
Dependencies in Strategy Logic∗

Patrick Gardy1, Patricia Bouyer1, and Nicolas Markey1,2

1 LSV, CNRS & ENS Paris-Saclay, Université Paris-Saclay, France
2 IRISA, CNRS & INRIA & Université Rennes 1, France

Abstract
Strategy Logic (SL) is a very expressive logic for expressing and verifying properties of multi-agent
systems: in SL, one can quantify over strategies, assign them to agents, and express properties
of the resulting plays. Such a powerful framework has two drawbacks: first, model checking SL
has non-elementary complexity; second, the exact semantics of SL is rather intricate, and may
not correspond to what is expected. In this paper, we focus on strategy dependencies in SL,
by tracking how existentially-quantified strategies in a formula may (or may not) depend on
other strategies selected in the formula. We study different kinds of dependencies, refining the
approach of [Mogavero et al., Reasoning about strategies: On the model-checking problem, 2014],
and prove that they give rise to different satisfaction relations. In the setting where strategies
may only depend on what they have observed, we identify a large fragment of SL for which we
prove model checking can be performed in 2 -EXPTIME.

1998 ACM Subject Classification F.3.1 Specifying and Verifying and Reasoning about Pro-
grams, F.4.1 Mathematical Logic

Keywords and phrases Game theory, strategy logic, dependency

1 Introduction

Temporal logics. Since Pnueli’s seminal paper [18] in 1977, temporal logics have been
widely used in theoretical computer science, especially by the formal-verification community.
Temporal logics provide powerful languages for expressing properties of reactive systems, and
enjoy efficient algorithms for satisfiability and model checking [8].

Since the early 2000s, new temporal logics have been developed in order to cope with
open and multi-agent systems. While classical temporal logics (e.g. CTL [7, 19] and LTL [18])
could only deal with one or all the executions of the system, ATL [2] expresses properties on
(executions generated by) strategies of agents in a game played on a graph. ATL has been ex-
tensively studied since then, both w.r.t. expressiveness and verification algorithms [2, 10, 12].

Strategic interactions in ATL. Strategies in ATL are handled in a very limited way, and
there is no real strategic interactions in that logic (which, in return, enjoys polynomial-time
model-checking algorithm). Over the last 10 years, various extensions have been defined
and studied in order to allow for more interactions [1, 6, 5, 14, 20]. Strategy Logic (SL
for short) [6, 14] is such a powerful approach, in which strategies are first-class citizens;
formulas can quantify (universally and existentially) over strategies, store them in variables,
assign them to players, and express properties of the resulting plays. As a simple example,
the existence of a winning strategy for Player A (with objective φA) against any strategy of
Player B would be written as ∃σA. ∀σB . assign(A 7→ σA;B 7→ σB). φA. This makes the logic
both expressive and easy to use (at first sight), at the expense of a very high complexity:
SL model checking is non-elementary [14, 11].

∗ Supported by ERC project EQualIS

© Patrick Gardy, Patricia Bouyer, Nicolas Markey;
licensed under Creative Commons License CC-BY

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Acces; Article No. 23; pp. 23:1–23:39

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

23:2 Dependencies in Strategy Logic

Strategy dependencies in SL. It has been noticed in recent works that the nice express-
iveness of SL comes with unexpected phenomena. One recently-identified phenomenon [4]
is induced by the separation of strategy quantification and strategy assignment: are the
events between strategy quantifications and strategy assignments part of the memory of the
strategy? While both options may make sense, depending on the applications, only one of
them makes model checking decidable [4].

A second phenomenon—which is the main focus of the present paper—concerns strategy
dependencies [14]: in a formula such as ∀σA. ∃σB . ξ, the existentially-quantified strategy σB
may depend on the whole strategy σA; in other terms, the action returned by strategy σB
after some finite history ρ may depend on what strategy σA would play on any other his-
tory ρ′. Again, this may be desirable in some contexts, but it may also make sense to require
that strategy σB after history ρ can be computed based solely on what has been observed
along ρ. For some fragments of SL, both approaches have been shown equivalent; moreover,
it has been conjectured that for fragments enjoying this equivalence, model checking would
be doable in doubly-exponential time [16].

Our contributions. We follow this line of work by performing a more thorough exploration
of strategy dependencies in SL. We mainly follow the framework of [16], based on a kind of
Skolemization of the formula: for instance, a formula of the form (∀xi∃yi)i. ξ is satisfied if
there exists a dependence map θ defining each existentially-quantified strategy yj based on
the universally-quantified strategies (xi)i. In order to recover the classical semantics of SL,
it is only required that the strategy θ((xi)i)(yj) (i.e. the strategy corresponding to yj in
θ((xi)i)) only depends on (xi)i<j .

Based on this definition, other constraints can be imposed on dependence maps, in order
to adapt the dependencies of existentially-quantified strategies w.r.t universally-quantified
ones. We identify four possible kinds of strategy dependencies: with local dependencies
(which are always allowed in our setting), existentially-quantified strategies have know-
ledge about previously-quantified strategies only along the current history; with future and
side dependencies, they also get knowledge about previously-quantified strategies along
extensions and counterfactual histories; finally, timeline dependencies allow existentially-
quantified strategies to depend on what all universally-quantified strategies on the prefix of
the current history (even those that are quantified deeper in the formula).

As we explain, the classical semantics of SL involves local, future and side dependencies;
we prove that restricting those dependencies, and/or allowing timeline dependencies, give
rise to different semantics of SL. We also focus on the syntactic negation in our logic: our
semantics being defined as the existence of a dependence map, the syntactic negation may
differ from the semantic negation. Finally, we focus on the setting where only local and
timeline dependencies are allowed (which we believe is a relevant setting in many scenarios),
and identify a large fragment of SL under which syntactic and semantic negation coincide,
and for which we develop a 2 -EXPTIME model-checking algorithm.

By lack of space, only a few sketches of proofs are given in the main body of the paper.
The technical appendix contains detailed proofs.

2 Definitions

2.1 Concurrent game structures
For the rest of this paper, we fix a finite set AP of atomic propositions, a finite set V of
variables, and a finite set Agt of agents (or players).

P. Gardy, P. Bouyer, N.Markey 23:3

A concurrent game structure over a set AP of atomic propositions is a tuple G = 〈Act,Q,
∆, lab〉 where Act is a finite set of actions, Q is a finite set of states, ∆: Q × ActAgt → Q
is the transition function, and lab : Q → 2AP is a labelling function. An element of ActAgt

will be called a move vector. For any q ∈ Q, we let succ(q) be the set {q′ ∈ Q | ∃m ∈
ActAgt. q′ = ∆(q,m)}. For the sake of simplicity, we assume in the sequel that succ(q) 6= ∅
for any q ∈ Q. A game G is said turn-based whenever for every state q ∈ Q, there is a player
own(q) ∈ Agt (named the owner of q) such that for any two move vectors m1 and m2 with
m1(own(q)) = m2(own(q)), it holds ∆(q,m1) = ∆(q,m2). Figure 1 displays an example of
a (turn-based) game.

Fix a state q ∈ Q. A play in G from q is an infinite sequence π = (qi)i∈N of states in Q
such that q0 = q and qi ∈ succ(qi−1) for all i > 0. We write PlayG(q)1 for the set of plays
in G from q. A (strict) prefix of a play π is a finite sequence ρ = (qi)0≤i≤L, for some L ∈ N.
We let Pref(π) for the set of strict prefixes of play π. Such finite prefixes are called histories,
and we let HistG(q) = Pref(PlayG(q)). We extend the notion of strict prefixes and the
notation Pref to histories in the natural way, hence requiring that ρ /∈ Pref(ρ). A (finite)
extension of a history ρ is any history ρ′ such that ρ ∈ Pref(ρ′). Let ρ = (qi)i≤L be a
history. We define first(ρ) = q0 and last(ρ) = qL. Let ρ′ = (q′j)j≤L′ be a history from last(ρ).
The concatenation of ρ and ρ′ is then defined as the path ρ · ρ′ = (q′′k)k≤L+L′ such that
q′′k = qk when k ≤ L and q′′k = q′k−L when L > k.

A strategy from q is a mapping δ : HistG(q) → Act. We write StratG(q) for the set of
strategies in G from q. Given a strategy δ ∈ Strat(q) and a history ρ from q, the trans-
lation δ−→ρ of δ by ρ is the strategy δ−→ρ from last(ρ) defined by δ−→ρ (ρ′) = δ(ρ · ρ′) for any
ρ′ ∈ Hist(last(ρ)). A valuation from q is a partial function χ : V ∪ Agt→ Strat(q). As usual,
for any partial function f , we write dom(f) for the domain of f .

Let q ∈ Q and χ be a valuation from q. If Agt ⊆ dom(χ), then χ induces a unique
play from q, called its outcome, and defined as out(q, χ) = (qi)i∈N such that q0 = q and for
every i ∈ N, we have qi+1 = ∆(qi,mi) with mi(A) = χ(A)((qj)j≤i) for every A ∈ Agt.

2.2 Strategy Logic with boolean goals
Strategy Logic (SL for short) was introduced in [6], and further extended and studied in [17,
14], as a rich logical formalism for expressing properties of games. SL manipulates strategies
as first-order elements, assigns them to players, and expresses LTL properties on the outcomes
of the resulting strategic interactions. This results in a very expressive temporal logic, for
which satisfiability is undecidable [17] and model checking is TOWER-complete [14, 3]. In
this paper, we focus on a restricted fragment of SL, called SL[BG] (where BG stands for
boolean goals) [14], which we now introduce.

Syntax. Formulas in SL[BG][are built along the following grammar2:

SL[BG][3 φ ::= ∃x. φ | ¬φ | ξ ξ ::= ¬ξ | ξ ∨ ξ | β
β ::= assign(σ). ψ ψ ::= ¬ψ | ψ ∨ ψ | Xψ | ψUψ | p

where x ranges over V, σ ranges over the set VAgt of full assignment, and p ranges over AP.
A goal is a formula of the form β in the grammar above; it expresses an LTL property ψ on

1 In this and all similar notations, we might omit to mention G when it is clear from the context, and q
when we consider the union over all q ∈ Q.

2 As we explain later, we actually only consider the flat fragment SL[BG][of SL[BG]. This simplifies the
presentation, and our results extend to SL[BG] in a straightforward way.

CVIT 2016

23:4 Dependencies in Strategy Logic

the outcome of the mapping σ. Formulas in SL[BG][are thus made of an initial block of first-
order quantifiers (selecting strategies for variables in V), followed by a boolean combination
of such goals.

Free variables. With any subformula ζ of some formula φ ∈ SL[BG][, we associate its set
of free agents and variables, which we write free(ζ). It contains the agents and variables
that have to be mapped to a strategy in order to univocally evaluate ζ (as will be seen from
the definition of the semantics of SL[BG][below). The set free(ζ) is defined inductively as
follows:

free(p) = ∅ for all p ∈ AP free(Xψ) = Agt ∪ free(ψ)
free(¬α) = free(α) free(ψ1 Uψ2) = Agt ∪ free(ψ1) ∪ free(ψ2)

free(α1 ∨ α2) = free(α1) ∪ free(α2) free(∃x. φ) = free(φ) \ {x}

free(assign(σ). φ) =
{
free(φ) if Agt 6⊆ free(φ)
(free(φ) ∪ σ(Agt)) \ Agt otherwise

Subformula ζ is said to be closed whenever free(ζ) = ∅. We can now comment our choice
of considering the flat fragment of SL[BG]: the full fragment, as defined in [14], allows for
nesting closed SL[BG] formulas in place of atomic propositions. Since they are required to
be closed, those nested subformulas can be handled independently of the rest of the formula.

