How to get decidability of distributed synthesis ?

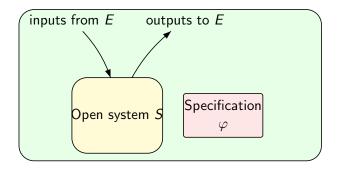
Paul Gastin Joint work with Thomas Chatain and Nathalie Sznajder

> March 12, 2009 Séminaire Bordeaux

Outline

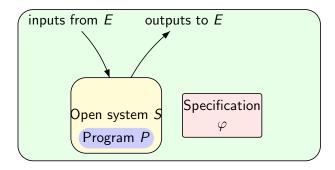
◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - ���?

Synthesis of a reactive system



◆ロト ◆母 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへぐ

Synthesis of a reactive system



Two problems

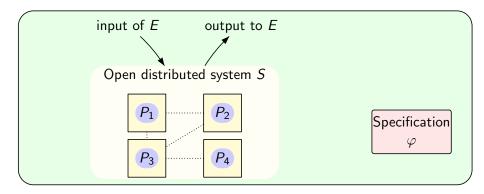
- Decide whether there exists a program st. $P || E \models \varphi$, $\forall E$.
- Synthesis: If so, compute such a program.

For reasonable systems and specifications, the problems are decidable.

Distributed synthesis



Distributed synthesis



Two problems

- Decide the existence of a distributed program such that their joint behavior P₁||P₂||P₃||P₄||E satisfies φ, for all E.
- Synthesis : If it exists, compute such a distributed program.

Synchronous semantics: Introduced by Pnueli Rosner '90

• At each tick of a global clock, all processes and the environment output their new value

Synchronous semantics: Introduced by Pnueli Rosner '90

• At each tick of a global clock, all processes and the environment output their new value

▲日▼▲□▼▲□▼▲□▼ □ のので

• Undecidable with global specifications.

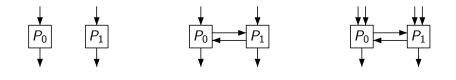
Synchronous semantics: Introduced by Pnueli Rosner '90

• At each tick of a global clock, all processes and the environment output their new value

- Undecidable with global specifications.
- Undecidable with constraints on internal channels.

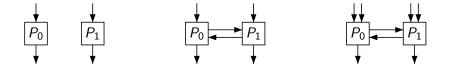
Synchronous semantics: Introduced by Pnueli Rosner '90

- At each tick of a global clock, all processes and the environment output their new value
- Undecidable with global specifications.
- Undecidable with constraints on internal channels.
- Undecidable with bandwidth constraints.



Synchronous semantics: Introduced by Pnueli Rosner '90

- At each tick of a global clock, all processes and the environment output their new value
- Undecidable with global specifications.
- Undecidable with constraints on internal channels.
- Undecidable with bandwidth constraints.
- Decidable for some architectures, e.g., pipelines.



・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

▲日▼▲□▼▲□▼▲□▼ □ のので

P.G., Benjamin Lerman, Marc Zeitoun

- Behaviors are Mazurkiewicz traces
- Players = controllable actions
- Causal memory
- Specification : regular over Mazurkiewicz traces

P.G., Benjamin Lerman, Marc Zeitoun

- Behaviors are Mazurkiewicz traces
- Players = controllable actions
- Causal memory
- Specification : regular over Mazurkiewicz traces

Theorem

Synthesis problem is decidable for co-graph dependence alphabets, i.e., for series-parallel systems.

Our model

• Processes evolve asynchronously for local actions (i.e., communications with the environment)

Our model

- Processes evolve asynchronously for local actions (i.e., communications with the environment)
- They can synchronize by signals = common actions initiated by only one process. A process cannot refuse reception of a signal.

Our model

- Processes evolve asynchronously for local actions (i.e., communications with the environment)
- They can synchronize by signals = common actions initiated by only one process. A process cannot refuse reception of a signal.

- Specifications :
 - over partial orders

Our model

- Processes evolve asynchronously for local actions (i.e., communications with the environment)
- They can synchronize by signals = common actions initiated by only one process. A process cannot refuse reception of a signal.

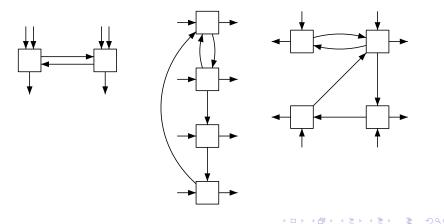
- Specifications :
 - over partial orders
 - will not restrain communication abilities

Decidability Results

Theorem

Synthesis problem is decidable for

• strongly-connected architectures,

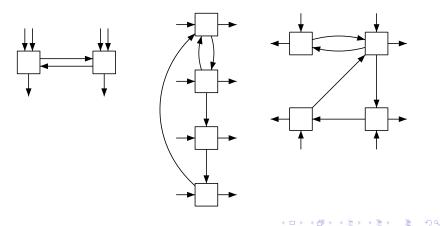


Decidability Results

Theorem

Synthesis problem is decidable for

- strongly-connected architectures,
- disjoint unions of decidable architectures.



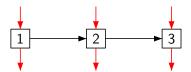
Architectures

• Communication graph (Proc, E)

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへで

Architectures

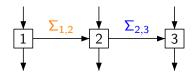
- Communication graph (*Proc*, *E*)
- For each process *i*, sets In_i and Out_i of input and output signals: $\Gamma = \bigcup_{i \in Proc} \text{In}_i \cup \bigcup_{i \in Proc} \text{Out}_i$



▲□▶▲圖▶▲圖▶▲圖▶ ▲□▶

Architectures

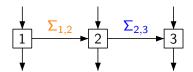
- Communication graph (*Proc*, *E*)
- For each process *i*, sets In_i and Out_i of input and output signals: $\Gamma = \bigcup_{i \in Proc} \text{In}_i \cup \bigcup_{i \in Proc} \text{Out}_i$
- Processes choose sets $\Sigma_{i,j}$ for $(i,j) \in E$



Architectures

- Communication graph (*Proc*, *E*)
- For each process *i*, sets In_i and Out_i of input and output signals: $\Gamma = \bigcup_{i \in Proc} \text{In}_i \cup \bigcup_{i \in Proc} \text{Out}_i$
- Processes choose sets $\Sigma_{i,j}$ for $(i,j) \in E$

