Décidabilité de la théorie RPO

Devoir à rendre au plus tard le 12 mars 2012

6 mars 2012

1 Préliminaires

Soit A un alphabet fini et A^* l'ensemble des mots sur A, où ϵ désigne le mot de vide. On note X l'ensemble des variables et $T(\Sigma)$ l'ensemble des termes sur la signature Σ .

Il y a une correspondance entre les mots et les termes, de telles sortes à ce que les lettres soient des fonctions unaires et tout mot $a_1a_1...a_n$ soit associé au terme $a_1(a_2(...a_n()...))$, où x appartient à X. On considère un ordre total > dit de précédence sur A.

Un ordre sur les termes est un *ordre de réduction* s'il est monotone, stable par substitution et bien fondé.

Un ordre récursif sur les chemins est défini sur les mots de la manière suivante : s est plus grand que t pour l'ordre RPO, et on écrit $s \succ_{\mathsf{rpo}}^{A} t$ si et seulement si l'une des conditions suivantes est vérifiée :

- 1. $s \neq \epsilon$ et $t = \epsilon$
- 2. s = as' et t = bt' et ou bien
 - (a) a > b et $s \succ_{\mathsf{rpo}}^{A} t'$ ou bien
 - (b) a = b et $s' \succ_{\mathsf{rpo}}^{A} t'$ ou bien
 - (c) b > a et $(s' \succ_{\mathsf{rpo}}^{A} t \text{ ou } s' = t)$

Question 1

- 1. L'ordre récursif sur les chemins est un ordre de réecriture. Démontrer qu'il vérifie la propriété dite de sous-terme, i.e. si s est un sous-terme de t, alors t est plus grand que s pour l'ordre RPO.
- 2. Démontrer que si $s \succ_{\mathsf{rpo}} t$, alors pour tout mot $w, ws \succ_{\mathsf{rpo}} wt$.
- 3. Soit $a \in A$ et $s \succ_{\mathsf{rpo}} t$. Démontrer que pour tout mot w tel que $a \succ_{\mathsf{rpo}} w$, on a $as \succ_{\mathsf{rpo}} wat$.
- 4. Soient w₁, w₂,..., w_k, u₁, u₂,..., u_k deux sequences de mots tels que chaque lettre de chaque mot est strictement plus petite que a une lettre de A. Montrer que si w ≻_{rpo} w', alors :

$$aw_1aw_2 \dots aw_kaw \succ_{\mathsf{rpo}} au_1au_2 \dots au_kaw'$$

Question 2

On note $\max(w, A)$ la lettre maximale de A (pour l'ordre sur A) et $\mathsf{mult}(w, A)$ le nombre d'occurrences de cette lettre dans w. Démontrer que chacune des trois conditions suivantes :

- 1. $\max(w, A) > \max(w', A)$
- 2. $\max(w, A) = \max(w', A)$ et $\mathsf{mult}(w, A) > \mathsf{mult}(w', A)$
- 3. $a = \max(w, A) = \max(w', A)$, $\operatorname{mult}(w, A) = \operatorname{mult}(w', A)$, $w = w_0 a w_1 a w_2 \dots a w_k$, $w' = u_0 a u_1 a u_2 \dots a u_k$ et il existe $0 \le i \le k$ tels que $w_i \succ_{\mathsf{rpo}} u_i$ et pour tout j > i, on a $w_j = u_j$

est équivalente à $w \succ_{\mathsf{rpo}} w'$.

Question 3

On dit qu'une relation R sur A^* est reconnaissable si $\{v\#w|vRw\}$ est reconnaissable (# est un symbole n'appartenant pas à A).

Expliquer pourquoi la relation \prec_{rpo} ne peut être reconnue par un automate de mots.

2 Reconnaissance de rpo

2.1 Encodage des mots par les arbres

Introduisons la signature F suivante : F contient un symbole binaire pour chaque lettre a de A (on notera ce symbole a par abus de notation) et un constante ϵ_a pour chaque $a \in A$.