Semantics. Fix a state q ∈ Q of G, and a valuation χ : V ∪Agt→ Strat(q). We inductively
define the semantics of a subformula α of a formula of SL[BG][at q under valuation χ,
assuming that free(α) ⊆ dom(χ). We omit the easy cases of boolean combinations and
atomic propositions.

Given a mapping σ : Agt→ V, the semantics of strategy assignments is defined as follows:

G, q |=χ assign(σ). ψ ⇐⇒ G, q |=χ[A∈Agt7→χ(σ(A))] ψ.

One may notice that, writing χ′ = χ[A ∈ Agt 7→ χ(σ(A))], we have free(ψ) ⊆ dom(χ′) if
free(α) ⊆ dom(χ), so that our inductive definition is sound.

We now consider path formulas ψ = Xψ1 and ψ = ψ1 Uψ2. Since Agt ⊆ free(ψ) ⊆
dom(χ), the valuation χ induces an outcome out(q, χ) = (qi)i∈N from q. For n ∈ N, we write
outn(q, χ) = (qi)i≤n, and define χ−→n as the valuation obtained by shifting all the strategies in
the image of χ by outn(q, χ). Under the same conditions, we also define q−→n = last(outn(q, χ)).
We then set

G, q |=χ Xψ1 ⇐⇒ G, q−→1 |=χ−→1
ψ1

G, q |=χ ψ1 Uψ2 ⇐⇒ ∃k ∈ N. G, q−→
k
|=χ−→

k
ψ2 and ∀0 ≤ j < k. G, q−→

j
|=χ−→

j
ψ2.

It remains to define the semantics of the strategy quantifiers. This is actually what this
paper is all about. We provide here the original semantics, and discuss alternatives in the
following sections:

G, q |=χ ∃x.φ ⇐⇒ ∃δ ∈ Strat(q). G, q |=χ[x7→δ] φ.

In the sequel, we heavily use some classical shorthands, such as > for p∨¬p (for any p ∈ AP),
α1 ∧ α2 for ¬(¬α1 ∨ ¬α2), ∀x.φ for ¬∃x.¬φ, Fψ for >Uψ, and Gψ for ¬F¬ψ.

I Example 1. We consider the (turn-based) game G is depicted on Fig. 1. We name the
players after the shape of the state they control. The SL[BG] formula φ to the right of Fig. 1

P. Gardy, P. Bouyer, N.Markey 23:5

q0

q1

q2

p1

p2

φ = ∀y.∃z.∀xA.∀xB .
∨{

assign(7→ xA; 7→ y; 7→ z). F p1

assign(7→ xB ; 7→ y; 7→ z). F p2

Figure 1 A game and a SL[BG] formula.

has four quantified variables and two goals. We show that this formula evaluates to true
in G: fix any strategy δy (to be played by player); because G is turn-based, we identify
the actions of the owner of a state with the resulting target state, so that δy(q0q1) will be
either p1 or p2. We then define strategy δz (to be played by) as δz(q0q2) = δy(q0q1).
Then clearly, for any strategy assigned to player , one of the goals of formula φ holds true,
so that φ itself evaluates to true.

Subclasses of SL[BG]. Several restrictions of SL[BG] have been considered in the liter-
ature [13, 15, 16], by adding further restrictions to boolean combinations in the grammar
defining the syntax:

SL[1G] restricts SL[BG] to a unique goal. SL[1G] is then defined from the grammar of
SL[BG] by setting ξ ::= β in the grammar;
SL[CG] is the fragment where only conjunctions of goals are allowed. It corresponds to
formulas defined with ξ ::= ξ ∧ ξ | β;
similarly, SL[DG] only allows disjunctions of goals, i.e. ξ ::= ξ ∨ ξ | β;
finally, SL[AG] mixes conjunctions and disjunctions in a restricted way. Goals in SL[AG]
can be combined using the following grammar: ξ ::= β ∧ ξ | β ∨ ξ | β.

In the sequel, we write a generic SL[BG] formula φ as (Qixi)i≤l. ξ(βj . ψj)j≤n where:
(Qixi)i≤l is a block of quantifications, with {xi | 1 ≤ i ≤ l} ⊆ V and Qi ∈ {∃,∀}, for
every 1 ≤ i ≤ l;
ξ(g1, ..., gn) is a boolean combination of its arguments;
for each 1 ≤ j ≤ n, subformula βj . ψj is a goal: each βj is a full assignment and ψj is
an LTL formula.

3 Side and future dependencies

We now follow the framework of [14, 15] and define the semantics of SL[BG] in terms of de-
pendence maps. This approach provides a fine way of controlling how existentially-quantified
strategies depend on previously selected strategies (in a quantifier block). Considering again
Example 1, we notice that the value of the existentially-quantified strategy δz after his-
tory q0q2 depends on the value of strategy δy on history q0q1, i.e. on a side history. Using
dependence maps, we can limit such dependencies.

Fix a history ρ from some state q. We call future history of ρ any extension of ρ, and side
history of ρ any extension ρ′ of a (strict) prefix of ρ that is not ρ nor a future history of ρ.
Hence the set HistG(q) is partitioned into four sets: ρ itself, prefixes, future histories and
side histories of ρ. Using dependence maps, we will be able to make existentially-quantified
strategies only depend on the values of other (previously-quantified) strategies along prefixes
and/or future- and/side histories. Figure 2 illustrates such dependencies.

CVIT 2016

23:6 Dependencies in Strategy Logic

Dependence maps. In order to investigate those dependencies, we extend the concept of
dependence maps, introduced in [13, 14], to a more general framework.

Consider an SL[BG] formula φ = (Qixi)i≤l. ξ(βj . ϕj)j≤n, assuming w.l.o.g. that {xi |
1 ≤ i ≤ l} = V. We let V∀ = {xi | Qi = ∀} ⊆ V be the set of universally-quantified variables
of φ. A function θ : StratV

∀
→ StratV is a φ-map (or map when φ is clear from the context)

if θ(w)(xi)(ρ) = w(xi)(ρ) for any w ∈ StratV
∀
, any xi ∈ V∀, and any history ρ. In other

words, θ(w) extends w to V.
We can then constrain strategy dependencies by applying adequate restrictions to the

maps. In this section, we consider three kinds of dependencies: local dependencies, side
dependencies and future dependencies. This gives rise to eight types of maps, denoted
by M(D), with D ⊆ {L, S, F}. To alleviate notations, we will write e.g. M(L, S) for
M({L, S}). A map inM(D) has the following additional restriction:

∀w1, w2 ∈ StratV
∀

∀ρ ∈ Hist, ∀xi ∈ V

}(∧
d∈D

C(d)
)
⇒
(
θ(w1)(xi)(ρ) = θ(w2)(xi)(ρ)

)
(1)

with
C(L): w1 and w2 coincide on V∀ ∩ [x1;xi−1] and on ρ and on all its prefixes (local)
C(S): w1 and w2 coincide on V∀ ∩ [x1;xi−1] and on side histories of ρ (side)
C(F): w1 and w2 coincide on V∀ ∩ [x1;xi−1] and on future histories of ρ (future)

I Example 2. Consider the quantifier block ∀x1.∃x2, and a map θ in M(L). Assume
that there are two strategies δ1 and δ′1 such that θ(x1 7→ δ1)(x2) and θ(x1 7→ δ′1)(x2) differ
(on some history ρ). Then condition C(L) must fail to hold, which means that δ1 and δ′1
must differ on some prefix of ρ. In other terms, if δ1 and δ′1 coincide on any prefix of ρ
(and on ρ itself), then we must have θ(x1 7→ δ1)(x2)(ρ) = θ(x1 7→ δ′1)(x2)(ρ). This amounts
to saying that θ(x1 7→ δ1)(x2)(ρ) only depends on the value of δ1 on ρ and on its prefixes.

On the other hand, if θ were inM(L, S, F), then for the strategies θ(x1 7→ δ1)(x2) and
θ(x1 7→ δ′1)(x2) to differ on some path ρ, the conjunction of C(L), C(S) and C(F) must fail
to hold; this simply implies that δ1 and δ′1 must differ on some history. Notice in particular
thatM(L) ⊆M(L, S, F). More precisely, it can be observed thatM(D) ⊆M(D′) for any
D ⊆ D′ ⊆ {L, S, F}.

In the rest of this paper, local dependencies will always be allowed, so that when writ-
ingM(D), we will always have L ∈ D.

Satisfaction relations. We now define four satisfaction relations (|=M(D))L∈D⊆{L,S,F}, one
for the each kind of maps we consider. The definitions of these relations only differ from
the definition of |= (as defined in Section 2) over strategy quantification. Pick a formula
φ = (Qixi)i≤l. ξ

(
βj . ϕj

)
j≤n in SL[BG]. We define:

G, q |=M(D) φ iff ∃θ ∈M(D). ∀w ∈ StratV
∀
. G, q |=θ(w) ξ

(
βjϕj

)
j≤n

In such a case, θ is called an M(D)-witness of φ. Following [14, Theorem 4.6], the rela-
tion |=M(L,S,F) corresponds to the usual semantics of strategy quantifiers in SL[BG], as given
in Section 2. Also, from the inclusion at the end of Example 2, we have |=M(D) ⊆ |=M(D′)

for any D ⊆ D′. This corresponds to the intuition that it is harder to satisfy a SL[BG]
formula when dependencies are more restricted. But it in turn pinpoints the question of
what it means to satisfy the (syntactic) negation of a formula in this setting.

P. Gardy, P. Bouyer, N.Markey 23:7

∀x1
Local

dependencies
(always
allowed)

p q

∃x2

p q

∀x3

p q

∃x4

p q

∀x1Side
dependencies

p q

∃x2

p q

∀x3

p q

∃x4

p q

∀x1Future
dependencies

p q

∃x2

p q

∀x3

p q

∃x4

p q

Adding
active goals
on current
history.

Only in
Section 4.

∀x1

p q

∃x2

p q

∀x3

p q

∃x4

p q

Figure 2 The different kinds of dependencies.

The syntactic negation. If φ = (Qixi)i≤lξ(βjϕj)j≤n is an SL[BG] formula, its syntactic
negation ¬φ is the formula (Qixi)i≤l(¬ξ)(βjϕj)j≤n, where Qi = ∃ if Qi = ∀ and Qi = ∀ if
Qi = ∃. Looking at the definition of |=M(D), it could be the case that G, q |=M(D) φ and
G, q |=M(D) ¬φ: this only entails the existence of two adequate maps.

However, since |=M(L,S,F) and |= coincide, and since G, q |= φ ⇐⇒ G, q 6|= ¬φ, we get
that G, q |=M(L,S,F) φ ⇐⇒ G, q 6|=M(L,S,F) ¬φ. Moreover, for any D ⊆ {L, S, F} contain-
ing L, sinceM(D) ⊆M(L, S, F), then we also get that G, q |=M(D) φ =⇒ G, q 6|=M(D) ¬φ.
However, as we now show, the converse implication may fail to hold. Notice that this is not
specific to our setting, and that the following result already holds (but, to our knowledge,
had never been mentioned) with the elementary semantics of SL[BG], as defined in [14].

I Proposition 3. For any D {L, S, F} containing L, there exist a game G with initial
state q0 and a formula φ ∈ SL[BG][such that G, q0 6|=M(D) φ and G, q0 6|=M(D) ¬φ.

Proof. We prove the result for M(L); the other two cases are handled in Appendix A.
Consider the formula and the one-player game of Fig. 3.

We start by proving that G, q0 6|=M(L) φ. We first notice that y(q0) must be B for the
first conjunct to be satisfied. Now, if x(q0) = A, then we must have y(q0B) = x(q0A) in
order to fulfill the second conjunct. Such dependencies are not allowed inM(L).

