MODULAR DESCRIPTIONS
OF REGULAR FUNCTIONS

PAUL GASTIN
LSV, ENS PARIS-SACLAY

CAl 2019

STRING TO STRING FUNCTIONS

STRING TO STRING FUNCTIONS

e Erase comments from a LaTeX file

First \emph{sequential} functions % one-way input-deterministic

We suffer only 2\% of failures.

STRING TO STRING FUNCTIONS

e Erase comments from a LaTeX file

First \emph{sequential} functions % one-way input-deterministic

We suffer only 2\% of failures.

* Increment numbers in a file
Exams will take place in May 2019. Students should ...
Exams will take place in May 2020. Students should ...

STRING TO STRING FUNCTIONS

e Erase comments from a LaTeX file

First \emph{sequential} functions % one-way input-deterministic

We suffer only 2\% of failures.

* Increment numbers in a file
Exams will take place in May 2019. Students should ...
Exams will take place in May 2020. Students should ...

» Reorder arguments (bibtex -> bbl)

Author = {Engelfriet, Joost and Hoogeboom, Hendrik Jan},
Year = {2001},

[EHO1] Joost Engelfriet and Hendrik Jan Hoogeboom.
[EHO1] J. Engelfriet and H.J. Hoogeboom.

SUMMARY

* Operational models (transducers)
« 1DFT = sequential functions
* fINFT = rational functions
» 2DFT = regular functions

» Transducers with registers

* Modular descriptions
 Rational expressions

» Composition

SEQUENTIAL FUNCTIONS - 1DFT

* Deterministic left to right parsing of the input

* Produce output along the way

b|b cle 3

ala 0 | € /
Dl B semiom

=l \n [\n ce€ X\ (\n}

First \emph{sequential} functions % one-way input-deterministic

We suffer only 2\% of failures.

SEQUENTIAL FUNCTIONS - 1DFT

Exams will take place in May 2019. Students should ...
Exams will take place in May 2020. Students should ...

Increment is not sequential if the least significant bit (Isb) is on the right

SEQUENTIAL FUNCTIONS - 1DFT

Exams will take place in May 2019. Students should ...
Exams will take place in May 2020. Students should ...

Increment is not sequential if the least significant bit (Isb) is on the right

Increment of a number with Isb on the left is sequential.

00 1111100101101
0000010101101

1 11
000000001

SEQUENTIAL FUNCTIONS - 1DFT

* Deterministic left to right parsing of the input

* Produce output along the way

SEQUENTIAL FUNCTIONS - 1DFT

* Deterministic left to right parsing of the input

* Produce output along the way

= Sequential functions are closed under composition of functions

SEQUENTIAL FUNCTIONS - 1DFT

* Deterministic left to right parsing of the input

* Produce output along the way

= Sequential functions are closed under composition of functions

= Sequential transducers can be minimized (canonical)

SEQUENTIAL FUNCTIONS - 1DFT

* Deterministic left to right parsing of the input

* Produce output along the way

= Sequential functions are closed under composition of functions
= Sequential transducers can be minimized (canonical)

= Equivalence is decidable for sequential transducers

SUMMARY

* Operational models (transducers)
« 1DFT = sequential functions
* fINFT = rational functions
» 2DFT = regular functions

» Transducers with registers

* Modular descriptions
 Rational expressions

» Composition

RATIONAL FUNCTIONS - f1NFT

RATIONAL FUNCTIONS - f1NFT

* Non-deterministic left to right parsing of the input

 Produce output along the way

RATIONAL FUNCTIONS - f1NFT

* Non-deterministic left to right parsing of the input

 Produce output along the way

Increment of a number with Isb on the right is a rational function

1011010011111
1011010100000

P14
100000000

RATIONAL FUNCTIONS - f1NFT

* Non-deterministic left to right parsing of the input
* Produce output along the way

* 1UFT: Unambiguous left to right parsing of the input

Increment of a number with Isb on the right is a rational function

1011010011111
1011010100000

P14
100000000

RATIONAL FUNCTIONS - f1NFT

* Non-deterministic left to right parsing of the input
* Produce output along the way

* 1UFT: Unambiguous left to right parsing of the input

RATIONAL FUNCTIONS - f1NFT

* Non-deterministic left to right parsing of the input
* Produce output along the way

* 1UFT: Unambiguous left to right parsing of the input

= Rational transducers (1NFT) need not be functional

RATIONAL FUNCTIONS - f1NFT

* Non-deterministic left to right parsing of the input
* Produce output along the way

* 1UFT: Unambiguous left to right parsing of the input

= Rational transducers (1NFT) need not be functional

= Functionality is decidable [1] in PTIME [2] for rational transducers

[1] Schiitzenberger, Sur les relations rationnelles, 1975

[2] Gurari & Ibarra, A note on finite-valued and finitely ambiguous transducers, 1983

RATIONAL FUNCTIONS - f1NFT

* Non-deterministic left to right parsing of the input
* Produce output along the way

* 1UFT: Unambiguous left to right parsing of the input

= Rational transducers (1NFT) need not be functional

= Functionality is decidable [1] in PTIME [2] for rational transducers

Lemma Let A be a INFT with m states.
If A is functional on all words of length < 2m?
Then A is functional.

[1] Schiitzenberger, Sur les relations rationnelles, 1975

[2] Gurari & Ibarra, A note on finite-valued and finitely ambiguous transducers, 1983

RATIONAL FUNCTIONS - f1NFT

Lemma Let A be a INFT with m states.
If A is functional on all words of length < 2m?
Then A is functional.

Let w = aqas . ..a, € dom(A) with n > 2m?=.
Assume A is functional on all words of length < n.

al a9 An
e = 2Dl s Vo i Ui e oel Dp

al ao QAn
o re Qe Uo7 U faep(y

Let - <k~ nwitli(p.g) — 0 (bh 4.

a1"°ai|331\ ai—l—l"'aj|fc2\ ij+1"'ak|333\ ak+1'“an|964\

Po 7 Pi 7 Py > Pk 7 Pn
al"’@ilyl\ afi—|—1"'aj|y2\ aj+1"'ak|y3\ ak—l—l"'an|y4\

qo 7 {5 7 { 7 4k 7 Qn

[S] Berstel, Transductions and Context-Free Languages, 1979

RATIONAL FUNCTIONS - f1NFT

Lemma Let A be a INFT with m states.
If A is functional on all words of length < 2m?
Then A is functional.

Let w = aqas . ..a, € dom(A) with n > 2m?=.
Assume A is functional on all words of length < n.

Let 0 <i < j <k <nwith (p;,q) = (pj,q5) = (P, k)

a1°°'ai|$1\ CLz‘+1"°CLj|£U2\ aj+1"'ak|963\ ak+1"°an|iv4\
Po > Pi 7 Dj 7 Pk 7 Pn

al"'ailyl\ az’—l—l"'aj|y2\ aj+1"'ak|y3\ ak—l—l"'an|y4\
4o 7 g 7 { > dk > dn

a1°'°ai|£€1\ o ak—|—1“'an|x4\

Po =i — DL 7 Pn
CL1"°CL7:|y1\ 5 ak+1"'an|y4\

qo = 05— 7 dn

= Uiz
ey = Y4

g = hlly —>

[S] Berstel, Transductions and Context-Free Languages, 1979

RATIONAL FUNCTIONS - f1NFT

Lemma Let A be a INFT with m states.
If A is functional on all words of length < 2m?
Then A is functional.

Let w = aqas . ..a, € dom(A) with n > 2m?=.
Assume A is functional on all words of length < n.

