sequential functions are closed under composition of functions
= Sequential transducers can be minimized (canonical)

= Equivalence is decidable for sequential transducers
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RATIONAL FUNCTIONS - f1NFT

* Non-deterministic left to right parsing of the input
* Produce output along the way

* 1UFT: Unambiguous left to right parsing of the input

= Rational transducers (1NFT) need not be functional

= Functionality is decidable [1] in PTIME [2] for rational transducers

Lemma Let A be a INFT with m states.
If A is functional on all words of length < 2m?
Then A is functional.

[1] Schiitzenberger, Sur les relations rationnelles, 1975

[2] Gurari & Ibarra, A note on finite-valued and finitely ambiguous transducers, 1983
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Lemma Let A be a INFT with m states.
If A is functional on all words of length < 2m?
Then A is functional.

Let w = aqas . ..a, € dom(A) with n > 2m?=.
Assume A is functional on all words of length < n.
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* Non-deterministic left to right parsing of the input
* Produce output along the way

* 1UFT: Unambiguous left to right parsing of the input

= Rational transducers (1NFT) need not be functional
= Functionality is decidable [1] in PTIME [2] for rational transducers

= Equivalence is decidable [1] in PTIME [2] for fINFT

Let A; and A5 be two fINFT.
Check that dom(.A;) = dom(.As).

Check that A; & A5 is functional.

[1] Schiitzenberger, Sur les relations rationnelles, 1975

[2] Gurari & Ibarra, A note on finite-valued and finitely ambiguous transducers, 1983
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* Non-deterministic left to right parsing of the input
* Produce output along the way

* 1UFT: Unambiguous left to right parsing of the input

= fINFT = 1DFT with look-ahead = 1UFT [3]
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* 1UFT: Unambiguous left to right parsing of the input

= fINFT = 1DFT with look-ahead = 1UFT [3]

0 if suffix in 15 1711010011111
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* Non-deterministic left to right parsing of the input
* Produce output along the way

* 1UFT: Unambiguous left to right parsing of the input

= fINFT = 1DFT with look-ahead = 1UFT [3]

0 if suffix in 15 1711010011111
if suffix in 1*0{0, 1}* =0 1011010100000

iEword ingl 00 L2 if word in 1%

11101
100000000

[3] Weber & Klemm, Economy of description for single-valued transducers, 1995
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* Non-deterministic left to right parsing of the input
* Produce output along the way

* 1UFT: Unambiguous left to right parsing of the input
= fINFT = 1DFT with look-ahead = 1UFT [3]

Let A be a fINFT with states in ). Consider a total order (Q, <).

Given w = uav, select the least accepting path wrt. lexicographic order.
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[3] Weber & Klemm, Economy of description for single-valued transducers, 1995
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* Non-deterministic left to right parsing of the input
* Produce output along the way

* 1UFT: Unambiguous left to right parsing of the input
= fINFT = 1DFT with look-ahead = 1UFT [3]

Let A be a fINFT with states in ). Consider a total order (Q, <).
Given w = uav, select the least accepting path wrt. lexicographic order.
a |y

/"pl v ¢ dom(A4, p1)
a | Y2 .

>D »P2 v € dom(A, ps)

A\
a
w»ps

First, deterministic with look-ahead.
Then unambiguous without look-ahead.

[3] Weber & Klemm, Economy of description for single-valued transducers, 1995
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] in PTIME [2] for rational transducers

in PTIME [2] for fINFT

fINFT = 1DFT with look-ahead = 1UFT [3]

Decidable in PTIME if a rational function is sequential [3,4]

Rational functions are closed under composition
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REGULAR FUNCTIONS - 2DFT

MESUIECIEEY 1011010011111

if suffix in 1*0{0, 1}* 0 1011010100000

deword indil 0700112

if word in 1%

11111111
100000000




REGULAR FUNCTIONS - 2DFT

Increment of a number with Isb on the right

We have a 1DFT with look-ahead: locate the last O
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REGULAR FUNCTIONS - 2DFT

Increment of a number with Isb on the right

We have a 1DFT with look-ahead: locate the last O

Implement the look-ahead with deterministic 2-way parsing

0
i sitiee e 040 12

deword indil 0700112

MESUIECIEEY 1011010011111
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if word in 1%
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REGULAR FUNCTIONS - 2DFT