On the other hand, we can also prove that G, q0 6|=M(L) ¬φ. Indeed, following the
previous discussion, we easily get that G, q0 |=M(L,S,F) φ, by letting y(q0) = B and y(q0B) =
x(q0A) if x(q0) = A and y(q0B) = x(q0B) if x(q0) = B. As explained above, this entails

CVIT 2016

23:8 Dependencies in Strategy Logic

q0

A

p1 p2

B

p1 p2

φ = ∀x.∃y
∧{

assign(7→ y). FB

assign(7→ x). F p1 ⇔ assign(7→ y). F p1

Figure 3 A game G and an SL[BG][formula φ such that G, q0 6|=M(L) φ and G, q0 6|=M(L) ¬φ.

G, q0 6|=M(L,S,F) ¬φ. SinceM(L) ⊆M(L, S, F), this in turn entails G, q0 6|=M(L) ¬φ. J

When restricting to SL[1G], we recover the equivalence of the semantic and syntactic
negations:

I Proposition 4. For any D ⊆ {L, S, F} containing L, every game G with initial state q0,
and every formula φ ∈ SL[1G], it holds G, q0 |=M(D) φ ⇐⇒ G, q0 6|=M(D) ¬φ.

Sketch of proof. It suffices to prove the result for M(L), since M(L) ⊆ M(D). The
full proof is given in Appendix B. When restricting to the satisfaction relation |=M(L), the
interaction between existential and universal quantifications of the formula can be integrated
into the game, replacing each state with a tree-shaped subgame where Player P∃ selects
existentially-quantified actions and Player P∀ selects universally-quantified ones. The unique
goal of the formula is then incorporated into the game via a deterministic parity automaton,
yielding a two-player turn-based parity game. We can then show that the |=M(L)-truth of φ
is equivalent to having a winning strategy in the turn-based parity games for P∃, while the
|=M(L)-truth of ¬φ corresponds to having a winning strategy for P∀. Our result then follows
from the determinacy of turn-based parity games. J

Note that the construction of the parity game gives an effective algorithm for the model-
checking problem of SL[1G], which runs in doubly-exponential time; we recover the result
of [14] for that problem.

Comparison of the satisfaction relations. While the setsM(L),M(L, S),M(L,F), and
M(L, S, F) are obviously distinct, it is not clear when side and/or future dependencies make
a difference when evaluating a formula. We address this question in this section. First, as an
easy consequence of Prop. 4 (also in [14]), we have:

I Proposition 5 ([14]). For any SL[1G] formula φ, and any game G with initial state q0,
it holds:

∀D ⊆ {L, S, F} s.t. L ∈ D. G, q0 |=M(L) φ ⇐⇒ G, q0 |=M(D) φ

However, when considering larger fragments, the satisfaction relations are mostly dis-
tinct. More precisely, we have:

I Proposition 6. For every game G with initial state q0, for every φ ∈ SL[CG],

G, q |=M(L,S) φ ⇐⇒ G, q |=M(L) φ

In all other cases, the satisfaction relations are pairwise distinct over SL[DG] and SL[CG].

Idea of proof. By lack of space, we postpone the proof to Appendix C, and only provide
one example showing that |=M(L,F) and |=M(L,S,F) differ over SL[DG].

Consider again the game of Fig. 1 in Section 2. We already proved that G, q0 |=M(L,S,F) φ.
Now, pick anyM(L,F)-map θ for φ. Then for any two valuations w1 and w2 for universal

P. Gardy, P. Bouyer, N.Markey 23:9

variables, we must have θ(w1)(z)(q0q1) = θ(w2)(z)(q0q1) if w1 and w2 only differ for y on
history q0q2. The disjunctive goal will then fail to hold for one of w1 and w2, which proves
that G, q0 6|=M(L,F) φ. J

I Remark. From the proof idea above, we also get that G, q0 6|=M(L) φ, contradicting the
claim in [15] that both |=M(L) and |=M(L,S,F) coincide on SL[DG] (and SL[CG]). Indeed,
in [15], the satisfaction relation for SL[DG] and SL[CG] is encoded into a two-player game
in pretty much the same way as we did in the proof of Prop. 4. While this indeed rules
out side and future dependencies, it also gives informations to Player P∃ about the values
(over prefixes of the current history) of strategies that are universally-quantified later in the
formula. In particular, with this information, Player P∃ knows which assignment(s) of the
formula follow the current history, hence which goal(s) has to potentially be satisfied by
(some) extensions of the current history. We investigate this kind of extra information in
the next sections.

4 Timeline dependencies

Following the discussion above, we introduce a new type of dependencies between strategies.
It allows strategies to also observe all other universally-quantified strategies on the prefix
of the current history. When considering logics where strategies are attached to players
(as opposed to variables) such as ATLsc, this amounts to augmenting histories with the
move vectors played at each step along the history. In particular, it would not make any
difference on turn-based games. As we explain below, even in turn-based games, adding
such dependencies over SL[BG] gives rise to different satisfaction relations.

We reuse the three conditions C(L), C(S) and C(F) defined in Section 3, and define an
additional one:
C(T): w1 and w2 coincide on V∀ and on all prefixes of ρ (timeline)

Timeline dependencies are represented at the bottom of Fig. 2. We can then define new sets
of maps, in which timeline dependencies are allowed. We now consider D ⊆ {L, S, F, T}
(still assumed to contain L), and again say that a map is in M(D) when Equation (1)
of page 6 holds. Similarly to Section 3, those new types of maps are associated with new
satisfaction relations, still denoted by |=M(D) for the corresponding sets D.

I Example 7. Consider again the game of Fig 1 in Section 2. We have seen in the proof
of Prop. 6 that G, q0 |=M(L,S,F) φ in Section 2 and that G, q0 6|=M(L,F) φ. With timeline
dependencies, we have G, q0 |=M(L,F,T) φ. Indeed, now z(q0.q2) may depend on xA(q0);
if xA(q0) = q2 then we must have z(q0.q2) = p1, while if xA(q0) = q1, then z(q0.q2) = p2.
This can be encoded in a map θ in M(L,F, T). Now, in the former case (xA(q0) = q2),
the first goal is satisfied. In the latter case (xA(q0) = q1), depending on xB(q0), either the
outcome of the second goal visits q2, in which case it then goes to p2 and the second goal is
satisfied; or both goals visit q1 and no matter the choice for y(q0.q1), one of the two goals
must be satisfied.

The syntactic negation. We consider again the link between syntactic and semantic neg-
ations in the context of timeline dependencies. We prove that in presence of timeline de-
pendencies, both negations (syntactic and semantic) in general do not coincide.

I Proposition 8. For every formula φ in SL[BG], for every game G with initial state q0,
G, q0 6|=M(L,S,F,T) φ =⇒ G, q0 |=M(L,S,F,T) ¬φ;
G, q0 |=M(L,T) φ =⇒ G, q0 6|=M(L,T) ¬φ.

CVIT 2016

23:10 Dependencies in Strategy Logic

q0

q1 q2

p1 p2 p3 p4

φ = ∀x1.∃y1.∃y2.∃x2.
∧

assign(7→ y1; 7→ x1)F p2

⇒ assign(, y2; 7→ x2)F p1

assign(7→ y1; 7→ x1)F p3

⇒ assign(7→ y2; 7→ x2)F p4

Figure 4 A game G and a formula φ such that G, q0 |=M(L,S,F,T) φ and G, q0 |=M(L,S,F,T) ¬φ

Sketch of proof. The first result follows from the fact that at least one of φ and ¬φ
holds true for |=M(L,S,F). Since M(L, S, F) ⊆ M(L, S, F, T), at least one also holds
for |=M(L,S,F,T).

We now explain the second implication, the complete proof is in Appendix D. For a
contradiction, assume that there exist two maps θ and θ̄ witnessing G, q0 |=M(L,T) φ and
G, q0 |=M(L,T) ¬φ resp. (we write φ = (Qixi)i≤lξ(βjϕj)j≤n). Then for any strategy valu-
ations w and w̄ for V∀ and V∃, we have that G, q0 |=θ(w) ξ(βjφj)j and G, q0 |=θ̄(w̄) ¬ξ(βjφj)j .
We can then inductively (on histories and on the sequence of quantified variables) build a
strategy valuation χ on V such that θ(χ|V∀) = θ̄(χ|V∃) = χ. Under valuation χ, both
ξ(βjφj)j and ¬ξ(βjφj)j hold in q0, which is impossible. J

I Proposition 9. For any D {L, S, F, T} s.t. {L, T} ⊆ D, there exists a game G with
initial state q0 and a formula φ ∈ SL[BG] such that G, q0 6|=M(D) φ and G, q0 6|=M(D) ¬φ;
for any D ⊆ {L, S, F, T} s.t. {L, T} D, there exists a game G with initial state q0 and
a formula φ ∈ SL[BG] such that G, q0 |=M(D) φ and G, q0 |=M(D) ¬φ.

Proof. The complete proof is given in Appendix E. We focus on the second item and on the
satisfaction relation |=M(L,S,F,T). Consider the turn-based game G and the SL[BG] formula φ
of Fig. 4. Clearly, G, q0 |=M(L,S,F,T) φ, since at least one of the implication will hold trivially,
and the other one can be satisfied by correctly selecting y2 and x2. We can also prove that
G, q0 |=M(L,S,F,T) ¬φ: since timeline dependencies are allowed, x1(q0q1) and x1(q0q2) may
depend on the values of y1 and y2 in q0. We thus consider four cases:

if y1(q0) = y2(q0) = q1, then we let x1(q0q1) = p3; then the second conjunct of φ is not
fulfilled, whatever x2;
if y1(q0) = y2(q0) = q2, then symmetrically, we let x1(q0q2) = p2, so that the first
conjunct fails to hold for any x2;
if y1(q0) = q1 and y2(q0) = q2, then we let x1(q0q1) = p2, for which no x2 make the first
conjunct hold;
if y1(q0) = q2 and y2(q0) = q1, then we let x1(q0q2) = p3, and again the second conjunct
fails to hold independently of x2. J

Comparison of the satisfaction relations. We prove that adding timeline dependencies
again mainly yields pairwise distinct satisfaction relations:

I Proposition 10. For every game G with initial state q0, for every formula φ ∈ SL[CG],

G, q0 |=M(L,S,T) φ ⇐⇒ G, q0 |=M(L,T) φ

In all other cases (involving timeline dependencies), the satisfaction relations are pairwise
distinct for SL[CG], SL[DG], and SL[1G].

Similarly, the satisfaction relations with and without timeline dependencies are distinct
for SL[CG] and SL[DG]:

P. Gardy, P. Bouyer, N.Markey 23:11

I Proposition 11. For any D ⊆ {L, S, F} containing L, the satisfaction relations |=M(D)

and |=M(D∪{T}) are distinct for SL[CG] and SL[DG].

Applying techniques similar to those of the proof of Prop. 4 (reduction to a 2-player
parity game), we can prove:

I Proposition 12. For any game G with initial state q0 and any formula φ ∈ SL[1G], we have
G, q0 |=M(L) φ ⇐⇒ G, q0 |=M(L,T) φ.

This implies in particular that |=M(L,T) behaves smoothly w.r.t. syntactic negation on
SL[1G] (by Prop. 4), and that the model-checking problem for this setting is in 2 -EXPTIME.
Our aim in the next section is to generalize this positive result to a larger fragment.

5 The fragment SL[EG]

In this section, we focus on the timeline dependencies and on the satisfaction relation
|=M(L,T). We believe that this setting is especially relevant, especially for reactive synthesis,
as it corresponds to settings where the informations available to existentially-quantified
strategies is exactly what they may have observed along the current history. We exhibit
a fragment SL[EG] of SL[BG] for which syntactic and semantic negations coincide, and for
which we prove model-checking is 2 -EXPTIME-complete. Formally, SL[EG] satisfies the fol-
lowing theorem:

I Theorem 13. For any φ ∈ SL[EG], any game G and any state q0, it holds:

G, q0 |=M(L,T) φ ⇐⇒ G, q0 6|=M(L,T) ¬φ

Moreover, model checking SL[EG] w.r.t. M(L, T)-maps is 2 -EXPTIME-complete.