Let 0 <i < j <k <nwith (p;,q) = (pj,q5) = (P, k)

a1°°'ai|$1\ CLz‘+1"°CLj|£U2\ aj+1"'ak|963\ ak+1"°an|iv4\
Po > Pi 7 Dj 7 Pk 7 Pn

al"'ailyl\ az’—l—l"'aj|y2\ aj+1"'ak|y3\ ak—l—l"'an|y4\
4o 7 g 7 { > dk > dn

Lk — Uk
e — U
T1X2T4 = Y1Y2Ys — Y12T2T4 = Y1Y22T4 —> 2T = Y22

i = Uil —

[S] Berstel, Transductions and Context-Free Languages, 1979

RATIONAL FUNCTIONS - f1NFT

Lemma Let A be a INFT with m states.
If A is functional on all words of length < 2m?
Then A is functional.

Let w = aqas . ..a, € dom(A) with n > 2m?=.
Assume A is functional on all words of length < n.

Let 0 <i < j <k <nwith (p;,q) = (pj,q5) = (P, k)

a1°°'ai|$1\ CLz‘+1"°CLj|£U2\ aj+1"'ak|963\ ak+1"°an|iv4\
Po > Pi 7 Dj 7 Pk 7 Pn

al"'ailyl\ az’—l—l"'aj|y2\ aj+1"'ak|y3\ ak—l—l"'an|y4\
4o 7 g 7 { > dk > dn

Ll —ee Ut
<l = Yj
Lidoly = WNtbly ==l X0l — Yilh 24— 23— Y37
L1 a3 = il =" k3 = Uzo

i = Uil —

[S] Berstel, Transductions and Context-Free Languages, 1979

RATIONAL FUNCTIONS - f1NFT

Lemma Let A be a INFT with m states.
If A is functional on all words of length < 2m?
Then A is functional.

Let w = aqas . ..a, € dom(A) with n > 2m?=.
Assume A is functional on all words of length < n.

Let 0 <i < j <k <nwith (p;,q) = (pj,q5) = (P, k)

a1°°'ai|$1\ CLz‘+1"°CLj|£U2\ CLj—|—1"‘ak|ﬁU3\ ak+1"'an|iv4\
Po > Pi 7 Dj 7 Pk 7 Pn

al"'ailyl\ ai—l—l"'aj|y2\ aj+1"'ak|93\ ak—l—l"'a'n|y4\
4o 7 g 7 { > dk > dn

Ll —ee Ut
b == Ui
LiBoty = Yillbls ==l 20000 — Yilh28y —» 215 — 1~
L1d3bn = il =" k3= Uge
L1X2X3L4 = Y12X2X3X4 — Y1Y22X3L4 = Y1Y2Y32T4 = Y1Y2Y3Y4

i = Uil —

[S] Berstel, Transductions and Context-Free Languages, 1979

RATIONAL FUNCTIONS - f1NFT

Lemma Let A be a INFT with m states.
If A is functional on all words of length < 2m?
Then A is functional.

Let w = aqas . ..a, € dom(A) with n > 2m?=.
Assume A is functional on all words of length < n.

Let 0 <i < j <k <nwith (p;,q) = (pj,q5) = (P, k)

a1°°'ai|$1\ CLz‘+1"°CLj|£U2\ CLj—|—1"‘ak|ﬁU3\ ak+1"'an|iv4\
Po > Pi 7 Dj 7 Pk 7 Pn

al"'ailyl\ ai—l—l"'aj|y2\ aj+1"'ak|93\ ak—l—l"'a'n|y4\
4o 7 g 7 { > dk > dn

Ll —ee Ut
b == Ui
LiBoty = Yillbls ==l 20000 — Yilh28y —» 215 — 1~
L1d3bn = il =" k3= Uge
L1X2X3L4 = Y12X2X3X4 — Y1Y22X3L4 = Y1Y2Y32T4 = Y1Y2Y3Y4

i = Uil —

is functional on w.
[S] Berstel, Transductions and Context-Free Languages, 1979 A

RATIONAL FUNCTIONS - f1NFT

* Non-deterministic left to right parsing of the input
* Produce output along the way

* 1UFT: Unambiguous left to right parsing of the input

[1] Schiitzenberger, Sur les relations rationnelles, 1975

[2] Gurari & Ibarra, A note on finite-valued and finitely ambiguous transducers, 1983

RATIONAL FUNCTIONS - f1NFT

* Non-deterministic left to right parsing of the input
* Produce output along the way

* 1UFT: Unambiguous left to right parsing of the input

= Rational transducers (1NFT) need not be functional

= Functionality is decidable [1] in PTIME [2] for rational transducers

[1] Schiitzenberger, Sur les relations rationnelles, 1975

[2] Gurari & Ibarra, A note on finite-valued and finitely ambiguous transducers, 1983

RATIONAL FUNCTIONS - f1NFT

* Non-deterministic left to right parsing of the input
* Produce output along the way

* 1UFT: Unambiguous left to right parsing of the input

= Rational transducers (1NFT) need not be functional
= Functionality is decidable [1] in PTIME [2] for rational transducers

= Equivalence is decidable [1] in PTIME [2] for fINFT

[1] Schiitzenberger, Sur les relations rationnelles, 1975

[2] Gurari & Ibarra, A note on finite-valued and finitely ambiguous transducers, 1983

RATIONAL FUNCTIONS - f1NFT

* Non-deterministic left to right parsing of the input
* Produce output along the way

* 1UFT: Unambiguous left to right parsing of the input

= Rational transducers (1NFT) need not be functional
= Functionality is decidable [1] in PTIME [2] for rational transducers

= Equivalence is decidable [1] in PTIME [2] for fINFT

Let A; and A5 be two fINFT.
Check that dom(.A;) = dom(.As).

Check that A; & A5 is functional.

[1] Schiitzenberger, Sur les relations rationnelles, 1975

[2] Gurari & Ibarra, A note on finite-valued and finitely ambiguous transducers, 1983

RATIONAL FUNCTIONS - f1NFT

* Non-deterministic left to right parsing of the input

 Produce output along the way

* 1UFT: Unambiguous left to right parsing of the input

Rational transducers (1NFT) need not be functional

Functionality is decidable [1

Equivalence is decidable [1]

] in PTIME [2] for rational transducers

in PTIME [2] for fINFT

fINFT = 1DFT with look-ahead = 1UFT [3]

[1] Schitzenberger, Sur les relations rationnelles, 1975

[2] Gurari & Ibarra, A note on finite-valued and finitely ambiguous transducers, 1983

[3] Weber & Klemm, Economy of description for single-valued transducers, 1995

RATIONAL FUNCTIONS - f1NFT

* Non-deterministic left to right parsing of the input
* Produce output along the way

* 1UFT: Unambiguous left to right parsing of the input

= fINFT = 1DFT with look-ahead = 1UFT [3]

[3] Weber & Klemm, Economy of description for single-valued transducers, 1995

RATIONAL FUNCTIONS - f1NFT

* Non-deterministic left to right parsing of the input
* Produce output along the way

* 1UFT: Unambiguous left to right parsing of the input

= fINFT = 1DFT with look-ahead = 1UFT [3]

[3] Weber & Klemm, Economy of description for single-valued transducers, 1995

RATIONAL FUNCTIONS - f1NFT

* Non-deterministic left to right parsing of the input
* Produce output along the way

* 1UFT: Unambiguous left to right parsing of the input

= fINFT = 1DFT with look-ahead = 1UFT [3]