* Deterministic 2-way parsing of the input

* Produce output along the way

Increment of a number with Isb on the right

We have a 1DFT with look-ahead: locate the last O

Implement the look-ahead with deterministic 2-way parsing

i sitiee e 040 12

deword indil 0700112

0

MESUIECIEEY 1011010011111

1]0 1011010100000

if word in 1%
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REGULAR FUNCTIONS - 2DFT

* Deterministic 2-way parsing of the input

* Produce output along the way

Increment of a number with Isb on the right
We have a 1DFT with look-ahead: locate the last O

Implement the look-ahead with deterministic 2-way parsing
Move back  copy the

tothelast 0 partin 0O1*
1011010011111
l|e,— 1|s,%0‘0_>1|1,—>

1011010100000
O|€,<— @ |_|€7_>

el 111 e
100000000

0 in the suffix
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REGULAR FUNCTIONS - 2DFT

* Deterministic 2-way parsing of the input

* Produce output along the way

Increment of a number with Isb on the right with a 2DFT
We have a 1DFT with look-ahead: locate the last O

Implement the look-ahead with 2-way parsing
l]e,— 1|e, 1|1,—
I b 8;@ 1011010011111
=) 1011010100000
| e, + 0|eg,—

suffix in 1* : C 11111111
01, ol s 100000000
11, —

1]e, <+ 1]0,—
Move back replace 011111
to the last O by 100000
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REGULAR FUNCTIONS - 2DFT

* Deterministic 2-way parsing of the input

* Produce output along the way

VERY ROBUST CLASS OF TRANSFORMATIONS
= 2DFT = reversible 2DFT [7]

= Regular functions are closed under composition [6]
= f2NFT = 2DFT with look-ahead & look-behind = 2UFT = 2DFT [8]
= Equivalence is decidable for 2DFT [9]

[6] Chytil & Jakl, Serial composition of 2-way finite-state transducers and simple programs on strings, 1977
[7] Dartois, Fournier, Jecker, Lhote, On reversible transducers, 2017

[8] Engelfriet & Hoogeboom, MSO definable string transductions and two-way finite-state transducers, 2001
[9] Culik & Karhumaki, The equivalence of finite valued transducers (on HDTOL languages) is decidable, 1986
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» 2DFT = regular functions
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* Modular descriptions
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SIMPLE PROGRAMS: REGISTERS

* Deterministic parsing of the input

* Produce output in registers
11411111

=l Ve 100000000

1|X::X1;Y::Y0C:(1_'):)0|Y::X1;X::X0

v ) 1011010011111
1011010100000

[6] Chytil & Jakl, Serial composition of 2-way finite-state transducers and simple programs on strings, 1977
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* Deterministic parsing of the input
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Produce output in registers
1141 11 1

Fl X =Y =1 100000000

1|X::X1;Y::Y0C:(1_'):)0|Y::X1;X::X0

v Y 1011010011111

X keeps a copy of the input binary number 1011010100000

Y contains its increment

Register updates: X:=u | X:=Xu | X:=Yu (with u finite string)
1-way or 2-way

Simple programs may be composed

Simple programs = 2DFT

[6] Chytil & Jakl, Serial composition of 2-way finite-state transducers and simple programs on strings, 1977
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F| X i=gY =¢ 7 :=¢
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+4| Z:= Z1Y

11111111
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=GB & Sy e U (R SEELENER @ 1 100000000

Y is a sequence of O’s of same length

1011010011111
Z keeps a copy of the input up to the last O

1011010100000
Deterministic 1-way parsing of the input and no composition
Register updates: X:=u or X:=uYv or X:=uYvXw etc

copyless updates: Y := X1; X := X0 disallowed (X is duplicated)
e SST = 2DF1

[10] Alur & Deshmukh, Nondeterministic Streaming String Transducers, 2011




SUMMARY

* Operational models (transducers)
« 1DFT = sequential functions
* fINFT = rational functions
» 2DFT = regular functions

» Transducers with registers

* Modular descriptions
 Rational expressions

» Composition
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e Compositional and modular