•
$$\Sigma = \Gamma \cup \bigcup_{(i,j) \in E} \Sigma_{i,j}$$



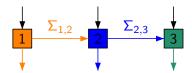
Architectures

- Communication graph (Proc, E)
- For each process *i*, sets In_i and Out_i of input and output signals: $\Gamma = \bigcup_{i \in Proc} \text{In}_i \cup \bigcup_{i \in Proc} \text{Out}_i$
- Processes choose sets $\Sigma_{i,j}$ for $(i,j) \in E$

•
$$\Sigma = \Gamma \cup \bigcup_{(i,j) \in E} \Sigma_{i,j}$$

• For each process i,

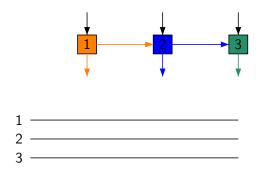
 $\Sigma_i^c = \operatorname{Out}_i \cup \bigcup_{j,(i,j) \in E} \Sigma_{i,j}$ is the set of signals it can send (control), $\Sigma_i = \operatorname{In}_i \cup \Sigma_i^c$ is its alphabet.



▲日▼▲□▼▲□▼▲□▼ □ のので

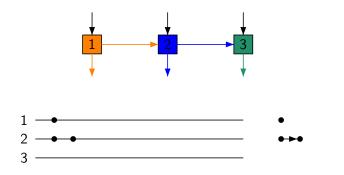
Runs

A run is a Mazurkiewicz trace $t = (V, \lambda, \leq)$ over (Σ, D) where *a D b* if there is a process that takes part both in *a* and *b*



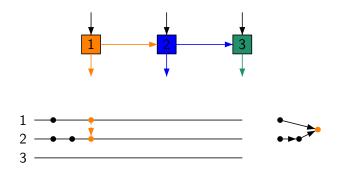
Runs

A run is a Mazurkiewicz trace $t = (V, \lambda, \leq)$ over (Σ, D) where *a D b* if there is a process that takes part both in *a* and *b*



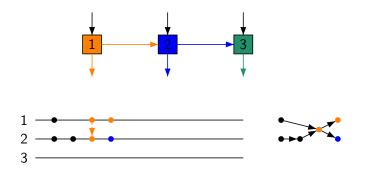
Runs

A run is a Mazurkiewicz trace $t = (V, \lambda, \leq)$ over (Σ, D) where *a D b* if there is a process that takes part both in *a* and *b*



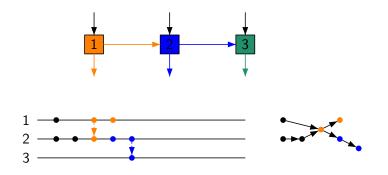
Runs

A run is a Mazurkiewicz trace $t = (V, \lambda, \leq)$ over (Σ, D) where *a D b* if there is a process that takes part both in *a* and *b*



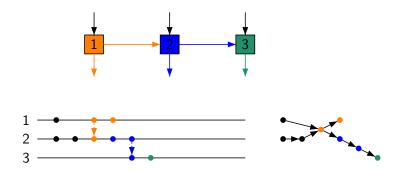
Runs

A run is a Mazurkiewicz trace $t = (V, \lambda, \leq)$ over (Σ, D) where *a D b* if there is a process that takes part both in *a* and *b*



Runs

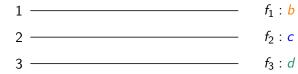
A run is a Mazurkiewicz trace $t = (V, \lambda, \leq)$ over (Σ, D) where *a D b* if there is a process that takes part both in *a* and *b*



ヘロト ヘヨト ヘヨト ヘヨト

Strategies

• Strategies are partial functions $f_i : \Sigma_i^* \to \Sigma_i^c$ with local memory.

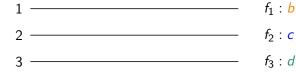


◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Strategies

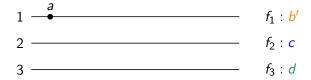
• Strategies are partial functions $f_i : \Sigma_i^* \to \Sigma_i^c$ with local memory.

• Signal semantics implies reactivity of processes to events.



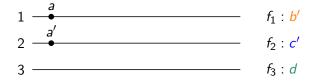
Strategies

- Strategies are partial functions $f_i : \Sigma_i^* \to \Sigma_i^c$ with local memory.
- Signal semantics implies reactivity of processes to events.



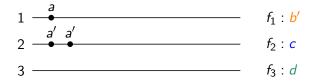
Strategies

- Strategies are partial functions $f_i : \Sigma_i^* \to \Sigma_i^c$ with local memory.
- Signal semantics implies reactivity of processes to events.



Strategies

- Strategies are partial functions $f_i : \Sigma_i^* \to \Sigma_i^c$ with local memory.
- Signal semantics implies reactivity of processes to events.

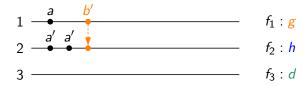


Strategies

• Strategies are partial functions $f_i : \Sigma_i^* \to \Sigma_i^c$ with local memory.

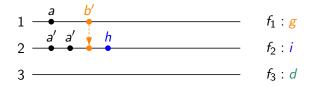
▲日▼▲□▼▲□▼▲□▼ □ ののの

• Signal semantics implies reactivity of processes to events.



Strategies

- Strategies are partial functions $f_i : \Sigma_i^* \to \Sigma_i^c$ with local memory.
- Signal semantics implies reactivity of processes to events.



▲日▼▲□▼▲□▼▲□▼ □ ののの

Strategies

• Strategies are partial functions $f_i : \Sigma_i^* \to \Sigma_i^c$ with local memory.

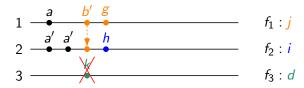
▲日▼▲□▼▲□▼▲□▼ □ ののの

• Signal semantics implies reactivity of processes to events.

Strategies

- Strategies are partial functions $f_i : \Sigma_i^* \to \Sigma_i^c$ with local memory.
- Signal semantics implies reactivity of processes to events.
- A run respects a strategy f = (f_i)_{i∈Proc} (is an f-run) if each event of process i labelled with a controllable action respects the strategy f_i.

▲日▼▲□▼▲□▼▲□▼ □ ○○○



Strategies

- Strategies are partial functions $f_i : \Sigma_i^* \to \Sigma_i^c$ with local memory.
- Signal semantics implies reactivity of processes to events.
- A run respects a strategy f = (f_i)_{i∈Proc} (is an f-run) if each event of process i labelled with a controllable action respects the strategy f_i.