[3] Weber & Klemm, Economy of description for single-valued transducers, 1995

RATIONAL FUNCTIONS - f1NFT

* Non-deterministic left to right parsing of the input
* Produce output along the way

* 1UFT: Unambiguous left to right parsing of the input

= fINFT = 1DFT with look-ahead = 1UFT [3]

He SUhES Ty b

110

[3] Weber & Klemm, Economy of description for single-valued transducers, 1995

RATIONAL FUNCTIONS - f1NFT

* Non-deterministic left to right parsing of the input
* Produce output along the way

* 1UFT: Unambiguous left to right parsing of the input

= fINFT = 1DFT with look-ahead = 1UFT [3]

0 if suffix in 15 1711010011111
if suffix in 1*0{0, 1}* =0 1011010100000

[3] Weber & Klemm, Economy of description for single-valued transducers, 1995

RATIONAL FUNCTIONS - f1NFT

* Non-deterministic left to right parsing of the input
* Produce output along the way

* 1UFT: Unambiguous left to right parsing of the input

= fINFT = 1DFT with look-ahead = 1UFT [3]

0 if suffix in 15 1711010011111
if suffix in 1*0{0, 1}* =0 1011010100000

[3] Weber & Klemm, Economy of description for single-valued transducers, 1995

RATIONAL FUNCTIONS - f1NFT

* Non-deterministic left to right parsing of the input
* Produce output along the way

* 1UFT: Unambiguous left to right parsing of the input

= fINFT = 1DFT with look-ahead = 1UFT [3]

0 if suffix in 15 1711010011111
if suffix in 1*0{0, 1}* =0 1011010100000

1 wiord ik

[3] Weber & Klemm, Economy of description for single-valued transducers, 1995

RATIONAL FUNCTIONS - f1NFT

* Non-deterministic left to right parsing of the input
* Produce output along the way

* 1UFT: Unambiguous left to right parsing of the input

= fINFT = 1DFT with look-ahead = 1UFT [3]

0 if suffix in 15 1711010011111
if suffix in 1*0{0, 1}* =0 1011010100000

iEword ingl 00 L2 if word in 1%

11101
100000000

[3] Weber & Klemm, Economy of description for single-valued transducers, 1995

RATIONAL FUNCTIONS - f1NFT

* Non-deterministic left to right parsing of the input
* Produce output along the way

* 1UFT: Unambiguous left to right parsing of the input
= fINFT = 1DFT with look-ahead = 1UFT [3]

Let A be a fINFT with states in). Consider a total order (Q, <).

Given w = uav, select the least accepting path wrt. lexicographic order.

a |y
0 P1 v ¢ dom(A, pr)

¢ | Y2 i
>D »P2 v € dom(A, ps)

A\
a
va?,

[3] Weber & Klemm, Economy of description for single-valued transducers, 1995

RATIONAL FUNCTIONS - f1NFT

* Non-deterministic left to right parsing of the input
* Produce output along the way

* 1UFT: Unambiguous left to right parsing of the input
= fINFT = 1DFT with look-ahead = 1UFT [3]

Let A be a fINFT with states in). Consider a total order (Q, <).
Given w = uav, select the least accepting path wrt. lexicographic order.
a |y

/"pl v ¢ dom(A4, p1)
a | Y2 .

>D »P2 v € dom(A, ps)

A\
a
w»ps

First, deterministic with look-ahead.
Then unambiguous without look-ahead.

[3] Weber & Klemm, Economy of description for single-valued transducers, 1995

RATIONAL FUNCTIONS - f1NFT

* Non-deterministic left to right parsing of the input
* Produce output along the way

TUFT: Unambiguous left to right parsing of the input

[1] Schitzenberger, Sur les relations rationnelles, 1975
[2] Gurari & Ibarra, A note on finite-valued and finitely ambiguous transducers, 1983

[3] Weber & Klemm, Economy of description for single-valued transducers, 1995

RATIONAL FUNCTIONS - f1NFT

* Non-deterministic left to right parsing of the input

 Produce output along the way

* 1UFT: Unambiguous left to right parsing of the input

Rational transducers (1NFT) need not be functional

Functionality is decidable [1

Equivalence is decidable [1]

] in PTIME [2] for rational transducers

in PTIME [2] for fINFT

fINFT = 1DFT with look-ahead = 1UFT [3]

[1] Schitzenberger, Sur les relations rationnelles, 1975

[2] Gurari & Ibarra, A note on finite-valued and finitely ambiguous transducers, 1983

[3] Weber & Klemm, Economy of description for single-valued transducers, 1995

RATIONAL FUNCTIONS - f1NFT

* Non-deterministic left to right parsing of the input
* Produce output along the way

* 1UFT: Unambiguous left to right parsing of the input

= Rational transducers (1NFT) need not be functional

= Functionality is decidable [1] in PTIME [2] for rational transducers
= Equivalence is decidable [1] in PTIME [2] for fINFT

= fINFT = 1DFT with look-ahead = 1UFT [3]

= Decidable in PTIME if a rational function is sequential [3,4]

[1] Schitzenberger, Sur les relations rationnelles, 1975
[2] Gurari & Ibarra, A note on finite-valued and finitely ambiguous transducers, 1983
[3] Weber & Klemm, Economy of description for single-valued transducers, 1995

[4] Choffrut, Une caractérisation des fonctions séquentielles ... en tant que relations rationnelles, 1977

RATIONAL FUNCTIONS - f1NFT

* Non-deterministic left to right parsing of the input

 Produce output along the way

* 1UFT: Unambiguous left to right parsing of the input

Rational transducers (1NFT) need not be functional

Functionality is decidable [1

Equivalence is decidable [1]

] in PTIME [2] for rational transducers

in PTIME [2] for fINFT

fINFT = 1DFT with look-ahead = 1UFT [3]

Decidable in PTIME if a rational function is sequential [3,4]

Rational functions are closed under composition

[1] Schitzenberger, Sur les relations rationnelles, 1975

[2] Gurari & Ibarra, A note on finite-valued and finitely ambiguous transducers, 1983

[3] Weber & Klemm, Economy of description for single-valued transducers, 1995

[4] Choffrut, Une caractérisation des fonctions séquentielles ... en tant que relations rationnelles, 1977

SUMMARY

* Operational models (transducers)
« 1DFT = sequential functions
 fINFT = rational functions
« 2DFT = regular functions

» Transducers with registers

* Modular descriptions
 Rational expressions

» Composition

REGULAR FUNCTIONS - 2DFT

MESUIECIEEY 1011010011111

if suffix in 1*0{0, 1}* 0 1011010100000

deword indil 0700112

if word in 1%

11111111
100000000

REGULAR FUNCTIONS - 2DFT

Increment of a number with Isb on the right

We have a 1DFT with look-ahead: locate the last O

MESUIECIEEY 1011010011111

if suffix in 1*0{0, 1}* 0 1011010100000

iEword ingl 00 L2

if word in 1%

11111 1]
100000000

REGULAR FUNCTIONS - 2DFT

Increment of a number with Isb on the right

We have a 1DFT with look-ahead: locate the last O

Implement the look-ahead with deterministic 2-way parsing

0
i sitiee e 040 12

deword indil 0700112

MESUIECIEEY 1011010011111

1]0 1011010100000

if word in 1%

11111 1]
100000000

REGULAR FUNCTIONS - 2DFT

* Deterministic 2-way parsing of the input

* Produce output along the way

Increment of a number with Isb on the right

We have a 1DFT with look-ahead: locate the last O

Implement the look-ahead with deterministic 2-way parsing

i sitiee e 040 12

deword indil 0700112

0

MESUIECIEEY 1011010011111

1]0 1011010100000

if word in 1%

11111 1]
100000000

REGULAR FUNCTIONS - 2DFT

* Deterministic 2-way parsing of the input

* Produce output along the way

Increment of a number with Isb on the right
We have a 1DFT with look-ahead: locate the last O