The SL[EG] fragment. We introduce some notations that will be useful to define our
fragment. For n ∈ N, we let {0, 1}n be the set of mappings from [1, n] to {0, 1}. We write 0n
(or 0 if the size n is clear) for the function that maps all integers in [1, n] to 0, and 1n (or 1)
for the function that maps [1, n] to 1. The size of f ∈ {0, 1}n is defined as |f | =

∑
1≤i≤n f(i).

For two elements f and g of {0, 1}n, we write f ≤ g whenever f(i) = 1 implies g(i) = 1 for
all i ∈ [1, n]. Given Bn ⊆ {0, 1}n, we write ↑Bn = {g ∈ {0, 1}n | ∃f ∈ Bn, f ≤ g}. A set
Fn ⊆ {0, 1}n is upward-closed if Fn = ↑Fn. Finally, we also define the following operators:

f̄ : i 7→ 1− f(i) f f g : i 7→ min{f(i), g(i)} f g g : i 7→ max{f(i), g(i)}.

I Definition 14. A set Fn ⊆ {0, 1}n is semi-stable if for any f and g in Fn, it holds that

∀s ∈ {0, 1}n (f f s) g (g f s̄) ∈ Fn or (g f s) g (f f s̄) ∈ Fn.

I Example 15. Obviously, {0, 1}n is semi-stable, as well as the empty set. For n = 2,
the set {(0, 1), (1, 0)} is easily seen not to be semi-stable: taking f = (0, 1) and g = (1, 0)
with s = (1, 0), we get (f f s) g (g f s̄) = (0, 0) and (g f s) g (f f s̄) = (1, 1). Similarly,
{(0, 0), (1, 1)} is not semi-stable. It can be checked that any other subset of {0, 1}2 is semi-
stable.

We now define (the flat fragment of) SL[EG]3 as follows:

3 EG stands here for elementary goal. This also provides a natural continuation with the fragments
SL[AG] [16], SL[BG] [14], and SL[CG], and SL[DG] [15].

CVIT 2016

23:12 Dependencies in Strategy Logic

SL[EG][3 φ ::= ∀x.φ | ∃x.φ | ξ ξ ::= Fn((βi)1≤i≤n)
β ::= assign(σ). ψ ψ ::= ¬ψ | ψ ∨ ψ | Xψ | ψUψ | p

where Fn ranges over semi-stable subsets of {0, 1}n, for any n ∈ N. The semantics of the
operator Fn is defined as

G, q |=χ F
n((βi)i≤n) ⇐⇒ letting f ∈ {0, 1}n s.t. f(i) = 1 iff G, q |=χ βi, it holds f ∈ Fn.

Notice that if Fn would range over all subsets of {0, 1}n, then this definition would
exactly correspond to SL[BG]. Similarly, the case where Fn = {1n} corresponds to SL[CG],
while Fn = {0, 1}n \ {0n} gives rise to SL[DG].

I Proposition 16. SL[EG] contains SL[AG]. The inclusion is strict (syntactically).

Proof. Remember that boolean combinations in SL[AG] follow the grammar ξ ::= ξ ∨ β |
ξ ∧ β | β. In terms of subsets of {0, 1}n, it corresponds to considering sets defined in one of
the following two forms:

Fnξ = {f ∈ {0, 1}n | f(n) = 1} ∪ {g ∈ {0, 1}n | g|[1;n−1] ∈ Fn−1
ξ′ }

Fnξ = {f ∈ {0, 1}n | f(n) = 1 and f|[1;n−1] ∈ Fn−1
ξ′ }

depending whether ξ(pj)j = ξ′(pj)j ∨ pn or ξ(pj)j = ξ′(pj)j ∧ pn. Assuming (by induction)
that F n−1

ξ′ is semi-stable, it can be shown that F n
ξ also is.

That the inclusion is strict is proven by considering the semi-stable set H3 = {〈1, 1, 1〉,
〈1, 1, 0〉, 〈1, 0, 1〉, 〈0, 1, 1〉}, which cannot be obtained by any boolean combination of goals
from SL[AG]. J

I Example 17. Consider the following formula, expressing the existence of a Nash equilib-
rium for two players with respective LTL objectives ψ1 and ψ2:

∃x1.∃x2.∀y1.∀y2.
∧{

(assign(A1 7→ y1;A2 7→ x2).ψ1)⇒ (assign(A1 7→ x1;A2 7→ x2).ψ1)
(assign(A1 7→ x1;A2 7→ y2).ψ2)⇒ (assign(A1 7→ x1;A2 7→ x2).ψ2)

This formula has four goals, and it corresponds to the set

F 4 = {(1, 1, 1, 1), (0, 1, 1, 1), (1, 1, 0, 1), (0, 1, 0, 1), (0, 0, 1, 1), (1, 1, 0, 0),
(0, 0, 0, 1), (0, 1, 0, 0), (0, 0, 0, 0)}

Taking f = (1, 1, 0, 0) and g = (0, 0, 1, 1), with s = (1, 0, 1, 0) we have (f f s) g (g f s̄) =
(1, 0, 0, 1) and (g f s) g (f f s̄) = (0, 1, 1, 0), none of which is in F 4. Hence our formula is
not (syntactically) in SL[EG].

Transformation into an upward-closed set by bit flipping Fix a vector b ∈ {0, 1}n.
We define the operation flipb : {0, 1}n → {0, 1}n that maps any vector f to (f f b)g (f̄ f b̄).
In other terms, flipb flips the i-th bit of its argument if bi = 0, and keeps this bit unchanged
if bi = 1. In SL[EG], flipping bits is equivalent to negating the corresponding goals. The first
part of the following lemma thus indicates that our definition for SL[EG] is somewhat sound.

I Lemma 18. If Fn ⊆ {0, 1}n is semi-stable, then so is flipb(Fn). Moreover, for any semi-
stable set Fn, there exists B ∈ {0, 1}n such that flipB(Fn) is upward-closed (i.e. for any
f ∈ flipB(Fn) and any s ∈ {0, 1}, we have f g s ∈ flipB(Fn)).

P. Gardy, P. Bouyer, N.Markey 23:13

Defining quasi-orders from semi-stable sets. For Fn ⊆ {0, 1}n, we write Fn for the
complement of Fn. Fix such a set Fn, and pick s ∈ {0, 1}n. For any h ∈ {0, 1}n, we define

Fn(h, s) = {h′ ∈ {0, 1}n | (hf s) g (h′ f s) ∈ Fn}
Fn(h, s) = {h′ ∈ {0, 1}n | (hf s) g (h′ f s) ∈ Fn}

Trivially Fn(h, s) ∩ Fn(h, s) = ∅ and Fn(h, s) ∪ Fn(h, s) = {0, 1}n. If we assume Fn to be
semi-stable, then the family (Fn(h, s))h∈{0,1}n satisfies the following property:

I Lemma 19. Fix a semi-stable set Fn and s ∈ {0, 1}n. For any h1, h2 ∈ {0, 1}n, either
Fn(h1, s) ⊆ Fn(h2, s) or Fn(h2, s) ⊆ Fn(h1, s).

Given a semi-stable set Fn and s ∈ {0, 1}n, we can use the inclusion relation of Lemma 19
to define a relation �Fns (written �s when Fn is clear) over the elements of {0, 1}n.

I Definition 20. Fix Fn semi-stable and s ∈ {0, 1}n. We define �Fns ⊆ {0, 1}n × {0, 1}n so
that h1 �s h2 iff Fn(h1, s) ⊆ Fn(h2, s).

This relation is a quasi-order: its reflexiveness and transitivity both follow from the
reflexiveness and transitivity of the inclusion relation ⊆. By Lemma 19, this quasi-order is
total. Intuitively, �s orders the elements of {0, 1}n based on how “easy” it is to complete
their restriction to s so that the completion belongs to Fn. In particular, only the indices
on which s take value 1 are used to check whether h1 �s h2: given h1, h2 ∈ {0, 1}n such
that (h1 f s) = (h2 f s), we have F(h1, s) = F(h2, s), and h1 =s h2.

I Example 21. Consider for instance the semi-stable
set F 3 = {〈1, 0, 0〉, 〈1, 1, 0〉, 〈1, 0, 1〉, 〈0, 1, 1〉, 〈1, 1, 1〉}
represented on the figure opposite, and which can be
shown to be semi-stable. Fix s = 〈1, 1, 0〉. Then
F3(〈0, 1, ?〉, s) = {0, 1}2 × {1}, while F3(〈1, 1, ?〉, s) =
F3(〈1, 0, ?〉, s) = {0, 1}3 and F3(〈0, 0, ?〉, s) = ∅. It fol-
lows that 〈0, 0, ?〉 �s 〈0, 1, ?〉 �s 〈1, 0, ?〉 =s 〈1, 1, ?〉. (0, 0, 0)

(0, 1, 0) (0, 0, 1)(1, 0, 0)

(1, 1, 0) (1, 0, 1) (0, 1, 1)

(1, 1, 1) F 3

Sketch of proof of Theorem 13. We can now give an intuition for the proof of Theorem 13
stated at the beginning of this section. Consider a SL[EG] formula φ = (Qixi)i≤lFn(βjϕj)j≤n,
where we assume Fn is upward-closed. Fix a game G and an initial state q0. First, given
any history ρ and any valuation χ of partial strategies (defined at least on any prefix of ρ),
timeline dependencies convey enough information to track of those goals βjϕj for which
ρ is a prefix of the outcomes of βj(χ) (such goals are said to be active along ρ under χ).
By representing the set of currently-active goals as a vector s ∈ {0, 1}n, the quasi-order �s
gives a preference relation between the goals that one wants to keep active when selecting
an action for existentially-quantified strategy xi at ρ.

In order to keep track of which goals are satisfied, we define a set {Ds,h | s, h ∈ {0, 1}n}
of deterministic parity automata, each automaton Ds,h accepting those words over 2AP sat-
isfying formula

∨
k∈{0,1}n. h�sk

∧
j. (kfs)(j)=1 ϕj . In other terms, a play is accepted by Ds,h

if the set of formulas ϕj it satisfies is at least as good as h w.r.t. �s. In particular, Ds,0 is
universal.

Now, consider a set of goals βj . ϕj , represented by a vector s ∈ {0, 1}n. Assume that
they are all active along some infinite play ρ. Since the quasi-order �s is total, there exists
some maximal vector k for which ρ is accepted by Ds,k. Then ρ can serve as a witness for
the goals k f s, and cannot do better. For the goals defined by s̄, if another play ρ̄ and its

CVIT 2016

23:14 Dependencies in Strategy Logic

maximal vector k̄, then formula Fn(βjϕj)j will be true in the corresponding context if and
only if (k f s) g (k f s) ∈ Fn.

In general, all the goals will not follow a single infinite play ρ; the idea is then to follow
the common play for a while, until the goals split and follow different branches. If after some
history, the active goals are represented by some vector s, then the vector s is partitioned
into several vectors si, associated with the branches followed after ρ.

Formally, through an induction, we exhibit some specific elements bq,d,s ∈ {0, 1}n, where
q is a state of G, d represents some knowledge about the history (represented a states of the
automata Ds,h), and s is a set of active goals. An element bq,d,s corresponds to the best
we can hope to achieve w.r.t. �s when we consider a history ρ ending in q, carrying the
information d and where s represents the set of active goals on ρ (which are accessible using
the timeline dependency). The induction is based on the size of s, The key to determine an
element bq,d,s is to know when we should keep the active goals together and when we should
split them among different paths. For this, we build a set (Hk)k∈{0,1}n of two-player parity
games, with players P∀ and P∃. Player P∃ wins game Hk if, and only if, we can achieve a
result at least as good as k for �s from any ρ ending in q with information d and active
goals s. The values bq,d,s can be computed by solving each game and choosing the largest
k for which P∃ wins in Hk. In Hk, the parities are chosen using the automata (Ds,h)s,h
to encode the possibility of all goals staying on a common path, and using values bq′,d′,s′
defined at previous step of the induction when the goals split among different paths.