▲日▼▲□▼▲□▼▲□▼ □ ののの

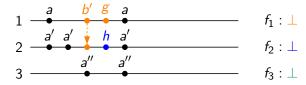
Strategies

- Strategies are partial functions $f_i : \Sigma_i^* \to \Sigma_i^c$ with local memory.
- Signal semantics implies reactivity of processes to events.
- A run respects a strategy f = (f_i)_{i∈Proc} (is an f-run) if each event of process i labelled with a controllable action respects the strategy f_i.

▲日▼▲□▼▲□▼▲□▼ □ ののの

Strategies

- Strategies are partial functions $f_i : \Sigma_i^* \to \Sigma_i^c$ with local memory.
- Signal semantics implies reactivity of processes to events.
- A run respects a strategy f = (f_i)_{i∈Proc} (is an f-run) if each event of process i labelled with a controllable action respects the strategy f_i.
- A run t = (V, λ, ≤) is f-maximal if for each process i either
 V_i = λ⁻¹(Σ_i) is infinite, or f_i is undefined on the maximal event of V_i.



The model

Observable runs

Given a run $t = (V, \lambda, \leq)$, we define the observable run by

$$\pi_{\Gamma}(t) = (\Gamma, \lambda_{|\Gamma}, \leq \cap (\Gamma \times \Gamma))$$

where

$$\Gamma = \bigcup_{i \in Proc} \operatorname{In}_i \cup \bigcup_{i \in Proc} \operatorname{Out}_i$$

The model

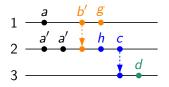
Observable runs

Given a run $t = (V, \lambda, \leq)$, we define the observable run by

$$\pi_{\Gamma}(t) = (\Gamma, \lambda_{|\Gamma}, \leq \cap (\Gamma \times \Gamma))$$

where

$$\Gamma = \bigcup_{i \in Proc} \operatorname{In}_i \cup \bigcup_{i \in Proc} \operatorname{Out}_i$$



The model

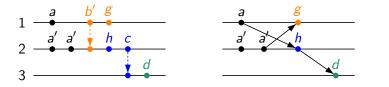
Observable runs

Given a run $t = (V, \lambda, \leq)$, we define the observable run by

$$\pi_{\Gamma}(t) = (\Gamma, \lambda_{|\Gamma}, \leq \cap (\Gamma \times \Gamma))$$

where

$$\Gamma = \bigcup_{i \in Proc} \operatorname{In}_i \cup \bigcup_{i \in Proc} \operatorname{Out}_i$$



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Given

•
$$\mathcal{A} = (\operatorname{Proc}, E, \Gamma)$$

Given

•
$$\mathcal{A} = (\operatorname{Proc}, E, \Gamma)$$

• φ a specification over Γ -labelled partial orders (observable runs)

Given

• $\mathcal{A} = (\operatorname{Proc}, E, \Gamma)$

• φ a specification over $\Gamma\text{-labelled}$ partial orders (observable runs) Do there exist

▲日▼▲□▼▲□▼▲□▼ □ ののの

• sets $\Sigma_{i,j}$ for each $(i,j) \in E$

Given

• $\mathcal{A} = (\operatorname{Proc}, E, \Gamma)$

• φ a specification over $\Gamma\text{-labelled}$ partial orders (observable runs) Do there exist

▲日▼▲□▼▲□▼▲□▼ □ ののの

- sets $\Sigma_{i,j}$ for each $(i,j) \in E$
- and strategies $f_i : \Sigma_i^* \to \Sigma_i^c$ for each $i \in \operatorname{Proc}$

Given

• $\mathcal{A} = (\operatorname{Proc}, \mathcal{E}, \Gamma)$

• φ a specification over $\Gamma\text{-labelled}$ partial orders (observable runs) Do there exist

▲日▼▲□▼▲□▼▲□▼ □ ののの

• sets $\Sigma_{i,j}$ for each $(i,j) \in E$

• and strategies $f_i : \Sigma_i^* \to \Sigma_i^c$ for each $i \in \operatorname{Proc}$

such that every *f*-maximal *f*-run *t* is such that $\pi_{\Gamma}(t) \models \varphi$?

Given

• $\mathcal{A} = (\operatorname{Proc}, \mathcal{E}, \Gamma)$

• φ a specification over $\Gamma\text{-labelled}$ partial orders (observable runs) Do there exist

▲日▼▲□▼▲□▼▲□▼ □ ののの

- sets $\Sigma_{i,j}$ for each $(i,j) \in E$
- and strategies $f_i : \Sigma_i^* \to \Sigma_i^c$ for each $i \in \operatorname{Proc}$

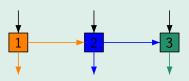
such that every *f*-maximal *f*-run *t* is such that $\pi_{\Gamma}(t) \models \varphi$?

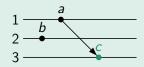
If so, compute them

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 めんぐ

Communication induces order relation

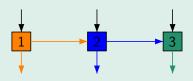
Communication induces order relation

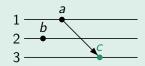


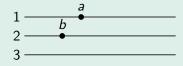


▲□▶▲□▶▲□▶▲□▶ □ のへで

Communication induces order relation

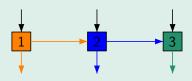


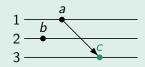




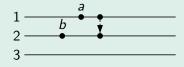
◆□ > ◆□ > ◆三 > ◆三 > ● ● ●

Communication induces order relation

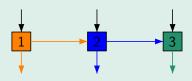


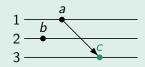


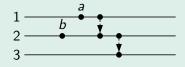
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで



Communication induces order relation

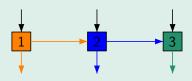


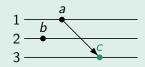




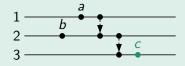
◆□ > ◆□ > ◆三 > ◆三 > ● ● ●

Communication induces order relation

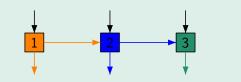


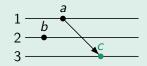


◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで



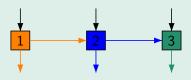
Communication induces order relation

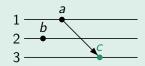




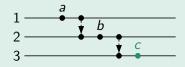
◆ロト ◆御 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ● のへで