Implement the look-ahead with deterministic 2-way parsing
Move back copy the

tothelast 0 partin 0O1*
1011010011111
l|e,— 1|s,%0‘0_>1|1,—>

1011010100000
O|€,<— @ |_|€7_>

el 111 e
100000000

0 in the suffix

0|e,—

5) >(>—>
Oll,—> _”_I)_)

-1, —

1|0,—

REGULAR FUNCTIONS - 2DFT

* Deterministic 2-way parsing of the input

* Produce output along the way

Increment of a number with Isb on the right with a 2DFT
We have a 1DFT with look-ahead: locate the last O

Implement the look-ahead with 2-way parsing
l]e,— 1|e, 1|1,—
I b 8;@ 1011010011111
=) 1011010100000
| e, + 0|eg,—

suffix in 1* : C 11111111
01, ol s 100000000
11, —

1]e, <+ 1]0,—
Move back replace 011111
to the last O by 100000

REGULAR FUNCTIONS - 2DFT

* Deterministic 2-way parsing of the input

* Produce output along the way

VERY ROBUST CLASS OF TRANSFORMATIONS

REGULAR FUNCTIONS - 2DFT

* Deterministic 2-way parsing of the input

* Produce output along the way

VERY ROBUST CLASS OF TRANSFORMATIONS
= 2DFT = reversible 2DFT [7]

[7] Dartois, Fournier, Jecker, Lhote, On reversible transducers, 2017

REGULAR FUNCTIONS - 2DFT

* Deterministic 2-way parsing of the input

* Produce output along the way

VERY ROBUST CLASS OF TRANSFORMATIONS
= 2DFT = reversible 2DFT [7]

= Regular functions are closed under composition [6]

[6] Chytil & Jakl, Serial composition of 2-way finite-state transducers and simple programs on strings, 1977

[7] Dartois, Fournier, Jecker, Lhote, On reversible transducers, 2017

REGULAR FUNCTIONS - 2DFT

* Deterministic 2-way parsing of the input

* Produce output along the way

VERY ROBUST CLASS OF TRANSFORMATIONS
= 2DFT = reversible 2DFT [7]

= Regular functions are closed under composition [6]

= f2NFT = 2DFT with look-ahead & look-behind = 2UFT = 2DFT [8]

[6] Chytil & Jakl, Serial composition of 2-way finite-state transducers and simple programs on strings, 1977
[7] Dartois, Fournier, Jecker, Lhote, On reversible transducers, 2017

[8] Engelfriet & Hoogeboom, MSO definable string transductions and two-way finite-state transducers, 2001

REGULAR FUNCTIONS - 2DFT

* Deterministic 2-way parsing of the input

* Produce output along the way

VERY ROBUST CLASS OF TRANSFORMATIONS
= 2DFT = reversible 2DFT [7]

= Regular functions are closed under composition [6]
= f2NFT = 2DFT with look-ahead & look-behind = 2UFT = 2DFT [8]
= Equivalence is decidable for 2DFT [9]

[6] Chytil & Jakl, Serial composition of 2-way finite-state transducers and simple programs on strings, 1977
[7] Dartois, Fournier, Jecker, Lhote, On reversible transducers, 2017

[8] Engelfriet & Hoogeboom, MSO definable string transductions and two-way finite-state transducers, 2001
[9] Culik & Karhumaki, The equivalence of finite valued transducers (on HDTOL languages) is decidable, 1986

SUMMARY

* Operational models (transducers)
« 1DFT = sequential functions
* fINFT = rational functions
» 2DFT = regular functions

» Transducers with registers

* Modular descriptions
 Rational expressions

» Composition

SIMPLE PROGRAMS: REGISTERS

* Deterministic parsing of the input

* Produce output in registers
11411111

=l Ve 100000000

1|X::X1;Y::Y0C:(1_'):)0|Y::X1;X::X0

v) 1011010011111
1011010100000

[6] Chytil & Jakl, Serial composition of 2-way finite-state transducers and simple programs on strings, 1977

SIMPLE PROGRAMS: REGISTERS

* Deterministic parsing of the input

* Produce output in registers
11411111

=l Ve 100000000

1|X::X1;Y::Y0C:(1_'):)0|Y::X1;X::X0

1Y 1011010011111
« X keeps a copy of the input binary number 1011010100000

[6] Chytil & Jakl, Serial composition of 2-way finite-state transducers and simple programs on strings, 1977

SIMPLE PROGRAMS: REGISTERS

* Deterministic parsing of the input

* Produce output in registers
11411111

o (B Y —] 100000000

1|X::X1;Y::Y0C:<1'_):)0|Y::X1;X::X0

1Y 1011010011111
« X keeps a copy of the input binary number 1011010100000

[6] Chytil & Jakl, Serial composition of 2-way finite-state transducers and simple programs on strings, 1977

SIMPLE PROGRAMS: REGISTERS

Deterministic parsing of the input

Produce output in registers
1141 11 1

o (B Y —] 100000000

1|X::X1;Y::Y0C:<1'_):)0|Y::X1;X::X0

1Y 1011010011111
X keeps a copy of the input binary number 1011010100000

Y contains its increment

[6] Chytil & Jakl, Serial composition of 2-way finite-state transducers and simple programs on strings, 1977

SIMPLE PROGRAMS: REGISTERS

Deterministic parsing of the input

Produce output in registers
1141 11 1

Fl X =Y =1 100000000

1|X::X1;Y::Y0C:<1'_):)0|Y::X1;X::X0

1Y 1011010011111
X keeps a copy of the input binary number 1011010100000

Y contains its increment

[6] Chytil & Jakl, Serial composition of 2-way finite-state transducers and simple programs on strings, 1977

SIMPLE PROGRAMS: REGISTERS

Deterministic parsing of the input

Produce output in registers
1141 11 1

Fl X =Y =1 100000000

1|X::X1;Y::Y0C:<1'_):)0|Y::X1;X::X0

1Y 1011010011111
X keeps a copy of the input binary number 1011010100000

Y contains its increment

[6] Chytil & Jakl, Serial composition of 2-way finite-state transducers and simple programs on strings, 1977

SIMPLE PROGRAMS: REGISTERS

Deterministic parsing of the input

Produce output in registers
1141 11 1

Fl X =Y =1 100000000

1|X::X1;Y::Y0C:(1_'):)0|Y::X1;X::X0

v Y 1011010011111

X keeps a copy of the input binary number 1011010100000

Y contains its increment

Register updates: X:=u | X:=Xu | X:=Yu (with u finite string)
1-way or 2-way

Simple programs may be composed

Simple programs = 2DFT

[6] Chytil & Jakl, Serial composition of 2-way finite-state transducers and simple programs on strings, 1977