We then produce an (optimal)M(L, T)-map θ. The optimal positional strategies of P∃
in Hbq,d,s give us the adequate behaviour for θ in G on histories finishing in q, carrying
information d and with active goals represented by s. With a dual reasoning, we produce
anotherM(L, T)-map θ for ¬φ.

By optimality of the values bq,d,s (used to build θ and θ), on any history, the choices of θ
for the existential strategy and θ for the universal ones are as good as possible. Formally,
this translates into the following lemma:

I Lemma 22. There exists a valuation χ of domain V such that θ(χ|V∀) = χ and θ(χ|V∃) = χ.
Moreover, the valuation χ satisfies

G, q0 |=χ ξ(βjϕj)j≤n =⇒ ∀w ∈ (HistG → Act)V
∀
G, q0 |=θ(w) ξ(βjϕj)j≤n

G, q0 |=χ (¬ξ)(βjϕj)j≤n =⇒ ∀w ∈ (HistG → Act)V
∃
G, q0 |=θ(w) (¬ξ)(βjϕj)j≤n

In the first case, θ witnesses the fact that G, q0 |=M(L,T) φ and (by Prop. 8) G, q0 6|=M(L,T) ¬φ.
In the second case, G, q0 |=M(L,T) ¬φ and (by Prop. 8) G, q0 6|=M(L,T) φ.

In order to build θ and θ and to determine which case holds, we can build 2n automata
of size 22|φ| and index 2|φ|, then build 2n parity games of size 22|φ| and index 2|φ|, and finally
solve each of these game. This gives us the expected 2 -EXPTIME algorithm, and concludes
the proof of Theorem 13. J

Finally, we prove that the fragment SL[EG] is, in a sense, maximal for the first property
of Theorem 13:

I Proposition 23. For any non-semi-stable boolean set Fn ⊆ {0, 1}n, there exists a SL[BG]
formula φ built on Fn, a game G and a state q0 such that

G, q0 6|=M(L,T) ¬φ G, q0 6|=M(L,T) φ

P. Gardy, P. Bouyer, N.Markey 23:15

References

1 T. Ågotnes, V. Goranko, and W. Jamroga. Alternating-time temporal logics with irrevoc-
able strategies. In TARK’07, p. 15–24, 2007.

2 R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logic. J. of the
ACM, 49(5):672–713, 2002.

3 P. Bouyer, P. Gardy, and N. Markey. Weighted strategy logic with boolean goals over
one-counter games. In Proceedings of the 35th Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS’15), LIPIcs 45, p. 69–83. Leibniz-
Zentrum für Informatik, 2015.

4 P. Bouyer, P. Gardy, and N. Markey. On the semantics of strategy logic. Information
Processing Letters, 116(2):75–79, 2016.

5 Th. Brihaye, A. Da Costa, F. Laroussinie, and N. Markey. ATL with strategy contexts and
bounded memory. In Proceedings of the International Symposium Logical Foundations of
Computer Science (LFCS’09), LNCS 5407, p. 92–106. Springer, 2009.

6 K. Chatterjee, T. A. Henzinger, and N. Piterman. Strategy logic. Inf. & Comp., 208(6):677–
693, 2010.

7 E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons using
branching-time temporal logic. In LOP’81, LNCS 131, p. 52–71. Springer, 1982.

8 E. M. Clarke, O. Grumberg, and D. A. Peled. Model checking. MIT Press, 2000.
9 P. Gardy. Semantics of Strategy Logic. PhD thesis, Universite Paris Saclay, 2017.

http://www.lsv.fr/ gardy/Rapports/PremiereVersionThese.
10 V. Goranko and G. van Drimmelen. Complete axiomatization and decidability of

alternating-time temporal logic. Theor. Computer Science, 353(1-3):93–117, 2006.
11 F. Laroussinie and N. Markey. Augmenting ATL with strategy contexts. Inf. & Comp.,

245:98–123, 2015.
12 F. Laroussinie, N. Markey, and G. Oreiby. On the expressiveness and complexity of ATL.

Logical Methods in Computer Science, 4(2), 2008.
13 F. Mogavero, A. Murano, G. Perelli, and M. Y. Vardi. What makes ATL* decidable?

a decidable fragment of strategy logic. In CONCUR’12, LNCS 7454, p. 193–208. Springer,
2012.

14 F. Mogavero, A. Murano, G. Perelli, and M. Y. Vardi. Reasoning about strategies: On the
model-checking problem. ACM Transactions on Computational Logic, 15(4):34:1–34:47,
2014.

15 F. Mogavero, A. Murano, and L. Sauro. On the boundary of behavioral strategies. In
LICS’13, p. 263–272. IEEE Comp. Soc. Press, 2013.

16 F. Mogavero, A. Murano, and L. Sauro. A behavioral hierarchy of strategy logic. In
CLIMA’14, LNAI 8624, p. 148–165. Springer, 2014.

17 F. Mogavero, A. Murano, and M. Y. Vardi. Reasoning about strategies. In FSTTCS’10,
LIPIcs 8, p. 133–144. Leibniz-Zentrum für Informatik, 2010.

18 A. Pnueli. The temporal logic of programs. In FOCS’77, p. 46–57. IEEE Comp. Soc. Press,
1977.

19 J.-P. Queille and J. Sifakis. Specification and verification of concurrent systems in CESAR.
In SOP’82, LNCS 137, p. 337–351. Springer, 1982.

20 F. Wang, C.-H. Huang, and F. Yu. A temporal logic for the interaction of strategies. In
CONCUR’11, LNCS 6901, p. 466–481. Springer, 2011.

CVIT 2016

23:16 Dependencies in Strategy Logic

Appendix
A Proof of Proposition 3

I Proposition 3. For any D {L, S, F} containing L, there exist a game G with initial
state q0 and a formula φ ∈ SL[BG][such that G, q0 6|=M(D) φ and G, q0 6|=M(D) ¬φ.

Proof. In the paper, we proved the result for |=M(L). The remaining two cases can be
handled similarly. The counter-example for |=M(L,F) uses the game on the left of Fig. 5 and
the following formula

φ = ∀x. ∃y.
∧{

assign(7→ x). F p1 ⇔ assign(7→ y). F p1

assign(7→ x). F p2 ⇔ assign(7→ y). F p2

Checking that both φ and ¬φ fail to hold follows similar arguments to the ones used in the
paper for |=M(L). The counter-example for |=M(L,S) uses the game to the right of Fig. 5
and the formula φ = ∀x. ∃y.

(
assign(7→ x). F p1 ⇔ assign(7→ y). F p2

)
. J

q0

A

p1 p2

B

p1 p2

q0

A

p1 ∅

p2

Figure 5 Two games for the proof of Prop. 3.

B Proof of Proposition 4

I Proposition 4. For any D ⊆ {L, S, F} containing L, every game G with initial state q0,
and every formula φ ∈ SL[1G], it holds G, q0 |=M(D) φ ⇐⇒ G, q0 6|=M(D) ¬φ.

Proof. It suffices to prove the result for M(L), since M(L) ⊆ M(D). When restrict-
ing to the satisfaction relation |=M(L), the interaction between existential and universal
quantifications of the formula can be integrated into the game, replacing each state with a
tree-shaped subgame where Player P∃ selects existentially-quantified actions and Player P∀
selects universally-quantified ones. The unique goal of the formula is then incorporated
into the game via a deterministic parity automaton, yielding a two-player turn-based parity
game. We can then show that the |=M(L)-satisfaction of φ is equivalent to having a win-
ning strategy in the turn-based parity games for P∃, while the |=M(L)-satisfaction of ¬φ
corresponds to having a winning strategy for P∀.

For the rest of the proof, we fix a game G and a SL[1G] formula φ := (Qixi)i≤lβϕ.

Specifying a turn-based parity game H. We start by defining some specific turn-based
arenas to “flatten” the game and formula. Figure 6 illustrates the construction. First,
relatively to G and φ we define the following turn-based tree-like arena, which we call cluster :

there are two players P∃ and P∀.
the set of states is Scluster := {m ∈ Act∗ | 0 ≤ |m| ≤ l}, thereby defining a tree of
depth l + 1 with directions Act. A state m in Scluster with |m| < l belongs to P∃ if and
only if Q|m|+1 = ∃. To whom the states with |m| = l belong does not matter.

P. Gardy, P. Bouyer, N.Markey 23:17

φ = ∃x1. ∀x2. ∃x3. βψ

ε

a b

aa ab ba bb

aaa aab aba abb baa bab bba bbb

cluster

Transition
of the ori-
ginal game

Figure 6 On the left: representation of a cluster. On the right: the overall shape of H.

there is a transition from each m of size strictly less than l to all m · a for all a ∈ Act.
In particular, the empty word ε ∈ Scluster is the starting node of the cluster, and it has
no incoming transitions, while all words of length l have no outgoing transitions;

A leaf in such a cluster represents a move vector of domain V = {xi | 1 ≤ i ≤ l}: the leaf
m represents the move vector m where m(xi) = m(i).

We denote by D the deterministic parity automata over 2AP associated with ϕ. We also
write d0 for the initial state of D. Using the notion of clusters, we define a turn-based parity
game H.

the players are the same as before: P∃, P∀.
for each state q of G and each state d of D, H contains a copy of a cluster which we call
the (q, d) cluster. For any m ∈ Act∗ with |m| ≤ l, we refer to the state m of the (q, d)
cluster as the (q, d,m) state.
the transitions in H are of two types:

internal transitions in the cluster are preserved;
consider a state (q, d,m) where m is a leaf. If there exists a state q′ such that q′ =
T (q,mβ) where mβ : Agt → Act is the move vector over Agt defined by mβ(A) =
m(i − 1) where xi = β(A) (i.e. applying the choices of m according to β in G leads
from q to q′), then we add a transition from (q, d,m) to (q′, d′, ε) where d′ = succ(d, q′).

the set of priorities are the same as in D and each (q, d,m) state has the same priority
as d.

Correspondence between G andH. There is not a clear one-to-one correspondence between
the histories in H and the ones in G, however there exists nevertheless some degree of con-
nection. We introduce the notion of lanes before going into details.

I Definition 24. A lane in G is a tuple (ρ, u, i, t) made of a history ρ := (qj)j≤a (for some
integer a); a function u : (Pref<ρ → Act)V ; an integer i ∈ [0; l]; a function t : V∩[x1;xi]→ Act
(with the convention that t := ∅ if i = 0); and such that

∀j < a T (qj , β(mj)) = qj+1

{
where mj : V → Act is the vector move over V
with mj(x) := u(x)(ρ≤j)

We can build a one-to-one application HtoGpth between histories in H and lanes in G.
On a history π in H, of shape

π := Πj<a(Π0≤i≤l(qj , dj ,mj,i)).Π0≤i≤b(qa, da,ma,i)

CVIT 2016

23:18 Dependencies in Strategy Logic

of length a.(l + 1) + b with 0 ≤ b < l + 1, we define HtoGpth(π) by

HtoGpth(π) := ((qj)j≤a, u, b, t)

with u : V × Pref<ρ → Act
∀a′ < a xi, (qj)j≤a′ → mj,i

t : V ∩ [x1;xb−1] → Act
∀i ≤ b xi → ma,i

HtoGpth is clearly injective (two different histories will correspond to two different lanes),
but also surjective. To prove it, we build the reciprocal function GtoHpth: from a lane
((qj)j≤a, u, i, t), we set GtoHpth((qj)j≤a, u, i, t) := π where π is a history in H of length
a.(l + 1) + |dom(t)|+ 1 of shape

π := Πj<a

(
Π0≤i≤l

(
qj , dj , u(xi, (qj′)j′≤j)

))
.Π0≤i≤b

(
qa, da, t(xi, (qj)j≤a)

)
where dj is the vector of states reachable through (qj′)j′≤j

Because of the coherence condition imposed on lanes (see their definition), we get that
the transition between clusters of GtoHpth((qj)j≤a, u, i, t) are valid relatively to H transition
table. GtoHpth((qj)j≤a, u, i, t) is therefore a valid history in H and GtoHpth is well defined.
From the definitions, one can easily check that

GtoHpth(HtoGpth(π)) = π

and deduce that GtoHpth is the inverse function of HtoGpth; therefore

I Lemma 25. The application HtoGpth is a bijection between lanes of G and histories in
H and GtoHpth is its inverse function.