Communication induces order relation

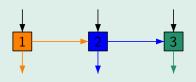


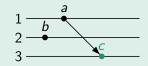


◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで



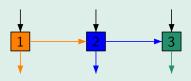
Communication induces order relation

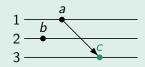


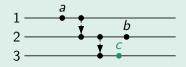


◆ロト ◆御 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ● のへで

Communication induces order relation

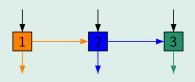


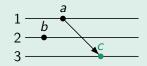




▲ロ▶ ▲□▶ ▲目▶ ▲目▶ 三目 - 釣A@

Communication induces order relation





◆ロ〉 ◆御〉 ◆臣〉 ◆臣〉 三臣 → 今々⊙

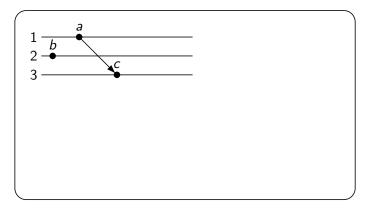
Restrictions on specifications

• Specifications should not discriminate between a partial order and its order extensions

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

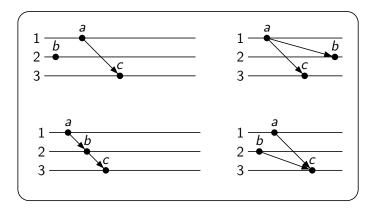
Restrictions on specifications

• Specifications should not discriminate between a partial order and its order extensions

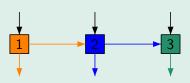


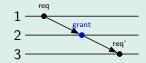
Restrictions on specifications

• Specifications should not discriminate between a partial order and its order extensions



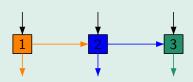
Input events are not controllable by processes

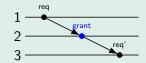




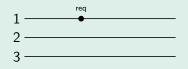
◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = ∽ へ @

Input events are not controllable by processes

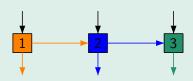


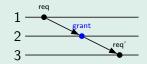


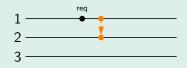
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで



Input events are not controllable by processes

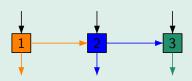


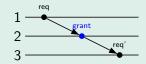




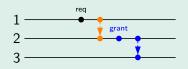
◆□ > ◆□ > ◆三 > ◆三 > ● ● ●

Input events are not controllable by processes

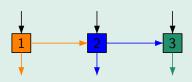


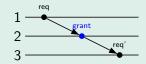


◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

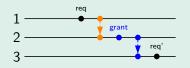


Input events are not controllable by processes

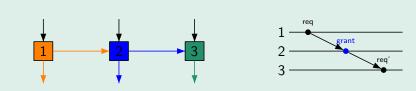




◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

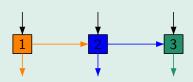


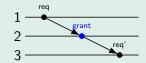
Input events are not controllable by processes



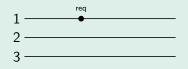
◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Input events are not controllable by processes

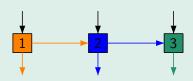


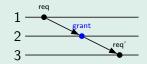


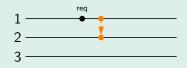
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで



Input events are not controllable by processes

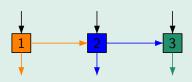


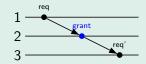




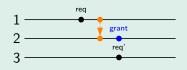
◆□ > ◆□ > ◆三 > ◆三 > ● ● ●

Input events are not controllable by processes

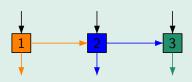


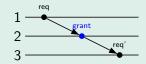


◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

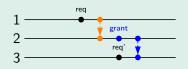


Input events are not controllable by processes

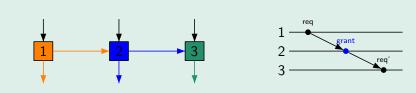


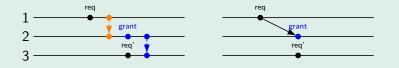


◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで



Input events are not controllable by processes





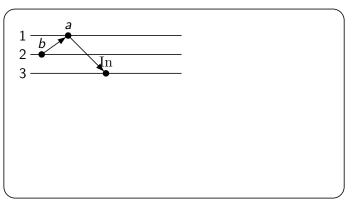
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - の々で

Restrictions on specifications

- Specifications should not discriminate between a partial order and its order extensions
- Specifications should not discriminate between a partial order and its "weakenings"

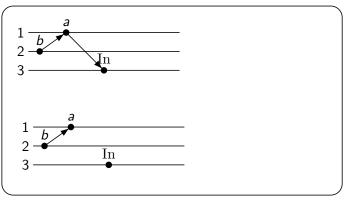
Restrictions on specifications

- Specifications should not discriminate between a partial order and its order extensions
- Specifications should not discriminate between a partial order and its "weakenings"



Restrictions on specifications

- Specifications should not discriminate between a partial order and its order extensions
- Specifications should not discriminate between a partial order and its "weakenings"



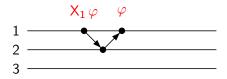
AlocTL

$$\varphi ::= \mathbf{a} \mid \neg \mathbf{a} \mid \varphi \lor \varphi \mid \varphi \land \varphi$$
$$\mid \mathsf{X}_{i} \varphi \mid \varphi \mathsf{U}_{i} \varphi \mid \neg \mathsf{X}_{i} \top \mid \varphi \widetilde{\mathsf{U}}_{i} \varphi$$
$$\mid \mathsf{Y}_{i} \varphi \mid \varphi \mathsf{S}_{i} \varphi \mid \neg \mathsf{Y}_{i} \top \mid \varphi \widetilde{\mathsf{S}}_{i} \varphi$$
$$\mid \mathsf{F}_{i,i}(\operatorname{Out} \land \varphi) \mid \operatorname{Out} \land \mathsf{H}_{i,j} \varphi$$

AlocTL

$$\begin{split} \varphi &::= a \mid \neg a \mid \varphi \lor \varphi \mid \varphi \land \varphi \\ &\mid \mathsf{X}_i \varphi \mid \varphi \, \mathsf{U}_i \varphi \mid \neg \, \mathsf{X}_i \top \mid \varphi \, \widetilde{\mathsf{U}}_i \varphi \\ &\mid \mathsf{Y}_i \varphi \mid \varphi \, \mathsf{S}_i \varphi \mid \neg \, \mathsf{Y}_i \top \mid \varphi \, \widetilde{\mathsf{S}}_i \varphi \\ &\mid \mathsf{F}_{i,j}(\operatorname{Out} \land \varphi) \mid \operatorname{Out} \land \mathsf{H}_{i,j} \varphi \end{split}$$