STREAMING STRING TRANSDUCERS

Sl ey o —

1|X::X1;Y::YO;Z::Z<:C>—>—|\Z:zlY

B2 = XX —c:Xa—o

L =y Y0 /= 0 = 20X =Y =+

+4| Z:= Z1Y
=11k F1

100000000

1011010011111
1011010100000

[10] Alur & Deshmukh, Nondeterministic Streaming String Transducers, 2011

STREAMING STRING TRANSDUCERS

Sl ey o —

1|X::X1;Y::YO;Z::ZCC>—>—|\Z::1Y

B2 = XX —c:Xa—o

L =y Y0 /= 0 = 20X =Y =+

+4| Z:= Z1Y
=11k F1

100000000

1011010011111
1011010100000

* Deterministic 1-way parsing of the input and no composition

[10] Alur & Deshmukh, Nondeterministic Streaming String Transducers, 2011

STREAMING STRING TRANSDUCERS

Sl ey o —

1|X::X1;Y::YO;Z::Z<:C>—>—|\Z:zlY

B2 = XX —c:Xa—o

L =y Y0 /= 0 = 20X =Y =+

+4| Z:= Z1Y
=11k F1

100000000

1011010011111
1011010100000

* Deterministic 1-way parsing of the input and no composition

« X keeps a copy of the last sequence of 1's

[10] Alur & Deshmukh, Nondeterministic Streaming String Transducers, 2011

STREAMING STRING TRANSDUCERS

(N Y —c; 7 =¢

1|X::X1;Y::YO;Z::Z<:C>—>—|\Z:zlY

B2 = XX —c:Xa—o

L =y Y0 /= 0 = 20X =Y =+

+4| Z:= Z1Y
=11k F1

100000000

1011010011111
1011010100000

* Deterministic 1-way parsing of the input and no composition

« X keeps a copy of the last sequence of 1's

[10] Alur & Deshmukh, Nondeterministic Streaming String Transducers, 2011

STREAMING STRING TRANSDUCERS

o | Y — < £ = ¢

1|X::X1;Y::Y0;Z::Z(:C>—>—|\Z::lY

M| Z .= X Y = ¢

. Y — Y0, 2 =7 0 = 20X =Y =+

+4| Z:= Z1Y
=11k F1

100000000

1011010011111
1011010100000

* Deterministic 1-way parsing of the input and no composition

« X keeps a copy of the last sequence of 1's

[10] Alur & Deshmukh, Nondeterministic Streaming String Transducers, 2011

STREAMING STRING TRANSDUCERS

o | Y — < £ = ¢

1|X::X1;Y::Y0;Z::Z(:C>—>—|\Z::lY

M| Z .= X Y = ¢

. Y — Y0, 2 =7 M| Z .= Z0X ;B Y =

+4| Z:= Z1Y
=11k F1

100000000

1011010011111
1011010100000

* Deterministic 1-way parsing of the input and no composition

« X keeps a copy of the last sequence of 1's

[10] Alur & Deshmukh, Nondeterministic Streaming String Transducers, 2011

STREAMING STRING TRANSDUCERS

o | Y — < £ = ¢

1|X::X1;Y::Y0;Z::Z(:C>—>—|\Z::lY

M| Z .= X Y = ¢

. Y — Y0, 2 =7 M| Z .= Z0X ;B Y =

+4| Z:= Z1Y
=11k F1

100000000

1011010011111
1011010100000

* Deterministic 1-way parsing of the input and no composition

« X keeps a copy of the last sequence of 1's

* Y is a sequence of 0's of same length

[10] Alur & Deshmukh, Nondeterministic Streaming String Transducers, 2011

STREAMING STRING TRANSDUCERS

F| X i=gY =g 7 :=¢

1|X::X1;Y::Y0;Z::Z(:C>—>ﬂZ::lY

0| Z:=X;X:=¢,Y =¢

1|/ X :=X1;Y =Y0;Z:=Z7 0| Z:=20X;X :=¢;Y :=¢

+4| Z:= Z1Y
=11k F1

100000000

1011010011111
1011010100000

* Deterministic 1-way parsing of the input and no composition

« X keeps a copy of the last sequence of 1's

* Y is a sequence of 0's of same length

[10] Alur & Deshmukh, Nondeterministic Streaming String Transducers, 2011

STREAMING STRING TRANSDUCERS

F| X i=gY =g 7 :=¢

1|X::X1;Y::Y0;Z::Z(:C>—>—|\Z::lY

0| Z:=X;X:=¢,Y =¢

1|/ X :=X1;Y =Y0;Z:=Z7 0| Z:=20X;X :=¢;Y :=¢

+4| Z:= Z1Y

11111111
X k f the | f1
=GB & Sy e U (R SEELENER @ 1 100000000

1011010011111
1011010100000
Deterministic 1-way parsing of the input and no composition

Y is a sequence of O’s of same length

Z keeps a copy of the input up to the last O

[10] Alur & Deshmukh, Nondeterministic Streaming String Transducers, 2011

STREAMING STRING TRANSDUCERS

F| X i=gY =¢ 7 :=¢

1|X::X1;Y::Y0;Z::Z(:C>—>ﬂZ::lY

0| Z:=X;X:=¢,Y =¢

1|/ X :=X1;Y =Y0;Z:=Z7 0| Z:=20X;X :=¢;Y :=¢

+4| Z:= Z1Y

111111
X k f the last f1
2E[RE & Eefpyy e e [EEt see lenes o 1% 100000000

1011010011111
1011010100000
Deterministic 1-way parsing of the input and no composition

Y is a sequence of O’s of same length

Z keeps a copy of the input up to the last O

[10] Alur & Deshmukh, Nondeterministic Streaming String Transducers, 2011

STREAMING STRING TRANSDUCERS

F| X i=gY =¢ 7 :=¢

1|X::X1;Y::Y0;Z::Z(:C>—>ﬂZ::lY

0| Z:=X;X:=¢Y =¢

1| X :=X1,Y:=Y0;,Z:=7 0| Z:=20X;X :=¢;Y :=¢

+4| Z:= Z1Y

111111
X k f the last f1
2E[RE & Eefpyy e e [EEt see lenes o 1% 100000000

1011010011111
1011010100000
Deterministic 1-way parsing of the input and no composition

Y is a sequence of O’s of same length

Z keeps a copy of the input up to the last O

[10] Alur & Deshmukh, Nondeterministic Streaming String Transducers, 2011

STREAMING STRING TRANSDUCERS

F| X i=gY =¢ 7 :=¢

1|X::X1;Y::Y0;Z::Z(:C>—>ﬂZ::lY

0| Z:=X;X:=¢Y =¢

1| X :=X1,Y:=Y0;,Z:=7 0| Z:=20X;X :=¢;Y :=¢

+4| Z:= Z1Y

111111
X k f the last f1
2E[RE & Eefpyy e e [EEt see lenes o 1% 100000000

1011010011111
1011010100000
Deterministic 1-way parsing of the input and no composition

Y is a sequence of O’s of same length

Z keeps a copy of the input up to the last O

[10] Alur & Deshmukh, Nondeterministic Streaming String Transducers, 2011

STREAMING STRING TRANSDUCERS

F| X i=gY =¢ 7 :=¢

1|X::X1;Y::Y0;Z::Z(:C>—>—|\Z::lY

0| Z:=X;X:=¢Y =¢

1| X :=X1,Y:=Y0;,Z:=7 0| Z:=20X;X :=¢;Y :=¢

+4| Z:= Z1Y

11111111
X k f the | f1
=GB & Sy e U (R SEELENER @ 1 100000000

Y is a sequence of O’s of same length

1011010011111
Z keeps a copy of the input up to the last O

1011010100000
Deterministic 1-way parsing of the input and no composition
Register updates: X:=u or X:=uYv or X:=uYvXw etc