Extending the correspondence. We can use the HtoGpth correspondence to describe an-
other correspondence between positional strategies for P∃ in H and M(L)-maps in G. We
recall that a map θ is a function (HistG → Act)V∀ → (HistG → Act)V taking three in-
puts: a function w : (HistG → Act)V∀ , a variable xi and a history π. We also recall that
if Qj = ∀, then θ(w)(xi)(ρ) = w(xi)(ρ), hence we will only define HtoG for the exist-
entially quantified variables. Moreover, by the nature of M(L) maps, if we consider the
variable xi for the second entry, the first entry can be simplified to a function of shape
w : Pref≤ρ × V∀ ∩ [x1;xi]→ Act. This simplifies the definition of θ.

Formally, the application HtoG take as input a positional strategy δ for player P∃ in H
and returns aM(L)-map. The application is built by a double induction, first on the length
of the potential history and second on the variables of φ.

initial step (empty history):
initial step (x1 assuming x1 ∈ V∃): We set HtoG(δ)(w)(x1)(ε) = δ(ε).
induction step (xi assuming xi ∈ V∃): As the history and the variable are fixed,
the only variable part of the input for the map we are building is a function w : {ε}×
V∀ ∩ [x1;xi−1]→ Act. From xi and w we create a function ti,w : V ∩ [x1;xi−1]→ Act
where ti,w : [x1;xi−1]→ Act associate to x ∈ V∀ the action w(x)(ε) and to x ∈ V∃ the
action θ(w)(x)(ε). We can then create the lane lanei,w = (ε, ∅, i, t) and define

HtoG(δ)(w)(xi)(ε) := δ(GtoHpth(lanei,w))

induction step (non empty history): we work on a history π assuming we have
define HtoG(δ) on prefixes of π. Like before, the history and the variable are fixed and
the only changing part of the input is a function w of form Pref≤ρ×V∀∩ [x1;xi−1]→ Act.

P. Gardy, P. Bouyer, N.Markey 23:19

initial step (x1 assuming x1 ∈ V∃): We set HtoG(δ)(w)(x1)(π) = δ(q) where
q = (last(π), dπ, ε) is the state of H with dπ the state reachable by π in D (the parity
automaton associate with the goal of φ).
induction step (xj assuming xj ∈ V∃): From xi and w, we create a function
ti,w : V ∩ [x1;xi−1] → Act where ti,w associate to x ∈ V∀ the action w(x) and to
x ∈ V∃ the action θ(w)(x)(π). We can then create the lane lanei,w = (π, ∅, i, t) and
define

HtoG(δ)(w)(xi)(ε) := δ(GtoHpth(lanei,w))

Because δ is positional, feeding the empty function in lanei,w for the second component
of the input is without consequence. Indeed, the second component of lanei,w in
GtoHpth(lanei,w) only describe the actions played on π until the last last, now because
δ is positional, theses actions have no influences.

At the end of the induction, we get a map that by construction has no side nor future
dependency. Figure 7 illustrates the construction.

Concluding the proof. The winner of the parity game H gives us informations about G.

I Lemma 26. Assume that P∃ is winning in H and let δ be its positional winning strategy,
then theM(L) map HtoG(δ) is a witness that G, q0 |=M(L) φ.

Similarly, assume that P∀ is winning in H and call δ its positional winning strategy.
Then theM(L) map HtoG(δ) is a witness that G, q0 |=M(L) ¬φ.

Proof. We prove the first point, the second one follows the same reasoning. Assume that
P∃ is winning in H. Toward a contradiction, assume further that HtoG(δ) is not a witness
of G, q0 |=M(L) φ, then

There is w0 : (HistG → Act)V
∀
such that G, q0 6|=M(L)

HtoG(δ)(w0) βϕ (2)

We use w0 to build a strategy δ for P∀ in H. Given a history ρ in H of form

ρ := Πj<a(Π0≤i≤l(qj , dj ,mj,i)).Π0≤i≤b(qa, da,ma,i)

we define π = Πj≤a(qj) and set

δ(ρ) := θ(w)(xb)(η) with

w : Pref≤π × V∀ ∩ [x1;xb]→ Act

defined by w(π)(xi) = ρ(|π|.l + i)
η := Πj<a(Π0≤i≤l(qj , dj ,mj,i))

Write η = (qj)j∈N for the outcome of β(θ(w0)) in G. Then, by construction of δ, the
outcome of δ and δ in H will pass through the clusters (qj , dj)j∈N, with dj the state access-
ible by (qj′)j′≤j in the automaton D associate with the LTL formula ϕ. Now, because of
Formula (2), we get that η does not satisfy ϕ and therefore the outcome of δ and δ does not
satisfy the parity condition. This is in contradiction with δ being the winning strategy of
P∃. In the end, HtoG(δ) must be a witness that G, q0 |=M(L) φ. J

The determinacy of parity games and Prop 26 immediately implies that at least one
of φ or ¬φ must hold on G for |=M(L). The fact that at most one holds follows from
the equivalence between |=M(L,S,F) and |= [14, Theorem 4.6], and the inclusion M(L) ⊆
M(L, S, F). J

CVIT 2016

23:20 Dependencies in Strategy Logic

ε

q0

a b

aa ab ba bb

aaa aab aba abb baa bab bba bbb

ε

q2

a b

aa ab ba bb

aaa aab aba abb baa bab bba bbb

ε

q3

a b

aa ab ba bb

aaa aab aba abb baa bab bba bbb

Part of G

q0

q2

q3

aba

bba

The input is (w, x3, q0.q2.q3) with
w ∈ (HistG → Act)V∀ such that

w(x2)(ε) = b

w(x2)(q0.q2) = b

w(x2)(q0.q2.q3) = a

From HtoG(δ) on prefixes of q0, q2.q3, we
build a lane lane = (q0.q2.q3, u, x3, t)

δ(GtoHpth(lane))

HtoG(δ)(w)(x3)(q0.q2.q3) = δ(GtoHpth(lane))

u

t

On H On G

Figure 7 From H to G on the formula ∃x1. ∀x2. ∃x3. assign(A1, x1;A2, x2;A3, x3) ϕ.

C Proof of Proposition 6

I Proposition 6. For every game G with initial state q0, for every φ ∈ SL[CG],

G, q |=M(L,S) φ ⇐⇒ G, q |=M(L) φ

In all other cases, the satisfaction relations are pairwise distinct over SL[DG] and SL[CG].

Proof. We start by proving the first part of the proposition. Fix a game G, one of its state
q and a SL[CG] formula φ = (Qixi)i≤l

∧
j≤n βjϕj . Assuming G, q0 |=M(L,S) φ, then there

P. Gardy, P. Bouyer, N.Markey 23:21

must exist ∆ aM(L, S)-witness of φ holding on G from q, i.e.

∀w : (HistG → Act)V
∀

G, q |=∆(w)
∧
j≤n

βjϕj (3)

We create aM(L)-map ∆′ and prove it to be aM(L)-witness of φ on G. For this, choose
any fixed function w0 : (HistG → Act)V∀ . For a function w′ ∈ (HistG → Act)V∀ and a history
ρ, we write w′0 for the function equal to w′ on ρ and its prefixes and equal to w0 elsewhere.
We then set, for any variable xi ∈ V,

∆′(w′)(xi)(ρ) = ∆(w′0)(xi)(ρ)

∆′ is indeed a M(L)-map: on a history ρ, we fixed universal choices on side histories
of ρ to be “as in” w0 before using ∆, hence we don’t import the side dependencies from ∆.

It remains to prove that ∆′ is a witness for G, q |=M(L) φ. Toward a contradic-
tion, assume this is not the case. There exists some w1 ∈ (HistG → Act)V∀ such that
G, q 6|=∆′(w1)

∧
j≤n βjϕj . In particular there is some j0 ∈ [1, . . . n] such that G, q 6|=∆′(w1)

βj0ϕj0 . Let πj0 = out(βj0(∆′(w1)), q) be the outcome of ∆′(w1) for the assignments in βj0 .
We build another function w2 ∈ (HistG → Act)V∀ equal to w1 on πj0 and its prefixes,
and equal to w0 on any other history. By construction, for any prefix πpj0

of πj0 we have
that ∆′(w1)(xi)(πpj0

) = ∆(w2)(xi)(πpj0
) hence πj0 is also the outcome of ∆(w2) for the as-

signments βj0 . This implies that G, q 6|=∆(w2) βj0ϕj0 and G, q 6|=∆(w2)
∧
j≤n βjϕj , which

is a contradiction with Formula (3). So, ∆′ is a M(L)-witness for φ on G, it holds that
G, q |=M(L) φ, and the result follows.

We then prove that in all other cases, the relations are pairwise distinct. For each case,

q1

a

b

p1

p2

(a) G1.

q2

a

b

p1

p2

(b) G2

q3

p1

p2

(0, 0, ?)

(1, 1, ?)

a

p1

p2

(0, 1, ?)

(1, 0, ?)

(?, ?, 1)

(?, ?, 0)

(c) G3 where Agt = {AA , BB , } and Act = {0, 1}.

Figure 8 Three games for the proof of Prop. 6.

we only give a counter-example, and leave the verification to the reader. Consider the game
on Figure 8a with two agents and , and the SL[DG] formula

φ1 = ∀y. ∃xA. ∀xB .
∨{

assign(7→ y; 7→ xA). F p1

assign(7→ y; 7→ xB). F p2

We have G, q1 |=M(L,F) φ1 but G, q1 6|=M(L) φ1, and G, q1 |=M(L,S) φ1 but G, q1 |=M(L,S,F)

φ1. Therefore |=M(L,F) and |=M(L) are distinct on SL[DG]. Similarly, |=M(L,S) and |=M(L,S,F)

are also distinct in SL[DG].
To show that |=M(L,S) and |=M(L,S,F) but also |=M(L,F) |=M(L,S,F) are distinct on

SL[CG], use the game on Figure 8b and the formula

φ2 = ∀y. ∃z. ∃xA. ∃xB .
∧{

assign(7→ y; 7→ xA; 7→ z). F p1

assign(7→ y; 7→ xB ; 7→ z). F p2

CVIT 2016

23:22 Dependencies in Strategy Logic

To show that |=M(L) and |=M(L,S) but also |=M(L,F) |=M(L,S,F) are distinct on SL[DG],
use the game of Figure 8b and the formula

φ4 = ∀y. ∃z. ∀xA. ∀xB .
∨{

assign(7→ xA; 7→ y; 7→ z)F p1

assign(7→ xB ; 7→ y; 7→ z)F p2

To show that |=M(L) and |=M(L,F) are distinct on SL[CG], use the game on Figure 8c
and formula

φ3 = ∀y. ∃xA. ∃xB1 . ∃xB2 .
∧{

assign(AA 7→ xA;BB 7→ xB1 ; 7→ y). F p1

assign(AA 7→ xA;BB 7→ xB2 ; 7→ y). F p2

J

D Proof of Proposition 8

I Proposition 8. For every formula φ in SL[BG], for every game G with initial state q0,
G, q0 6|=M(L,S,F,T) φ =⇒ G, q0 |=M(L,S,F,T) ¬φ;
G, q0 |=M(L,T) φ =⇒ G, q0 6|=M(L,T) ¬φ.