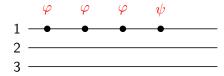
◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで



AlocTL

$$\begin{split} \varphi &::= a \mid \neg a \mid \varphi \lor \varphi \mid \varphi \land \varphi \\ &\mid \mathsf{X}_i \varphi \mid \varphi \, \mathsf{U}_i \varphi \mid \neg \, \mathsf{X}_i \top \mid \varphi \, \widetilde{\mathsf{U}}_i \varphi \\ &\mid \mathsf{Y}_i \varphi \mid \varphi \, \mathsf{S}_i \varphi \mid \neg \, \mathsf{Y}_i \top \mid \varphi \, \widetilde{\mathsf{S}}_i \varphi \\ &\mid \mathsf{F}_{i,j}(\operatorname{Out} \land \varphi) \mid \operatorname{Out} \land \mathsf{H}_{i,j} \varphi \end{split}$$

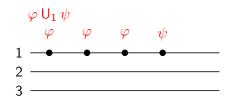
◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで



AlocTL

$$\begin{split} \varphi &::= a \mid \neg a \mid \varphi \lor \varphi \mid \varphi \land \varphi \\ &\mid \mathsf{X}_i \varphi \mid \varphi \, \mathsf{U}_i \varphi \mid \neg \, \mathsf{X}_i \top \mid \varphi \, \widetilde{\mathsf{U}}_i \varphi \\ &\mid \mathsf{Y}_i \varphi \mid \varphi \, \mathsf{S}_i \varphi \mid \neg \, \mathsf{Y}_i \top \mid \varphi \, \widetilde{\mathsf{S}}_i \varphi \\ &\mid \mathsf{F}_{i,j}(\operatorname{Out} \land \varphi) \mid \operatorname{Out} \land \mathsf{H}_{i,j} \varphi \end{split}$$

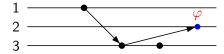
◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで



AlocTL

$$\begin{split} \varphi &::= a \mid \neg a \mid \varphi \lor \varphi \mid \varphi \land \varphi \\ &\mid \mathsf{X}_i \varphi \mid \varphi \, \mathsf{U}_i \varphi \mid \neg \, \mathsf{X}_i \top \mid \varphi \, \widetilde{\mathsf{U}}_i \varphi \\ &\mid \mathsf{Y}_i \varphi \mid \varphi \, \mathsf{S}_i \varphi \mid \neg \, \mathsf{Y}_i \top \mid \varphi \, \widetilde{\mathsf{S}}_i \varphi \\ &\mid \mathsf{F}_{i,j}(\operatorname{Out} \land \varphi) \mid \operatorname{Out} \land \mathsf{H}_{i,j} \varphi \end{split}$$

with $a \in \Gamma$ and $i, j \in Proc$

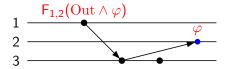


◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

AlocTL

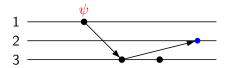
$$\begin{split} \varphi &::= a \mid \neg a \mid \varphi \lor \varphi \mid \varphi \land \varphi \\ &\mid \mathsf{X}_i \varphi \mid \varphi \, \mathsf{U}_i \varphi \mid \neg \, \mathsf{X}_i \top \mid \varphi \, \widetilde{\mathsf{U}}_i \varphi \\ &\mid \mathsf{Y}_i \varphi \mid \varphi \, \mathsf{S}_i \varphi \mid \neg \, \mathsf{Y}_i \top \mid \varphi \, \widetilde{\mathsf{S}}_i \varphi \\ &\mid \mathsf{F}_{i,j}(\operatorname{Out} \land \varphi) \mid \operatorname{Out} \land \mathsf{H}_{i,j} \varphi \end{split}$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで



AlocTL

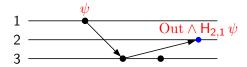
$$\begin{split} \varphi &::= a \mid \neg a \mid \varphi \lor \varphi \mid \varphi \land \varphi \\ &\mid \mathsf{X}_i \varphi \mid \varphi \, \mathsf{U}_i \varphi \mid \neg \, \mathsf{X}_i \top \mid \varphi \, \widetilde{\mathsf{U}}_i \varphi \\ &\mid \mathsf{Y}_i \varphi \mid \varphi \, \mathsf{S}_i \varphi \mid \neg \, \mathsf{Y}_i \top \mid \varphi \, \widetilde{\mathsf{S}}_i \varphi \\ &\mid \mathsf{F}_{i,j}(\operatorname{Out} \land \varphi) \mid \operatorname{Out} \land \mathsf{H}_{i,j} \varphi \end{split}$$



AlocTL

$$\begin{split} \varphi &::= a \mid \neg a \mid \varphi \lor \varphi \mid \varphi \land \varphi \\ &\mid \mathsf{X}_i \varphi \mid \varphi \, \mathsf{U}_i \varphi \mid \neg \, \mathsf{X}_i \top \mid \varphi \, \widetilde{\mathsf{U}}_i \varphi \\ &\mid \mathsf{Y}_i \varphi \mid \varphi \, \mathsf{S}_i \varphi \mid \neg \, \mathsf{Y}_i \top \mid \varphi \, \widetilde{\mathsf{S}}_i \varphi \\ &\mid \mathsf{F}_{i,j}(\operatorname{Out} \land \varphi) \mid \operatorname{Out} \land \mathsf{H}_{i,j} \varphi \end{split}$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで



AlocTL

$$\begin{split} \varphi &::= a \mid \neg a \mid \varphi \lor \varphi \mid \varphi \land \varphi \\ &\mid \mathsf{X}_i \varphi \mid \varphi \, \mathsf{U}_i \varphi \mid \neg \mathsf{X}_i \top \mid \varphi \, \widetilde{\mathsf{U}}_i \varphi \\ &\mid \mathsf{Y}_i \varphi \mid \varphi \, \mathsf{S}_i \varphi \mid \neg \mathsf{Y}_i \top \mid \varphi \, \widetilde{\mathsf{S}}_i \varphi \\ &\mid \mathsf{F}_{i,j}(\operatorname{Out} \land \varphi) \mid \operatorname{Out} \land \mathsf{H}_{i,j} \varphi \end{split}$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

with $a \in \Gamma$ and $i, j \in Proc$

Formulae

•
$$G_1(\texttt{request} \longrightarrow \mathsf{F}_{1,2}(\texttt{Out} \land \texttt{grant}))$$