[10] Alur & Deshmukh, Nondeterministic Streaming String Transducers, 2011

STREAMING STRING TRANSDUCERS

F| X i=gY =¢ 7 :=¢

1|X::X1;Y::Y0;Z::Z(:C>—>—|\Z::lY

0| Z:=X;X:=¢Y =¢

1| X :=X1,Y:=Y0;,Z:=7 0| Z:=20X;X :=¢;Y :=¢

+4| Z:= Z1Y

11111111
X k f the | f1
=GB & Sy e U (R SEELENER @ 1 100000000

Y is a sequence of O’s of same length

1011010011111
Z keeps a copy of the input up to the last O

1011010100000
Deterministic 1-way parsing of the input and no composition
Register updates: X:=u or X:=uYv or X:=uYvXw etc
copyless updates: Y := X1; X := X0 disallowed (X is duplicated)

[10] Alur & Deshmukh, Nondeterministic Streaming String Transducers, 2011

STREAMING STRING TRANSDUCERS

F| X i=gY =¢ 7 :=¢

1|X::X1;Y::Y0;Z::Z(:C>—>—|\Z::lY

0| Z:=X;X:=¢Y =¢

1| X :=X1,Y:=Y0;,Z:=7 0| Z:=20X;X :=¢;Y :=¢

+4| Z:= Z1Y

11111111
X k f the | f1
=GB & Sy e U (R SEELENER @ 1 100000000

Y is a sequence of O’s of same length

1011010011111
Z keeps a copy of the input up to the last O

1011010100000
Deterministic 1-way parsing of the input and no composition
Register updates: X:=u or X:=uYv or X:=uYvXw etc

copyless updates: Y := X1; X := X0 disallowed (X is duplicated)
e SST = 2DF1

[10] Alur & Deshmukh, Nondeterministic Streaming String Transducers, 2011

SUMMARY

* Operational models (transducers)
« 1DFT = sequential functions
* fINFT = rational functions
» 2DFT = regular functions

» Transducers with registers

* Modular descriptions
 Rational expressions

» Composition

REGULAR TRANSDUCER EXPRESSIONS

e Compositional and modular

« Unambiguous input parsing with regular expressions

REGULAR TRANSDUCER EXPRESSIONS

e Compositional and modular

« Unambiguous input parsing with regular expressions

(u | v) means “read u and output v”

REGULAR TRANSDUCER EXPRESSIONS

e Compositional and modular

« Unambiguous input parsing with regular expressions

(u | v) means “read u and output v”
(1]0)* replaces 1™ by 0™

REGULAR TRANSDUCER EXPRESSIONS

e Compositional and modular

« Unambiguous input parsing with regular expressions

(u | v) means “read u and output v”
(1]0)* replaces 1™ by 0™

copy := ((00) +(1]1))*

REGULAR TRANSDUCER EXPRESSIONS

e Compositional and modular

« Unambiguous input parsing with regular expressions

(u | v) means “read u and output v”
(1]0)* replaces 1™ by 0™

copy := ((0[0) + (1]1))*
incO :=copy-(0]1)-(1]0)* dom(inc0) = (0 4 1)*01*

REGULAR TRANSDUCER EXPRESSIONS

e Compositional and modular

« Unambiguous input parsing with regular expressions

(u | v) means “read u and output v”
(1]0)* replaces 1™ by 0™

copy := ((0[0) + (1]1))*
incO :=copy-(0]1)-(1]0)* dom(inc0)
incler— e i) (1 0" dom(incl)

REGULAR TRANSDUCER EXPRESSIONS

e Compositional and modular

« Unambiguous input parsing with regular expressions

(u | v) means “read u and output v”
(1]0)* replaces 1™ by 0™

copy := ((0[0) + (1]1))*
incO :=copy-(0]1)-(1]0)* dom(inc0) = (0 + 1)*01*
incler— e i) (1 0" dom(incl) = 1*

Inc := IncO 4+ Incl C ' =

REGULAR TRANSDUCER EXPRESSIONS

e Compositional and modular

« Unambiguous input parsing with regular expressions

(u | v) means “read u and output v”
(1]0)* replaces 1™ by 0™

copy := ((0[0) + (1]1))*
incO :=copy-(0]1)-(1]0)* dom(inc0) = (0 + 1)*01*
incler— e i) (1 0" dom(incl) = 1*

Inc := IncO 4+ Incl C ' =

copy - (1| 0)* is ambiguous
EOll—-00 = 11 —= 101l —)] 1 -

SIMPLE RTE

SIMPLE RTE

e Compositional and modular

* Unambiguous input parsing

hes=lual | gLt gl k-

SIMPLE RTE

e Compositional and modular

* Unambiguous input parsing

UNAMBIGUOUS INPUT PARSING

fog = ()| f+g]fgl

SIMPLE RTE

Compositional and modular
Unambiguous input parsing
1-way parsing (no reverse)

No duplication, no composition UNAMBIGUOUS INPUT PARSING

faee(wll | fra i nl

SIMPLE RTE

Compositional and modular
Unambiguous input parsing
1-way parsing (no reverse)

No duplication, no composition UNAMBIGUOUS INPUT PARSING

hesslual | gL ial k-

= SRTE = Rational functions (1UFT = 1DFT with look-ahead = f1NFT)

SIMPLE RTE

Compositional and modular
Unambiguous input parsing
1-way parsing (no reverse)

No duplication, no composition UNAMBIGUOUS INPUT PARSING

hesslual | gL ial k-

= SRTE = Rational functions (1UFT = 1DFT with look-ahead = f1NFT)

= Special case of weighted automata (unambiguous)

[11] Schitzenberger, On the definition of a family of automata, 1961

FULL RTE FOR REGULAR FUNCTIONS

* A 2DFT (or 2UFT) may read its input several times

FULL RTE FOR REGULAR FUNCTIONS

* A 2DFT (or 2UFT) may read its input several times

= Hadamard product (f O g)() — f(w) : g(w)

FULL RTE FOR REGULAR FUNCTIONS

* A 2DFT (or 2UFT) may read its input several times

= Hadamard product (f O g)() — f(w) : g(w)

duplicate: w — wlw

(copy - (€] $)) © copy

FULL RTE FOR REGULAR FUNCTIONS

* A 2DFT (or 2UFT) may read its input several times

= Hadamard product (f O g)() — f(w) : g(w)

duplicate: w — wlw

(copy - (€] $)) © copy

exchange: u#v — vu

(erase - (# | €) - copy) ® (copy- (e erase)

copy := ((0]0) + (1] 1))* erase := (0 | &) + (1]))*

FULL RTE FOR REGULAR FUNCTIONS

* A 2DFT (or 2UFT) may read its input several times in pieces

h: ul#uz#ug £ un# = U2u1#u3uz# £ 'Unun—1#

FULL RTE FOR REGULAR FUNCTIONS

* A 2DFT (or 2UFT) may read its input several times in pieces

h: ul#uz#ug £ un# = U2u1#u3uz# £ 'Unun—1#

h cannot be described using +, -, *x, ®

FULL RTE FOR REGULAR FUNCTIONS

* A 2DFT (or 2UFT) may read its input several times in pieces

h: ul#uz#ug £ un# = U2u1#u3uz# £ 'unun—-1#

h cannot be described using +, -, *x, ®

~ Composition (feg)(w) = flg(w))
F 0 —lwy) | FEol fonLl T 19y 400

FULL RTE FOR REGULAR FUNCTIONS

* A 2DFT (or 2UFT) may read its input several times in pieces
b uiFFugFug - - - UnFF > UgUI FHFUSULF - - UpUn—17FF