Proof. The first result follows from the fact that at least one of φ and ¬φ holds true
for |=M(L,S,F). SinceM(L, S, F) ⊆M(L, S, F, T), at least one also holds for |=M(L,S,F,T).

We now prove the second implication. For a contradiction, assume that there exist two
maps θ and θ̄ witnessing G, q0 |=M(L,T) φ and G, q0 |=M(L,T) ¬φ resp. There must exist two
M(L, T)-maps θ and θ such that

∀w ∈ (Hist→ Act)V
∀

G, q0 |=θ(w) ξ(βjϕj)j≤n (4)

∀w ∈ (Hist→ Act)V
∃

G, q0 |=θ(w) ¬ξ(βjϕj)j≤n (5)

We can then inductively (on histories and on the sequence of quantified variables) build
a strategy valuation χ on V such that θ(χ|V∀) = θ̄(χ|V∃) = χ (Figure 9 gives an intuition):

θ(x1) : Hist→ Act θ(x2) θ(x3) θ(x4)

. . .

Building the valuation χ

Figure 9 How to confront twoM(L, T) maps θ and θ.

On the empty history ε, for any xi ∈ V and having build χ on ε for any xi′ where i′ < i,
then

if xi ∈ V∃, we set χ(xi)(ε) = θ(
⋃
i′<i χ|ε xi′)(xi)(ε)

if xi ∈ V∀, we set χ(xi)(ε) = θ(
⋃
i′<i χ|ε xi′)(xi)(ε)

Note that, because θ and θ areM(L, T) maps, feeding them
⋃
i′<i χ|ε xi′ is sufficient.

On a history ρ and with χ defined on any prefix of ρ, for any x ∈ V and any prefix ρ′ of
ρ For a variable xi ∈ V, having build χ on ρ for any xi′ where i′ < i, then

P. Gardy, P. Bouyer, N.Markey 23:23

q0

A

C p4

p1 ∅

B

p2 p3

D

p5 p6

Figure 10 The game G for the last case of the proof of Prop. 9

if xi ∈ V∃ , we then set χ(xi)(ρ) = θ(χ|Pref<ρ ∪
⋃
i′<i χ|ρ xi′)(xi)(ρ)

if xi ∈ V∀ , we then set χ(xi)(ρ) = θ(χ|Pref<ρ ∪
⋃
i′<i χ|ρ xi′)(xi)(ρ)

Again, because θ and θ areM(L, T) maps, feeding them a partial first entry is sufficient.

Now, by construction, θ(χ|V∀) = θ(χ|V∃) = χ. Then, by Formulas (4) and (5), we have
both G, q0 |=χ ξ(βjϕj)j≤n and G, q0 |=χ ¬ξ(βjϕj)j≤n, which is impossible. J

E Proof of Proposition 9

I Proposition 9. For any D {L, S, F, T} s.t. {L, T} ⊆ D, there exists a game G with
initial state q0 and a formula φ ∈ SL[BG] such that G, q0 6|=M(D) φ and G, q0 6|=M(D) ¬φ;
for any D ⊆ {L, S, F, T} s.t. {L, T} D, there exists a game G with initial state q0 and
a formula φ ∈ SL[BG] such that G, q0 |=M(D) φ and G, q0 |=M(D) ¬φ.

Proof. The first part of the proposition is easily proven by considering the same games and
formulas as in the proof of Prop. 3.

We now focus on the second part of the proposition. The case D = {L, S, F, T} was
handled in the paper. For the case D = {L,F, T}, one can take the game 8a of Appendix C
and the formula below. We leave the verification to the reader.

φ2 = ∀y. ∃xA. ∀xB .
(
assign(7→ y; 7→ xA). F p1 ∨ assign(7→ y; 7→ xB). F p2

)
.

The last case {L, S, T} is more involved. Consider the turn based game of Fig. 10 and
the state q0 as initial state. The game has five agents , , , and , and six
atomic propositions p1, p2, p3, p4, p5, and p6. Consider further the formula φ below:

φ =∀x2. ∀x4. ∀x5. ∃x1. ∃x3. ∃x6. ∃z1. ∃y1. ∀v5. ∃v6. ∀w2. ∃w3. ∀z4. φ
′

with φ′ =

ψ1 ⇐⇒ ψ5

∨
ψ5 ⇐⇒ ψ6 ∧ ψ2 ⇐⇒ ψ3 ∧

ψ1 ⇐⇒ ψ4

∨
ψ3 ⇐⇒ ψ4

and

ψ1 = assign(7→ x1; 7→ z1; 7→ y1; 7→ w2; 7→ v5)Fp1

ψ2 = assign(7→ x2; 7→ z1; 7→ y1; 7→ w2; 7→ v5)Fp2

CVIT 2016

23:24 Dependencies in Strategy Logic

ψ3 = assign(7→ x3; 7→ z1; 7→ y1; 7→ w3; 7→ v5)Fp3

ψ4 = assign(7→ x4; 7→ z4; 7→ y1; 7→ w2; 7→ v5)Fp4

ψ5 = assign(7→ x5; 7→ z1; 7→ y1; 7→ w2; 7→ v5)Fp5

ψ6 = assign(7→ x6; 7→ z1; 7→ y1; 7→ w2; 7→ v6)Fp6

A witness that G, q0 |=M(L,S,T) (Qixi)i≤l ξ(βjϕj)j≤n can be derived from Table 1
(at the end of this appendix) and a witness that G, q0 |=M(L,S,T) (Qixi)i≤l ¬ξ(βjϕj)j≤n
can be derived from Table 2. We have also made the different dependencies appear in both
tables. J

F Proof of Proposition 10

I Proposition 10. For every game G with initial state q0, for every formula φ ∈ SL[CG],

G, q0 |=M(L,S,T) φ ⇐⇒ G, q0 |=M(L,T) φ

In all other cases (involving timeline dependencies), the satisfaction relations are pairwise
distinct for SL[CG], SL[DG], and SL[1G].

Proof. The first part can be handle similarly to the first part of Prop 6 (Section 3 and
Annex C). However, the differentiation are more complex than the ones of Section 3.

To separate |=M(L,T) from |=M(L,S,T), consider the game G of Fig. 11 with 6 agents ,
11 , 22 , , 11 and 22 . Each agent can only influence the state represented in its name,
for example 11 and 22 are the only agents having an influence on the state c. To ease the
reading we only represented the actions of the active agents on the transitions. Consider
further the following SL[DG] formula

∃xp1. ∃xp2. ∃x1 . ∀x2 . ∃x1 . ∀x2 . ∃x .∨{
assign(7→ xp1; 11 7→ x1 ; 22 7→ x2 ; 7→ x ; 11 7→ x1 ; 22 7→ x2).F p1

assign(7→ xp2; 11 7→ x1 ; 22 7→ x2 ; 7→ x ; 11 7→ x1 ; 22 7→ x2).F p2

Table 3a lists the choices of the existential strategies in function of the universal ones and
induces a M(L, S, T)-witness that G, q |=M(L,S,T) φ. On the other hand, Table 3b proves
through a case decomposition that G, q 6|=M(L,T) φ. Both tables can be found in Table 3 at
the end of this appendix.

The separations for SL[1G] between |=M(L,T) and |=M(L,F,T), between |=M(L,S,T) and
|=M(L,S,F,T), and between |=M(L,F,T) and |=M(L,S,F,T) all follow arguments similar to the
ones used in Table 3 to separate |=M(L,T) from |=M(L,S,T). J

qa

p1

∅
b c

∅

p2

0 1

0, 0

1, 1

0, 1

1, 0

0

1

0, 0

1, 1

0, 1

1, 0

Figure 11 A concurrent game G for the proof of Prop. 10

P. Gardy, P. Bouyer, N.Markey 23:25

G Proof of Proposition 11

I Proposition 11. For any D ⊆ {L, S, F} containing L, the satisfaction relations |=M(D)

and |=M(D∪{T}) are distinct for SL[CG] and SL[DG].

Proof. For the cases with SL[CG], consider the game of Fig. 8a (Annex C) and the formula φC
below. For the cases with SL[DG], take the game of Fig. 8b (Annex C) and the formula φD
below. The verification is similar to many result done before.

φC = ∃y. ∀xA. ∃xB .
∧{

assign(7→ y; 7→ xA). F p1

assign(7→ y; 7→ xB). F p2

φD = ∃y. ∀xA. ∀xB . ∀z.
∨{

assign(7→ y; 7→ xA; 7→ z). F p1

assign(7→ y; 7→ xB ; 7→ z). F p2

J

H Proof of Lemma 19

I Lemma 27. Fix a semi-stable set Fn and s ∈ {0, 1}n. For any h1, h2 ∈ {0, 1}n, either
Fn(h1, s) ⊆ Fn(h2, s) or Fn(h2, s) ⊆ Fn(h1, s).

Proof. Assume otherwise, there is h′1 ∈ Fn(h1, s)\Fn(h2, s) and h′2 ∈ Fn(h2, s)\Fn(h1, s).
We then have:

(h1 f s) g (h′1 f s) ∈ Fn (h2 f s) g (h′1 f s) 6∈ Fn

(h2 f s) g (h′2 f s) ∈ Fn (h1 f s) g (h2 f s) 6∈ Fn

Now consider (h1 f s)g (h′1 f s), (h2 f s)g (h′2 f s) and s. As Fn is semi-stable, one of
the two following vector is in Fn :(

(h1 f s) g (h′1 f s) f s
)
g
(
(h2 f s) g (h′2 f s) f s

)(
(h2 f s) g (h′2 f s) f s

)
g
(
(h1 f s) g (h′1 f s) f s

)
The first vector is equal to (h1 f s)g (h′2 f s) and the second to (h2 f s)g (h′1 f s) and both
are supposed to be in Fn, we get a contradiction. J

I Proof of Theorem 13

I Theorem 13. For any φ ∈ SL[EG], any game G and any state q0, it holds:

G, q0 |=M(L,T) φ ⇐⇒ G, q0 6|=M(L,T) ¬φ

Moreover, model checking SL[EG] w.r.t. M(L, T)-maps is 2 -EXPTIME-complete.

Proof. The proof is quite technical. We start with some preliminary results showing that
we may assume Fn upward-close.

CVIT 2016

23:26 Dependencies in Strategy Logic

Closure under bit flipping and transformation into an upward closed set
Fix a vector b ∈ {0, 1}n. We define the operation flipb : {0, 1}n → {0, 1}n that maps any
vector f to (f f b) g (f̄ f b̄). In other terms, flipb flips the i-th bit of its argument if bi = 0,
and keeps this bit unchanged if bi = 1. Notice that flipb is a permutation of {0, 1}n. Notice
also that flip0(f) = f̄ and flipf (f) = 1 for all f ∈ {0, 1}n.

The following lemma shows that flipping bits preserves semi-stability. This is a natural
property for our logic, since flipping bits corresponds to negating goals. More precisely,
for b ∈ {0, 1}n, the open formulas Fn((βi. ϕi)1≤i≤n) and flipb(Fn)((βi. ϕ′i)1≤i≤n), where
ϕ′i = ϕi if b(i) = 1 and ϕ′i = ¬ϕi if b(i) = 0, are equivalent.

I Lemma 28. If Fn ⊆ {0, 1}n is semi-stable, then so is flipb(Fn).