•
$$G_2(\texttt{grant} \longrightarrow (\text{Out} \land \mathsf{H}_{2,1} \texttt{request}))$$

AlocTL

$$\varphi ::= \mathbf{a} \mid \neg \mathbf{a} \mid \varphi \lor \varphi \mid \varphi \land \varphi$$
$$\mid \mathsf{X}_{i} \varphi \mid \varphi \mathsf{U}_{i} \varphi \mid \neg \mathsf{X}_{i} \top \mid \varphi \widetilde{\mathsf{U}}_{i} \varphi$$
$$\mid \mathsf{Y}_{i} \varphi \mid \varphi \mathsf{S}_{i} \varphi \mid \neg \mathsf{Y}_{i} \top \mid \varphi \widetilde{\mathsf{S}}_{i} \varphi$$
$$\mid \mathsf{F}_{i,j}(\operatorname{Out} \land \varphi) \mid \operatorname{Out} \land \mathsf{H}_{i,j} \varphi$$

▲日▼▲□▼▲□▼▲□▼ □ ののの

with $a \in \Gamma$ and $i, j \in Proc$

Formulae

•
$$G_1(\texttt{request} \longrightarrow F_{1,2}(\texttt{Out} \land \texttt{grant}))$$

• $G_2(\texttt{grant} \longrightarrow (\texttt{Out} \land \mathsf{H}_{2,1} \texttt{request}))$

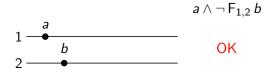
Theorem

AlocTL is closed under extension and weakening

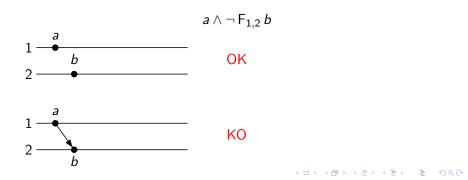
• $\neg \mathsf{F}_{i,j} \varphi$ forbidden!

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

•
$$\neg \mathsf{F}_{i,j} \varphi$$
 forbidden!



•
$$\neg \mathsf{F}_{i,j} \varphi$$
 forbidden!

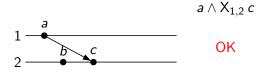


• $\neg \mathsf{F}_{i,j} \varphi$ forbidden!

(ロ)、(型)、(E)、(E)、 E、 の(の)

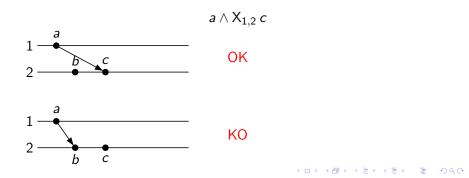
• $X_{i,j}\varphi$ forbidden!

- $\neg \mathsf{F}_{i,j} \varphi$ forbidden!
- $X_{i,j}\varphi$ forbidden!



◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

- $\neg \mathsf{F}_{i,j} \varphi$ forbidden!
- $X_{i,j}\varphi$ forbidden!



- $\neg \mathsf{F}_{i,j} \varphi$ forbidden!
- $X_{i,j}\varphi$ forbidden!

Specification is not allowed to require concurrency

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

- $\neg \mathsf{F}_{i,j} \varphi$ forbidden!
- $X_{i,j}\varphi$ forbidden!

Specification is not allowed to require concurrency

Closure by weakening

Ensured by $F_{i,j} \wedge Out$ and $Out \wedge H_{i,j} \varphi$.

Outline

Decidability Results

Theorem

The synthesis problem over singleton architectures is decidable for regular specifications.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Decidability Results

Theorem

The synthesis problem over singleton architectures is decidable for regular specifications.

Theorem

The distributed synthesis problem over strongly connected architectures is decidable for AlocTL specifications.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Decidability Results

Theorem

The synthesis problem over singleton architectures is decidable for regular specifications.

Theorem

The distributed synthesis problem over strongly connected architectures is decidable for AlocTL specifications.

Proof

By reduction to the singleton case.

Note that we do not need to change the specification since it is closed under extension

▲日▼▲□▼▲□▼▲□▼ □ ののの

Proposition

If there are communication sets $\Sigma_{i,j}$ for $(i,j) \in E$ and a winning distributed strategy on the strongly connected architecture, then there is a winning strategy on the singleton.

Proof Easy.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

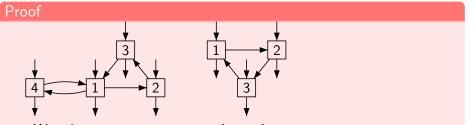
Proposition

If there is a winning strategy f over the singleton architecture then one can define internal signals sets and a distributed winning strategy for the strongly connected architecture.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Proposition

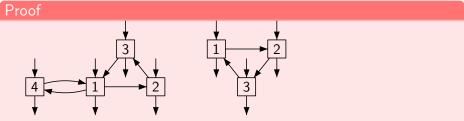
If there is a winning strategy f over the singleton architecture then one can define internal signals sets and a distributed winning strategy for the strongly connected architecture.



• We select a master process and a cycle.

Proposition

If there is a winning strategy f over the singleton architecture then one can define internal signals sets and a distributed winning strategy for the strongly connected architecture.

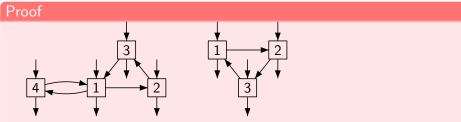


• We select a master process and a cycle.

• The master process will centralize information in order to simulate *f* and tell other processes which value to output

Proposition

If there is a winning strategy f over the singleton architecture then one can define internal signals sets and a distributed winning strategy for the strongly connected architecture.

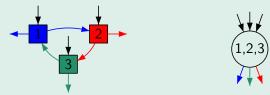


We select a master process and a cycle.