h cannot be described using +, -, *x, ®

~ Composition (feg)(w) = flg(w))
f 0 —lwv) | FEol oLl 19y 400

UNAMBIGUOUS INPUT PARSING

FULL RTE FOR REGULAR FUNCTIONS

* A 2DFT (or 2UFT) may read its input several times in pieces

h: ul#uz#ug - un# 2 U2u1#u3uz# = 'unun—1#

= Composition f,g = (u,v) | f+g|f-g|f [fOg|foyg

FULL RTE FOR REGULAR FUNCTIONS

* A 2DFT (or 2UFT) may read its input several times in pieces

h: u1#U2#U3 - un# 2 u2u1#u3u2# = 'unun—1#

= Composition f,g = (u,v) | f+g|f-g|f [fOg|foyg

f == (duplicate - (# | #))*
[1 U2 FFUS - - - UnFF > u1$u1#u2$u2#u3$u3 S 'un$un#

duplicate: w — wlw

FULL RTE FOR REGULAR FUNCTIONS

* A 2DFT (or 2UFT) may read its input several times in pieces

R 13U FUS - - - UnFF > UDUTFFUIURFF * * UpUp—17F

= Composition f,g = (u,v) | f+g|f-g|f [fOg|foyg

f := (duplicate - (# | #))*
f: ul#UZ#US . un# e U1$U1#UQ$UQ#U3$U3 Oy

g:=erase- ($]¢) - (exchange- ($ | #))* -erase- (# | ¢)

duplicate: w — w$w erase: w +— ¢ exchange: u#v — vu

FULL RTE FOR REGULAR FUNCTIONS

* A 2DFT (or 2UFT) may read its input several times in pieces

R 13U FUS - - - UnFF > UDUTFFUIURFF * * UpUp—17F

= Composition f,g = (u,v) | f+g|f-g|f [fOg|foyg

f := (duplicate - (# | #))*
f: ul#UZ#US . un# e U1$U1#UQ$UQ#U3$U3 Oy

g:=erase- ($]|¢) - (exchange- ($ | #))* - erase - (

go f: ul#UZ# = un# =7 U2u1#u3u2# B unun—l#
h=gof

duplicate: w — w$w erase: w +— ¢ exchange: u#v — vu

RTE WITH COMPOSITION AND REGULAR FUNCTIONS

* A 2DFT may produce output while reading its input backwards

FENEESE . A0 =~ Oy B Gy =2 “ U0l

RTE WITH COMPOSITION AND REGULAR FUNCTIONS

* A 2DFT may produce output while reading its input backwards

FENEESE . A0 =~ Oy B Gy =2 “ U0l

= Not possible with

Lgg=wwef g | feg fiagffog | fioy

RTE WITH COMPOSITION AND REGULAR FUNCTIONS

* A 2DFT may produce output while reading its input backwards

FENEESE . A0 =~ Oy B Gy =2 “ U0l

= Not possible with

Lgg=wwef g | feg fiagffog | fioy

= Add reverse as basic function

fg—revemse| (wu i ftglf .| | fOq]| foyg

RTE WITH COMPOSITION AND REGULAR FUNCTIONS

* A 2DFT may produce output while reading its input backwards

FENEESE . A0 =~ Oy B Gy =2 “ U0l

= Not possible with

Lgg=wwef g | feg fiagffog | fioy

= Add reverse as basic function

J.greverse | (| E + gl g R fO g fog
= RTE-chr = 2DFT = Regular functions

WITH COMPOSITION,
HADAMARD PRODUCT
AND REVERSE

RTE WITH COMPOSITION AND REGULAR FUNCTIONS

= Add reverse as basic function

g —reverse [(wullef Lo - f g | fog|fog

RTE WITH COMPOSITION AND REGULAR FUNCTIONS

= Add reverse as basic function

g —reverse [(wullef Lo - f g | fog|fog

= Replace Hadamard product with duplicate: w — wlw

fog=(f-(3]¢):g)oduplicate

RTE WITH COMPOSITION AND REGULAR FUNCTIONS

= Add reverse as basic function

g —reverse [(wullef Lo - f g | fog|fog

= Replace Hadamard product with duplicate: w — wlw

fog=(f-(3]¢):g)oduplicate

f,g == reverse | duplicate | (u,v) | f+g[f-g[f | foyg

RTE WITH COMPOSITION AND REGULAR FUNCTIONS

= Add reverse as basic function

g —reverse [(wullef Lo - f g | fog|fog

= Replace Hadamard product with duplicate: w — wlw

fog=(f-(3]¢):g)oduplicate
f0 = tneverse duplieate Wuul Lol g F | fo g

= RTE-cdr = 2DFT = Regular functions

WITH COMPOSITION,
DUPLICATE AND REVERSE

FULL RTE FOR REGULAR FUNCTIONS

* A 2DFT (or 2UFT) may read its input several times in pieces

h: ul#uz#ug £ un# = U2u1#u3uz# £ 'Unun—1#

h cannot be described using +, -, *x, ®

FULL RTE FOR REGULAR FUNCTIONS

* A 2DFT (or 2UFT) may read its input several times in pieces

h: U1#U2#U3 £ 5 un# = U2u1#u3uz# s 'unun—1#

h cannot be described using +, -, *x, ®

= 2-chained Kleene iteration [12] [Ka h]2+

[12] Alur & Freilich & Raghothaman, Regular combinators for string transformations, 2014

FULL RTE FOR REGULAR FUNCTIONS

* A 2DFT (or 2UFT) may read its input several times in pieces

h: ul#uz#ug £ un# = U2u1#u3uz# £ 'unun—-1#

h cannot be described using +, -, *x, ®

= 2-chained Kleene iteration [12] [Ka h]2+

parse an input word as w = ujusg - - - Uy, With uq,...,u, € K

[12] Alur & Freilich & Raghothaman, Regular combinators for string transformations, 2014

FULL RTE FOR REGULAR FUNCTIONS

* A 2DFT (or 2UFT) may read its input several times in pieces

h: ul#uz#ug £ un# = U2u1#u3uz# £ 'unun-—1#

h cannot be described using +, -, *x, ®

= 2-chained Kleene iteration [12] [Ka h]2+

parse an input word as w = ujusg - - - Uy, With uq,...,u, € K

(K, h]*T: w— h(uiug)h(uous) - - h(up_1un)

[12] Alur & Freilich & Raghothaman, Regular combinators for string transformations, 2014

FULL RTE FOR REGULAR FUNCTIONS

* A 2DFT (or 2UFT) may read its input several times in pieces
b uiFFugFug - - - UnFF > UgUI FHFUSULF - - UpUn—17FF

h cannot be described using +, -, *x, ®

= 2-chained Kleene iteration [12] [Ka h]2+

parse an input word as w = ujusg - - - Uy, With uq,...,u, € K

(K, h]*T: w— h(uiug)h(uous) - - h(up_1un)

UNAMBIGUOUS INPUT PARSING

[12] Alur & Freilich & Raghothaman, Regular combinators for string transformations, 2014

FULL RTE FOR REGULAR FUNCTIONS

* A 2DFT (or 2UFT) may read its input several times in pieces

h: ul#uz#ug £ un# = U2u1#u3uz# £ 'unun-—1#

h cannot be described using +, -, *x, ®

= 2-chained Kleene iteration [12] [Ka h]2+

parse an input word as w = ujusg - - - Uy, With uq,...,u, € K

(K, h]*T: w— h(uiug)h(uous) - - h(up_1un)

h = [{0,1}*#,exchange - (# | #)]**

[12] Alur & Freilich & Raghothaman, Regular combinators for string transformations, 2014

FULL RTE FOR REGULAR FUNCTIONS

* A 2DFT (or 2UFT) may read its input several times in pieces

= 2-chained Kleene iteration [12]

o =luvlftg -yl Pl fagiix &

[12] Alur & Freilich & Raghothaman, Regular combinators for string transformations, 2014

