Langages Formels

Licence Informatique – ENS Cachan

Partiel du 19 mars 2008 durée 2 heures

Document autorisé: polycopié du cours.

Les exercices sont indépendants.

Toutes les réponses devront être correctement justifiées.

1 Automates à pile

a) Donner un automate à pile déterministe et temps réel pour le langage

$$L = \{w \in \{a,b\}^* \mid |w|_a = 2|w|_b\} .$$

2 Grammaires

Soit $G = (\Sigma, V, P, S)$ une grammaire algébrique. Une variable $x \in V$ est strictement récursive (SR) s'il existe une dérivation $x \xrightarrow{*} uxv$ dans G avec $u, v \in \Sigma^{+}$.

L'objectif est de montrer qu'une grammaire algébrique sans variable SR engendre un langage rationnel.

a) Montrer que l'on peut décider si une grammaire algébrique contient des variables SR. Indication : Étant données une grammaire algébrique $G = (\Sigma, V, P, S)$ et une variable $x \in V$, montrer que l'on peut effectivement calculer l'ensemble

$$Z = \{ y \in V \mid \exists x \xrightarrow{*} uyv \text{ avec } u,v \in \Sigma^+ \}$$
.

- b) Soit $G = (\Sigma, V, P, S)$ une grammaire algébrique sans variable SR. Montrer que l'on peut effectivement construire une grammaire algébrique $G' = (\Sigma, V', P', S')$ réduite, propre, sans variable SR et telle que $\mathcal{L}_{G'}(S') = \mathcal{L}_G(S) \setminus \{\varepsilon\}$.
- c) Soit $G = (\Sigma, V, P, S)$ une grammaire algébrique réduite, en forme normale de Greibach et sans variable SR. Montrer qu'il existe une constante $K \in \mathbb{N}$ telle que pour toute dérivation gauche $x \xrightarrow{*} u\alpha$ avec $u \in \Sigma^*$ et $\alpha \in V^*$ on a $|\alpha| \leq K$.
- d) Soit $G = (\Sigma, V, P, S)$ une grammaire algébrique réduite, en forme normale de Greibach et sans variable SR. Montrer que le langage engendré $\mathcal{L}_G(S)$ est rationnel.

Soit $G = (\Sigma, V, P, S)$ une grammaire algébrique propre. Soit $x \in V$ et soient

$$A = \{ \alpha \in (\Sigma \cup V)^* \mid x \to x\alpha \in P \}$$

$$B = \{ \beta \in (\Sigma \cup V \setminus \{x\})(\Sigma \cup V)^* \mid x \to \beta \in P \}$$

On définit la grammaire $G' = (\Sigma, V', P', S)$ en ajoutant une variable x' $(V' = V \uplus \{x'\})$ et en remplaçant les règles de G issues de x par les règles $x \to \beta + \beta x'$ pour $\beta \in B$ et $x' \to \alpha + \alpha x'$ pour $\alpha \in A$.

- e) Montrer que si $y \xrightarrow{*} uzv$ dans G' avec $y,z \in V$ et $u,v \in \Sigma^*$, alors $y \xrightarrow{*} uzv$ dans G.
- f) Montrer que si G n'a pas de variable SR alors il en est de même pour G'.
- g) Soit $G = (\Sigma, V, P, S)$ une grammaire algébrique sans variable SR. Montrer que l'on peut effectivement construire une grammaire algébrique $G' = (\Sigma, V', P', S')$ réduite, en forme normale de Greibach, sans variable SR et telle que $\mathcal{L}_{G'}(S') = \mathcal{L}_{G}(S) \setminus \{\varepsilon\}$.
- h) En déduire qu'un langage est rationnel si et seulement si il peut être engendré par une grammaire algébrique sans variable SR.

3 Grammaires contextuelles

a) Le langage $L = \{a^p \mid p \text{ est premier}\}$ peut-il être engendré par une grammaire contextuelle?