- The master process will centralize information in order to simulate *f* and tell other processes which value to output
- Aim: create a run that will be a weakening of some *f*-run over the singleton

Example

Specification: $\operatorname{req}_3 \to F_{32}(\neg Y_2 \operatorname{alert} \leftrightarrow \operatorname{grant})$ Strategy for the singleton: $f(\sigma) = \operatorname{grant} \operatorname{iff} \sigma$ contains req_3 but no alert



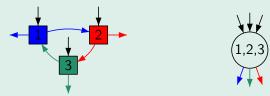
Master collect information by sending a signal Msg through the cycle



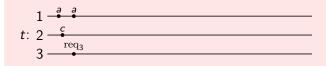
t′:

Example

Specification: req₃ \rightarrow F₃₂(\neg Y₂ alert \leftrightarrow grant) Strategy for the singleton: $f(\sigma) = \text{grant iff } \sigma$ contains req₃ but no alert



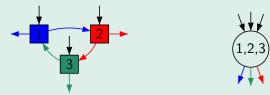
Master collect information by sending a signal Msg through the cycle



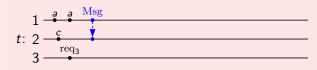
t′:

Example

Specification: req₃ \rightarrow F₃₂(\neg Y₂ alert \leftrightarrow grant) Strategy for the singleton: $f(\sigma) = \text{grant iff } \sigma$ contains req₃ but no alert



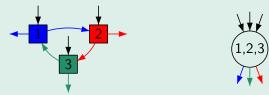
Master collect information by sending a signal Msg through the cycle



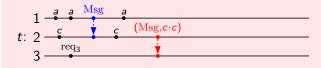
t′:

Example

Specification: req₃ \rightarrow F₃₂(\neg Y₂ alert \leftrightarrow grant) Strategy for the singleton: $f(\sigma) = \text{grant iff } \sigma$ contains req₃ but no alert



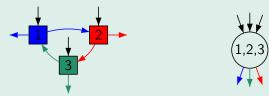
Master collect information by sending a signal Msg through the cycle



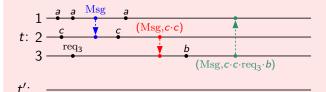
t': _____

Example

Specification: req₃ \rightarrow F₃₂(\neg Y₂ alert \leftrightarrow grant) Strategy for the singleton: $f(\sigma) = \text{grant iff } \sigma$ contains req₃ but no alert

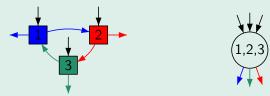


Master collect information by sending a signal Msg through the cycle

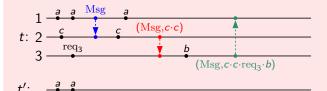


Example

Specification: req₃ \rightarrow F₃₂(\neg Y₂ alert \leftrightarrow grant) Strategy for the singleton: $f(\sigma) = \text{grant iff } \sigma$ contains req₃ but no alert

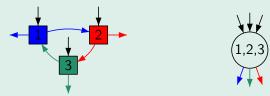


Master collect information by sending a signal Msg through the cycle

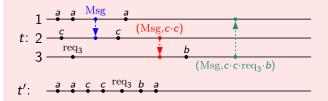


Example

Specification: req₃ \rightarrow F₃₂(\neg Y₂ alert \leftrightarrow grant) Strategy for the singleton: $f(\sigma) = \text{grant iff } \sigma$ contains req₃ but no alert



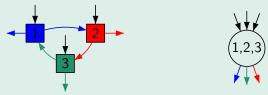
Master collect information by sending a signal Msg through the cycle

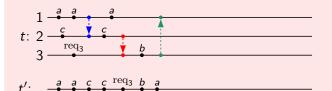


Example

Specification: $\operatorname{req}_3 \to F_{32}(\neg Y_2 \operatorname{alert} \leftrightarrow \operatorname{grant})$

Strategy for the singleton: $f(\sigma) = \text{grant}$ iff σ contains req₃ but no alert

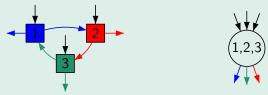


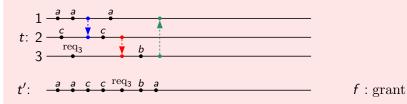


Example

Specification: $\operatorname{req}_3 \to F_{32}(\neg Y_2 \operatorname{alert} \leftrightarrow \operatorname{grant})$

Strategy for the singleton: $f(\sigma) = \text{grant}$ iff σ contains req₃ but no alert

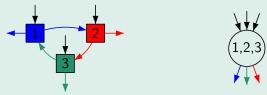


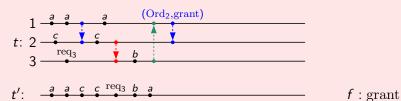


Example

Specification: $\operatorname{req}_3 \to F_{32}(\neg Y_2 \operatorname{alert} \leftrightarrow \operatorname{grant})$

Strategy for the singleton: $f(\sigma) = \text{grant}$ iff σ contains req₃ but no alert

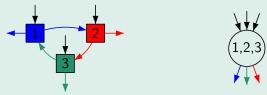


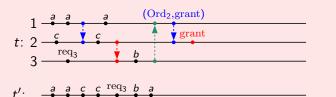


Example

Specification: $\operatorname{req}_3 \to F_{32}(\neg Y_2 \operatorname{alert} \leftrightarrow \operatorname{grant})$

Strategy for the singleton: $f(\sigma) = \text{grant}$ iff σ contains req₃ but no alert



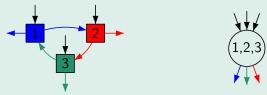


f : grant

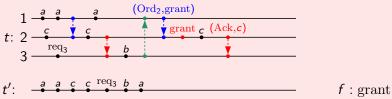
Example

Specification: $\operatorname{req}_3 \to F_{32}(\neg Y_2 \operatorname{alert} \leftrightarrow \operatorname{grant})$

Strategy for the singleton: $f(\sigma) = \text{grant}$ iff σ contains req₃ but no alert



Master sends orders to other processes to simulate the strategy f



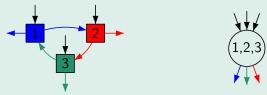
0-----

Example

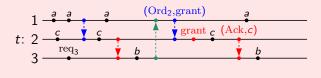
t′·

Specification: $\operatorname{req}_3 \to F_{32}(\neg Y_2 \operatorname{alert} \leftrightarrow \operatorname{grant})$

Strategy for the singleton: $f(\sigma) = \text{grant}$ iff σ contains req₃ but no alert