FULL RTE FOR REGULAR FUNCTIONS

* A 2DFT (or 2UFT) may read its input several times in pieces

= 2-chained Kleene iteration [12]

fgn=lum gl f -yl i fag | K fIT
* A 2DFT may produce output while reading its input backwards

[12] Alur & Freilich & Raghothaman, Regular combinators for string transformations, 2014

FULL RTE FOR REGULAR FUNCTIONS

* A 2DFT (or 2UFT) may read its input several times in pieces

= 2-chained Kleene iteration [12]

fgn=lum gl f -yl i fag | K fIT
* A 2DFT may produce output while reading its input backwards

reverse cannot be described using +, -, *, ®, 2+

[12] Alur & Freilich & Raghothaman, Regular combinators for string transformations, 2014

FULL RTE FOR REGULAR FUNCTIONS

* A 2DFT (or 2UFT) may read its input several times in pieces

= 2-chained Kleene iteration [12]

o =luvlftg -yl Pl fagiix &

* A 2DFT may produce output while reading its input backwards

reverse cannot be described using +, -, *, ®, 2+

= Reversed 2-chained Kleene iteration [12] Fie e

[12] Alur & Freilich & Raghothaman, Regular combinators for string transformations, 2014

FULL RTE FOR REGULAR FUNCTIONS

* A 2DFT (or 2UFT) may read its input several times in pieces

= 2-chained Kleene iteration [12]

fgn=lum gl f -yl i fag | K fIT
* A 2DFT may produce output while reading its input backwards

reverse cannot be described using +, -, *, ®, 2+

= Reversed 2-chained Kleene iteration [12] Fie e

parse an input word as w = ujug - - - u, with uq,...,u4, € K

UNAMBIGUOUS INPUT PARSING

[12] Alur & Freilich & Raghothaman, Regular combinators for string transformations, 2014

FULL RTE FOR REGULAR FUNCTIONS

* A 2DFT (or 2UFT) may read its input several times in pieces

= 2-chained Kleene iteration [12]

fgn=lum gl f -yl i fag | K fIT
* A 2DFT may produce output while reading its input backwards

reverse cannot be described using +, -, *, ®, 2+

= Reversed 2-chained Kleene iteration [12] Fie e

parse an input word as w = ujug - - - u, with uq,...,u4, € K

(K, hl™°T: w i h(Up_1Un) - - - A(ugus) h(uius)

UNAMBIGUOUS INPUT PARSING

[12] Alur & Freilich & Raghothaman, Regular combinators for string transformations, 2014

FULL RTE FOR REGULAR FUNCTIONS

* A 2DFT (or 2UFT) may read its input several times in pieces

* A 2DFT may produce output while reading its input backwards

[12] Alur & Freilich & Raghothaman, Regular combinators for string transformations, 2014

FULL RTE FOR REGULAR FUNCTIONS

* A 2DFT (or 2UFT) may read its input several times in pieces
* A 2DFT may produce output while reading its input backwards

= Full RTE [12]

b= Wil g o FrayE nAl [B

[12] Alur & Freilich & Raghothaman, Regular combinators for string transformations, 2014

FULL RTE FOR REGULAR FUNCTIONS

* A 2DFT (or 2UFT) may read its input several times in pieces
* A 2DFT may produce output while reading its input backwards

= Full RTE [12]

b= Wil g o FrayE nAl [B

= Full RTE = 2DFT = Regular functions

[12] Alur & Freilich & Raghothaman, Regular combinators for string transformations, 2014

CONCLUDING REMARKS

CONCLUDING REMARKS

= Sequential functions: 1DFT
= Rational functions: fINFT = 1UFT = 1DFT with |-a = simple RTE
= Regular functions RF: 2DFT = 2DFT with |-a & |-b = 2UFT = {2NFT

CONCLUDING REMARKS

Sequential functions: 1DFT

Rational functions: fINFT = 1UFT = 1DFT with |-a = simple RTE

Regular functions RF: 2DFT = 2DFT with |-a & |-b = 2UFT = f2NFT

Equivalence is decidable

Closed under composition [6]

CONCLUDING REMARKS

Sequential functions: 1DFT
Rational functions: fINFT = 1UFT = 1DFT with |-a = simple RTE
Regular functions RF: 2DFT = 2DFT with |-a & |-b = 2UFT = f2NFT

Equivalence is decidable

Closed under composition [6]

RF = simple programs with registers [6]

RF = streaming string transducers [10]

CONCLUDING REMARKS

Sequential functions: 1DFT

Rational functions: fINFT = 1UFT = 1DFT with |-a = simple RTE
Regular functions RF: 2DFT = 2DFT with |-a & |-b = 2UFT = f2NFT
Equivalence is decidable

Closed under composition [6]

RF = simple programs with registers [6]

RF = streaming string transducers [10]

RF = regular expressions with composition, reverse, duplicate

RF = regular expressions with (reversed) 2-chained Kleene-+ [12]

CONCLUDING REMARKS

Sequential functions: 1DFT

Rational functions: fINFT = 1UFT = 1DFT with |-a = simple RTE
Regular functions RF: 2DFT = 2DFT with |-a & |-b = 2UFT = f2NFT
Equivalence is decidable

Closed under composition [6]

RF = simple programs with registers [6]

RF = streaming string transducers [10]

RF = regular expressions with composition, reverse, duplicate

RF = regular expressions with (reversed) 2-chained Kleene-+ [12]

RF = MSO transductions [8]

CONCLUDING REMARKS

Sequential functions: 1DFT

Rational functions: fINFT = 1UFT = 1DFT with |-a = simple RTE
Regular functions RF: 2DFT = 2DFT with |-a & |-b = 2UFT = f2NFT
Equivalence is decidable

Closed under composition [6]

RF = simple programs with registers [6]

RF = streaming string transducers [10]

RF = regular expressions with composition, reverse, duplicate

RF = regular expressions with (reversed) 2-chained Kleene-+ [12]

RF = MSO transductions [8]

RF = Regular list functions [16]

REFERENCES

[1] Schitzenberger, Sur les relations rationnelles, 1975

[2] Gurari & Ibarra, A note on finite-valued and finitely ambiguous transducers, 1983

[3] Weber & Klemm, Economy of description for single-valued transducers, 1995

[4] Choffrut, Une caractérisation des fonctions séquentielles ... en tant que relations rationnelles, 1977

[S] Berstel, Transductions and Context-Free Languages, 1979

[6] Chytil & Jakl, Serial composition of 2-way finite-state transducers and simple programs on strings, 1977
[7] Dartois, Fournier, Jecker, Lhote, On reversible transducers, 2017

[8] Engelfriet & Hoogeboom, MSO definable string transductions and two-way finite-state transducers, 2001
[9] Culik & Karhumaki, The equivalence of finite valued transducers (on HDTOL languages) is decidable, 1986
[10] Alur & Deshmukh, Nondeterministic Streaming String Transducers, 2011

[11] Schitzenberger, On the definition of a family of automata, 1961

[12] Alur & Freilich & Raghothaman, Regular combinators for string transformations, 2014

[13] Alur & D’Antoni & Raghothaman, DReX: Declarative Language for ... Regular String Transformations, 2015
[14] Dave & Gastin & Krishna, Regular Transducer Expressions for Regular Transformations, 2018

[15] Baudru & Reynier, From Two-Way Transducers to Regular Function Expressions, 2018

[16] M. Bojanczyk & L. David & S. Krishna, Regular and First-Order List Functions, 2018