« Unambiguous input parsing with regular expressions

(u | v) means “read u and output v”
(1]0)* replaces 1™ by 0™

copy := ((0[0) + (1 ]1))*
incO :=copy-(0]1)-(1]0)* dom(inc0) = (0 + 1)*01*
incler— e i) (1 0" dom(incl) = 1*

Inc := IncO 4+ Incl C ' =

copy - (1| 0)* is ambiguous
EOll—-00 = 11 —= 101l — )] 1 -
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* Unambiguous input parsing

UNAMBIGUOUS INPUT PARSING

fog = ()| f+g]fgl
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SIMPLE RTE

Compositional and modular
Unambiguous input parsing
1-way parsing (no reverse)

No duplication, no composition UNAMBIGUOUS INPUT PARSING

hesslual | gL ial k-

= SRTE = Rational functions (1UFT = 1DFT with look-ahead = f1NFT)

= Special case of weighted automata (unambiguous)

[11] Schitzenberger, On the definition of a family of automata, 1961
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* A 2DFT (or 2UFT) may read its input several times

= Hadamard product (f O g)( ) — f(w) : g(w)

duplicate: w — wlw

(copy - (€] $)) © copy

exchange: u#v — vu

(erase - (# | €) - copy) ® (copy- (e erase)

copy := ((0]0) + (1] 1))* erase := (0 | &) + (1] ))*
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* A 2DFT (or 2UFT) may read its input several times in pieces

R 13U FUS - - - UnFF > UDUTFFUIURFF * *  UpUp—17F

= Composition f,g = (u,v) | f+g|f-g|f [fOg|foyg

f := (duplicate - (# | #))*
f: ul#UZ#US . un# e U1$U1#UQ$UQ#U3$U3 Oy

g:=erase- ($]|¢) - (exchange- ($ | #))* - erase - (

go f: ul#UZ# = un# =7 U2u1#u3u2# B unun—l#
h=gof

duplicate: w — w$w  erase: w +— ¢ exchange: u#v — vu




RTE WITH COMPOSITION AND REGULAR FUNCTIONS

* A 2DFT may produce output while reading its input backwards

FENEESE . A0 =~ Oy B Gy =2 “ U0l




RTE WITH COMPOSITION AND REGULAR FUNCTIONS

* A 2DFT may produce output while reading its input backwards

FENEESE . A0 =~ Oy B Gy =2 “ U0l

= Not possible with

Lgg=wwef g | feg fiagffog | fioy




RTE WITH COMPOSITION AND REGULAR FUNCTIONS

* A 2DFT may produce output while reading its input backwards

FENEESE . A0 =~ Oy B Gy =2 “ U0l

= Not possible with

Lgg=wwef g | feg fiagffog | fioy

= Add reverse as basic function

fg—revemse| (wu i ftglf .| | fOq]| foyg
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* A 2DFT may produce output while reading its input backwards

FENEESE . A0 =~ Oy B Gy =2 “ U0l

= Not possible with

Lgg=wwef g | feg fiagffog | fioy

= Add reverse as basic function

J.greverse | (| E + gl g R fO g fog
= RTE-chr = 2DFT = Regular functions

WITH COMPOSITION,
HADAMARD PRODUCT
AND REVERSE
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RTE WITH COMPOSITION AND REGULAR FUNCTIONS

= Add reverse as basic function

g —reverse [(wullef Lo - f g | fog|fog

= Replace Hadamard product with duplicate: w — wlw

fog=(f-(3]¢):g)oduplicate
f0 = tneverse duplieate Wuul Lol g F | fo g

= RTE-cdr = 2DFT = Regular functions

WITH COMPOSITION,
DUPLICATE AND REVERSE
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FULL RTE FOR REGULAR FUNCTIONS

* A 2DFT (or 2UFT) may read its input several times in pieces

h: ul#uz#ug £ un# = U2u1#u3uz# £ 'unun-—1#

h cannot be described using +, -, *x, ®

= 2-chained Kleene iteration [12] [Ka h]2+

parse an input word as w = ujusg - - - Uy, With uq,...,u, € K

(K, h]*T: w— h(uiug)h(uous) - - h(up_1un)

h = [{0,1}*#,exchange - (# | #)]**

[12] Alur & Freilich & Raghothaman, Regular combinators for string transformations, 2014
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* A 2DFT may produce output while reading its input backwards

= Full RTE [12]
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