Langages formels

10. Automates à pile

23 avril 2007

Exercice 1 – *Exemples*

Donner des automates à pile qui reconnaissent les langages suivants :

- **1.** $\{w\bar{w} \mid w \in \Sigma^*\}$, où \bar{w} est le miroir de w
- 2. le langage de Dick à n parenthèses D_n^* voir TD7, pour ceux qui ne suivent pas
- **3.** $\{a^nb^p \mid 0 < n \le p \le 2n\}$
- **4.** $\Sigma^* \setminus \{ww \mid w \in \Sigma^*\}$

Exercice 2 – Variantes d'automates à pile

Soit $A = (Q, \Sigma, Z, T, q_0, z_0, F)$ un automate à pile.

- **1.** Montrer que l'on peut construire un automate à pile \mathcal{A}' reconnaissant le même langage et tel que $\mathsf{T}' \subseteq \mathsf{Q}' \times \mathsf{Z} \times (\Sigma \cup \{\epsilon\}) \times \mathsf{Q}' \times \mathsf{Z}^{\leqslant 2}$.
- **2.** Montrer que l'on peut construire un automate à pile A'' équivalent à A tel que les mouvements de la pile sont uniquement du type *push* ou *pop* ou *skip*.

Exercice 3 – Ensembles calculables

Soit $A := (Q, \Sigma, Z, T, q_0, z_0, F)$ un automate à pile.

1. Montrer que l'on peut effectivement calculer l'ensemble X suivant :

$$X := \{\, (\mathfrak{p}, x, \mathfrak{q}) \in Q \times Z \times Q \mid (\mathfrak{p}, x) \to^* (\mathfrak{q}, \epsilon) \,\}$$

2. En utilisant X, montrer que l'on peut effectivement calculer les ensembles suivants :

$$Y := \{ (p, x, q, y) \in Q \times Z \times Q \times Z \mid \exists h, (p, x) \rightarrow^* (q, hy) \}$$
$$V := \{ (p, x) \in Q \times Z \mid (p, x) \rightarrow^{\omega} \}$$

Exercice 4

On considère des systèmes dont le fonctionnement peut être modélisé par une variante d'automate à pile qui n'a pas de canal d'entrée. Un tel système évolue donc seulement en fonction de l'état de contrôle et de la lettre en haut de la pile.

– Un *système* à *pile* S est un quadruplet $S = (Q, \Gamma, \delta, q_0)$ où Q, Γ, δ et q_0 sont respectivement l'ensemble des états de contrôle, l'alphabet de pile, la relation de transition $\delta \subseteq (Q \times (\Gamma \cup \{\epsilon\})) \times (Q \times \Gamma^*)$ et l'état initial.

- Un état de S est un couple (q,α) où $q\in Q$ est un état de contrôle et $\alpha\in\Gamma^*$ un mot de pile. L'état initial de S est (q_0,ϵ) . Un état (q',α') est directement accessible à partir d'un état (q,α) , ce que l'on note $(q,\alpha)\Rightarrow(q',\alpha')$, s'il existe β , α et α tels que $\alpha=\beta\alpha$, $\alpha'=\beta\alpha$ et $((q,\alpha),(q',\alpha))\in\delta$. La clôture réflexive et transitive de α est notée α .
- On notera une transition $((q, \varepsilon), (q', a))$ par (q, a_+, q') ; de même une transition $((q, a), (q', \varepsilon))$ sera notée (q, a_-, q') .
- Le langage de la pile de S dans l'état q, noté L(S, q), est défini par

$$L(S,q) := \{\, \alpha \mid \alpha \in \Gamma^*, (q_0,\epsilon) \Rightarrow^* (q,\alpha) \,\}$$

Le langage de la pile de S, noté L(S), est la réunion des L(S, q) pour $q \in Q$.

1. Expliquer comment on peut simuler un système à pile S quelconque par un autre ayant une relation de transition dans $((Q \times \Gamma) \times (Q \times \{\epsilon\})) \cup ((Q \times \{\epsilon\}) \times (Q \times \Gamma))$.

On considère dans toute la suite de l'exercice que δ satisfait cette contrainte et peut donc être représentée par un ensemble fini de triplets (q, x, q') où chaque x est de la forme a_+ ou a_- . On associe alors à un système à pile $S=(Q, \Gamma, \delta, q_0)$ l'automate fini $S'=(Q, \Gamma, \delta', q_0, Q)$, où tout les états sont acceptants et où la relation de transition $\delta'\subseteq Q\times (\Gamma\cup\{\epsilon\})\times Q$ est la plus petite relation satisfaisant les conditions suivantes :

- si (q, α₊, q') ∈ δ alors (q, α, q') ∈ δ',
- si $(q, a_-, q') \in \delta$ et $(q'', a, q) \in \delta'^+$ alors $(q'', \epsilon, q') \in \delta'$, où δ'^+ représente la clôture transitive de δ' .

2. Soit le système à pile $S_1 = (\{1,2,3\},\{\alpha,b\},\delta_1,1)$ où δ_1 est l'ensemble

$$\{(1, a_+, 2), (2, b_+, 3), (3, b_-, 1), (1, b_+, 3)\}$$

Dessiner S_1 et l'automate associé S'_1 .

- **3.** Montrer que (q, α) est accessible à partir de (q_0, ε) dans S si et seulement si q est accessible dans S' par le mot α .
- **4.** Montrer que pour tout $q \in Q$, le langage L(S,q) est rationnel; en conclure que le langage de la pile, L(S), est aussi rationnel.
- **5.** Expliquer comment calculer δ' et prouver la terminaison de votre algorithme.