Soit m (resp. o) l'élément maximal (resp. minimal) de A. Posons a' le successeur de a dans A pour l'ordre >. On définit une fonction $\tau:A^*\to T(F)$ de traduction des mots dans les arbres comme suit. On commencera par définir les fonctions τ_a pour $a\in A$, et on prendra $\tau=\tau_m$

$$\tau_{a'}(w_1 a' w_2) = a'(\tau_a(w_2), \tau_{a'}(w_1)) \quad \text{si } a' \notin w_2
\tau_{a'}(w) = a'(\tau_a(w), \epsilon_{a'}) \quad \text{si } a' \notin w
\tau_o(w.o) = o(\epsilon_o, \tau_o(w))
\tau_o(\epsilon) = o(\epsilon_o, \epsilon_o)$$

On admettra que τ est injective.

Question 4

Donner l'arbre correspondant à $\tau(caacb)$

Question 5

- 1. Si $|w|_m = l$ combien de fois $\tau(w)$ contient-il le symbole m
- 2. Donner une borne sur la taille de $\tau(w)$ en fonction de la taille de w

Question 6

Montrer que $\tau(A^*)$ est reconnaissable par un automate d'arbre.

2.2 Produits d'arbres

On définit maintenant le produit de deux arbres dans T(F).

Commençons par étendre F avec un nouveau symbole \bot . On notera fg le nouveau symbole de fonction associé à $(f,g) \in (F \cup \bot)^2$. On définit la signature $F^2 = \{fg | f, g \in F \cup \{\bot\}\}$ où fg a pour arité le maximum de l'arité de f et de celle de g (\bot est d'arité 0).

On code le couple d'arbres $(t_1, t_2) \in T(F)^2$ par l'arbre produit $t_1 \otimes t_2 \in T(F^2)$ définit récursivement comme suit :

$$f(s_1, \dots, s_n) \otimes g(r_1, \dots, r_k) = fg\left(s_1 \otimes r_1, \dots, s_{\max(k,n)} \otimes r_{\max(k,n)}\right)$$

$$\text{où } s_l = \bot \text{ si } l > n \text{ et } r_l = \bot \text{ si } l > k$$

$$f(s_1, \dots, s_n) \otimes \bot = f\bot(s_1 \otimes \bot, \dots, s_n \otimes \bot)$$

$$\bot \otimes f(s_1, \dots, s_n) = \bot f(\bot \otimes s_1, \dots, \bot \otimes s_n)$$

On étends cette notation aux langages par $L \otimes L' = \{t \otimes t' | t \in L, t' \in L'\}$

Question 7

Montrer que si $L \subseteq T(F)$ et $L' \subseteq T(F)$ sont reconnaissables par des automates d'arbres alors $L \otimes L'$ l'est encore.

Question 8

Montrer que le langage $\{\tau(av) \otimes \tau(v) | v \in A^*\}$ est reconnaissable par un automate d'arbre.

Question 9

Montrer que le langage $\{\tau(w)\otimes\tau(v)|w\succ_{\sf rpo}v\}$ est reconnaissable par un automate d'arbres.

3 Décidabilité de la théorie RPO du premier ordre

On définit une formule RPO comme une formule du premier ordre construite à partir de termes sur la signature A et les symboles de prédicats " \succ " et "=".

Une formule est interprétée dans T(A), en interprétant \succ par \succ_{rpo} et = par l'identité. On note $\phi(x_1, \ldots, x_n)$ une formule RPO avec x_1, \ldots, x_n des variables libres.

Une formule plate ("flat formula" en anglais) est une formule RPO dont les atomes sont de la forme $x = y, x = ay, x = a, x \succ y, a \succ x$ ou $x \succ a$, où x et y sont des variables.

Question 10

Montrer qu'il existe une transformation des formules RPO vers les formules RPO plates préservant les solutions.

Question 11

Étant donnée une formule RPO, $\phi(x_1,\ldots,x_n)$, montrer que le langage

$$\{u_1 \otimes \ldots \otimes u_n \mid u_1, \ldots, u_n \text{ satisfait la formule } \phi\}$$

est reconnaissable par un automate d'arbres.