Master sends orders to other processes to simulate the strategy f



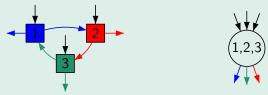
a a c c ^{req}₃ b a

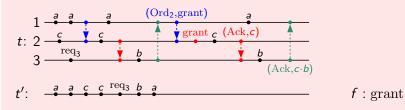
f : grant

Example

Specification: $\operatorname{req}_3 \to F_{32}(\neg Y_2 \operatorname{alert} \leftrightarrow \operatorname{grant})$

Strategy for the singleton: $f(\sigma) = \text{grant}$ iff σ contains req₃ but no alert

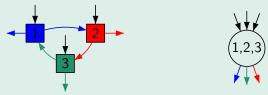


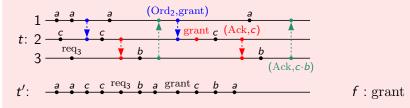


Example

Specification: $\operatorname{req}_3 \to F_{32}(\neg Y_2 \operatorname{alert} \leftrightarrow \operatorname{grant})$

Strategy for the singleton: $f(\sigma) = \text{grant}$ iff σ contains req₃ but no alert

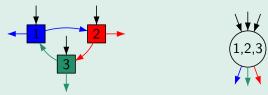




Example

Specification: $\operatorname{req}_3 \to F_{32}(\neg Y_2 \operatorname{alert} \leftrightarrow \operatorname{grant})$

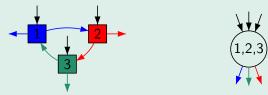
Strategy for the singleton: $f(\sigma) = \text{grant}$ iff σ contains req₃ but no alert



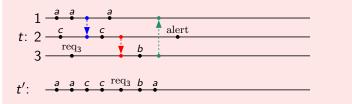
Example

Specification: $\operatorname{req}_3 \to F_{32}(\neg Y_2 \operatorname{alert} \leftrightarrow \operatorname{grant})$

Strategy for the singleton: $f(\sigma) = \text{grant}$ iff σ contains req₃ but no alert



Master sends orders to other processes to simulate the strategy f

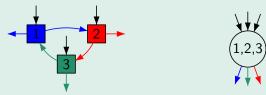


f : grant

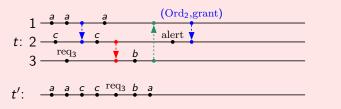
Example

Specification: $\operatorname{req}_3 \to F_{32}(\neg Y_2 \operatorname{alert} \leftrightarrow \operatorname{grant})$

Strategy for the singleton: $f(\sigma) = \text{grant}$ iff σ contains req₃ but no alert



Master sends orders to other processes to simulate the strategy f

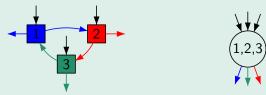


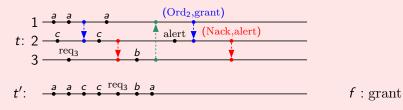
f : grant

Example

Specification: $\operatorname{req}_3 \to F_{32}(\neg Y_2 \operatorname{alert} \leftrightarrow \operatorname{grant})$

Strategy for the singleton: $f(\sigma) = \text{grant}$ iff σ contains req₃ but no alert

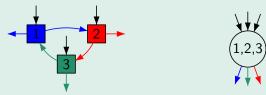


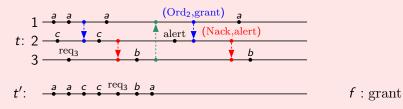


Example

Specification: $\operatorname{req}_3 \to F_{32}(\neg Y_2 \operatorname{alert} \leftrightarrow \operatorname{grant})$

Strategy for the singleton: $f(\sigma) = \text{grant}$ iff σ contains req₃ but no alert

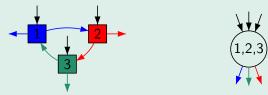


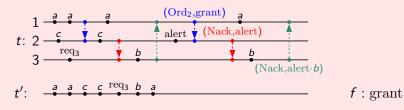


Example

Specification: $\operatorname{req}_3 \to F_{32}(\neg Y_2 \operatorname{alert} \leftrightarrow \operatorname{grant})$

Strategy for the singleton: $f(\sigma) = \text{grant}$ iff σ contains req₃ but no alert

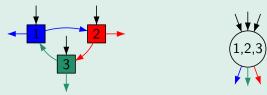


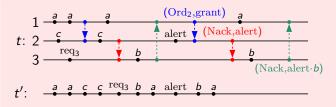


Example

Specification: $\operatorname{req}_3 \to F_{32}(\neg Y_2 \operatorname{alert} \leftrightarrow \operatorname{grant})$

Strategy for the singleton: $f(\sigma) = \text{grant}$ iff σ contains req₃ but no alert





Lemma

t' is an extension of $\pi_{\Gamma}(t)$.

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Lemma

t' is an extension of $\pi_{\Gamma}(t)$.

Lemma

If x <' y in t' and $x \parallel y$ in $\pi_{\Gamma}(t)$ then $\lambda(y) \in \text{In}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Lemma

t' is an extension of $\pi_{\Gamma}(t)$.

Lemma

If x <' y in t' and $x \parallel y$ in $\pi_{\Gamma}(t)$ then $\lambda(y) \in \text{In}$.

Corollary

 $\pi_{\Gamma}(t)$ is a weakening of t'.

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Lemma

t' is an extension of $\pi_{\Gamma}(t)$.

Lemma

If
$$x <' y$$
 in t' and $x \parallel y$ in $\pi_{\Gamma}(t)$ then $\lambda(y) \in \text{In}$.

Corollary

 $\pi_{\Gamma}(t)$ is a weakening of t'.

Lemma

t' is an f-maximal f-run.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Lemma

t' is an extension of $\pi_{\Gamma}(t)$.

Lemma

If
$$x <' y$$
 in t' and $x \parallel y$ in $\pi_{\Gamma}(t)$ then $\lambda(y) \in \text{In}$.

Corollary

 $\pi_{\Gamma}(t)$ is a weakening of t'.

Lemma

```
t' is an f-maximal f-run.
```

Conclusion

Then $t' \models \varphi$ and, by closure property $\pi_{\Gamma}(t) \models \varphi$.

Memory

Proposition

If the strategy f over the singleton has finite memory, then we can distribute the strategy for the strongly connected architecture using

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- finite alphabets $\Sigma_{i,j}$
- local strategies with finite memories

Conclusion

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

- Asynchrony removes undecidability causes
- We have defined a new model of communication
- We have identified a class of decidable architectures
- Hopefully, many more to come!