Proof. We assume that Fn is semi-stable. Take f ′ = flipb(f) and g′ = flipb(g) in flipb(Fn),
and s ∈ {0, 1}n. Then

(f ′ f s) g (g′ f s̄) =
(
((f f b) g (f̄ f b̄)) f s

)
g
(
((g f b) g (ḡ f b̄)) f s̄

)
= (((f f s) g (g f s̄)) f b) g

(
((f̄ f s) g (ḡ f s̄)) f b̄

)
Write α = (f f s) g (g f s̄) and β = (f̄ f s) g (ḡ f s̄). One can easily check that β = ᾱ.
We then have

(f ′ f s) g (g′ f s̄) = (αf b) g
(
ᾱf b̄

)
= flipb(α). (6)

This computation being valid for any f and g, we also have

(g′ f s) g (f ′ f s̄) = (γ f b) g
(
γ̄ f b̄

)
= flipb(γ) (7)

with γ = (g f s) g (f f s̄). By hypothesis, at least one of α and γ belongs to Fn, so that
also at least one of (f ′ f s) g (g′ f s̄) and (g′ f s) g (f ′ f s̄) belongs to flipb(Fn). J

I Corollary 29. Fn is semi-stable if, and only if, its complement is.

Proof. Assume Fn is not semi-stable, and pick f and g in Fn and s ∈ {0, 1}n such that
none of α = (f f s) g (g f s̄) and γ = (g f s) g (f f s̄) are in Fn. It cannot be the case
that g = f , as this would imply α = f ∈ Fn. Hence α 6= γ. We claim that α and γ are our
witnesses for showing that the complement of Fn is not semi-stable: both of them belong
to the complement of Fn, and (α f s) g (γ f s̄) can be seen to equal f , hence it is not in
the complement of Fn. Similarly for (γ f s) g (αf s̄) = g. J

Using Lemma 28, we can then force a semi-stable set to be upward closed.

I Lemma 30. For any semi-stable set Fn, there exists B ∈ {0, 1}n such that flipB(Fn) is
upward-closed.

Proof. We start by proving the following lemma:

I Lemma 31. If Fn ⊆ {0, 1}n is semi-stable, then for any s ∈ {0, 1}n and any non-empty
subset Hn of Fn, it holds that

∃f ∈ Hn. ∀g ∈ Hn. (f f s) g (g f s̄) ∈ Fn.

P. Gardy, P. Bouyer, N.Markey 23:27

Proof. For a contradiction, assume that there exist s ∈ {0, 1}n and Hn ⊆ Fn such that, for
any f ∈ Hn, there is an element g ∈ Hn for which (f f s) g (g f s̄) /∈ Fn. Then there must
exist a minimal integer 2 ≤ λ ≤ |Hn| and λ elements {fi | 1 ≤ i ≤ λ} of Hn such that

∀1 ≤ i ≤ λ− 1 (fi f s) g (fi+1 f s̄) 6∈ Fn and (fλ f s) g (f1 f s̄) 6∈ Fn.

By Corollary 29, the complement of Fn is semi-stable. Hence, considering (fλ−1fs)g(fλfs̄)
and (fλ f s) g (f1 f s̄), one of the following two vectors is not in Fn:(

[(fλ−1 f s) g (fλ f s̄)] f s
)
g
(
[(fλ f s) g (f1 f s̄)] f s̄

)(
[(fλ f s) g (f1 f s̄)] f s

)
g
(
[(fλ−1 f s) g (fλ f s̄)] f s̄

)
The second expression equals fλ, which is in Fn. Hence we get that (fλ−1 f s)g (f1 f s̄) is
not in Fn, contradicting minimality of λ. J

The lemma trivially holds for Fn = ∅ thus, in the following, we assume Fn to be non-
empty. For 1 ≤ i ≤ n, let si ∈ {0, 1}n be the vector such that si(j) = 1 if, and only if,
j = i. Applying Lemma 31, we get that for any i, there exists some fi ∈ Fn such that for
any f ∈ Fn, it holds

(fi f si) g (f f s̄i) ∈ Fn. (8)

We fix such a family (fi)i≤n then define g ∈ {0, 1}n as g =
b

1≤i≤n(fi f si), i.e. g(i) = fi(i)
for all 1 ≤ i ≤ n. Starting from any element of Fn and applying Equation (8) iteratively for
each i, we get that g ∈ Fn. Since g f si = fi f si, we also have

∀f ∈ Fn (g f si) g (f f s̄i) ∈ Fn

By Equation (7), since flipg(g) = 1, we get

∀f ∈ Fn (1 f si) g (flipg(f) f s̄i) ∈ flipg(Fn). (9)

Now, assume that flipg(Fn) is not upward closed: then there exist elements f ∈ Fn and
h /∈ Fn such that flipg(f)(i) = 1 ⇒ flipg(h)(i) = 1 for all i. Starting from f and iteratively
applying Equation (9) for those i for which flipg(h)(i) = 1 and flipg(f)(i) = 0, we get that
flipg(h) ∈ flipg(Fn) and h ∈ Fn. Hence flipg(Fn) must be upward closed. J

I Remark. Notice that being upward-closed is not a sufficient condition for being semi-stable.
For instance, the set Fn = ↑{(0, 0, 1, 1); (1, 1, 0, 0)} is not semi-stable.

Following Lemma 30, we assume for the rest of the proof that the set Fn of the SL[EG]
formula φ is upward closed (even if it means negating some of the LTL objectives).

Automata
We build a large set of deterministic parity word automata over 2AP. For s ∈ {0, 1}n and
h ∈ {0, 1}n, we let Ds,h be a deterministic parity automaton accepting exactly the words
over 2AP along which the following formula holds:∨

k∈{0,1}n
h �s k

∧
j s.t.

(kfs)(j)=1

ϕj . (10)

where a conjunction over an empty set (i.e., if (kfs)(j) = 0 for all j) is true. As an example,
take s ∈ {0, 1}n with |s| = 1, writing j for the index where s(j) = 1, for any h ∈ {0, 1}n we
get that Ds,h is universal iff there is k �s h with k(j) = 0; otherwise Ds,h accepts the set of
words over 2AP along which ϕj holds.

CVIT 2016

23:28 Dependencies in Strategy Logic

Write D = {Ds,h | s ∈ {0, 1}n, h ∈ {0, 1}n} for the set of automata just defined. A
vector of states of D is a function associating with each automaton D ∈ D one of its states.
We write VS for the set of all vectors of states of D. Let d be a vector of states of D and
let q be a state of G. We set succ(d, q) to be the function associating with each D ∈ D
the successor of d(D) upon reading the labelling lab(q) of q; we also extend succ to take an
input (d, ρ) and to return the state reachable by ρ from d. As usual, a path (qi)i∈N in G is
accepted by an automaton D of D whenever its labels sequence (lab(qi))i∈N is accepted by
D. We use the customary notation L(D) for the set of words accepted by an automaton D.
Finally we denote by L(Dd

s,h) the set of words that are accepted by Ds,h starting from the
state d(Ds,h).

I Proposition 32. The following holds for any s ∈ {0, 1}n:
1. for any h1, h2 ∈ {0, 1}n where h1 �s h2, we have L(Ds,h1) ⊇ L(Ds,h2).
2. Ds,0 is universal.
3. for any h ∈ Fn, D1,h accepts the words satisfying

∨
f∈Fn

∧
j s.t. f(j)=1 ϕj.

Proof. The first and third points are immediate. In Formula (10) applied to h = 0, take
k = 0 in the disjunction; then the conjunction is empty thus trivially true and therefore
Ds,0 accepts any word over 2AP . J

Supervising goals going on different paths
Using the automata in D, we define two new families of temporal operators for the proof of
Theorem 13. Their semantics differ from the until and next operators: they are relative to
the values of a valuation on the variables and are not asking to assign a strategy to each
agent. The first family of operators simply transfers the conditions of the automata of D
onto an operator for a later usage. For any d ∈ VS and any two s, h in {0, 1}n, the parity
operator Γstickd,s,h obeys the following semantics: given a context χ with V ⊆ dom(χ) and a
state q of G,

G, q |=χ Γstickd,s,h ⇐⇒ ∃ ρ infinite in
G from q with

∀j ≤ n, s(j) = 1⇒ out(βj(χ), q) = ρ

ρ ∈ L(Dd
s,h)

Intuitively, the outcome of the assignments enabled by s must follow a common path that
is accepted by Dd

s,h.

The main difficulty of SL[EG] (or SL[BG] more generally) lies in the separation of the
different goals along different histories. The second batch of operators must tackle this
difficulty but before defining them, we need some formalism (we recall that Q is the set of
states of G and VS is the set of all vectors of states of D):

I Definition 33. A partition of an element s ∈ {0, 1}n is a set {sκ | 1 ≤ κ < λ} of two or
more elements of {0, 1}n with s1 g . . .g sλ = s and where for any two κ 6= κ′ and any j ≤ n
we have sκ(j) = 1⇒ sκ′(j) = 0.

An extended partition of s is a set τ = {(sκ, qκ, dκ) ∈ {0, 1}n×Q×VS | 1 ≤ κ ≤ λ , λ ≥ 2}
with (sκ)κ≤λ a partition of s.

Note that we only consider nontrivial partitions. We write Part(s) for the set of all
extended partitions of s. If |s| =≤ 1, then Part(s) = ∅. For any d ∈ VS, any s in {0, 1}n
and any set of partitions Υ of s, the condition Γsepd,s,Υ looks for the assignments enabled by s

P. Gardy, P. Bouyer, N.Markey 23:29

to all follow a common history ρ for some time then partition themselves according to some
partition in Υ. Its semantics are defined upon a context χ with V ⊆ dom(χ) and a state q
of G by the formula below.

G, q |=χ Γsepd,s,Υ ⇐⇒

∃τ ∈ Υ. ∃ρ
finite history
in G from q

such that

∀j ≤ n,
s(j) = 1⇒ ρ ∈ Pref<out(βj(χ),q)

∀κ ≤ |τ |, ∀j ≤ n,
sκ(j) = 1⇒ qκ = ∆(last(ρ),mj) with
∀A ∈ Agt, mj(A) = χ(βj(A), ρ)

∀κ ≤ |τ |, applying succ inductively
from d on the path ρ.qκ leads to dκ

Finding optimal elements
By an induction on |s| ranging from 1 to n,
1. for every s with |s| = α, every h ∈ {0, 1}n and every d ∈ VS, we define a new temporal

operator Γd,s,h based on the Γstick and Γsep operators.
The Γstick’s operators handle the case where all goals stay on the same path; the Γsep’s
operators handle the case where the goals split in different directions. The operator
Γd,s,h will regroup both possibilities and ask that starting with information d, the goals
of s do at least as good as h for �s.

2. for every s with |s| = α, every d ∈ VS and every state q of G, we define an element bq,d,s
of {0, 1}n.
The bq,d,s element carries the information about the highest h ∈ {0, 1}n possible for �s
so that the operator Γd,s,h is satisfied.

3. if α 6= n, for all s ∈ {0, 1}n with |s| = α + 1 and all τ ∈ Part(s), we define yet another
element cs,τ of {0, 1}n.
The c’s elements carry information about previous step of the induction in the form of
an element of {0, 1}n. Past the initial step, cs,τ is used to determine the b’s elements of
the form b?,?,s.

This induction allows us to condense information about the best course possible in the
form of elements of {0, 1}n: the b’s and c’s elements. Theses elements will then be used to
build an optimal behaviour in later sections.

Initial step (α = 1)

1. For any d ∈ VS and any two s, h of {0, 1}n with |s| = 1 we set Γd,s,h = Γstickd,s,h.
2. For any state q of G, any d ∈ VS and any s ∈ {0, 1}n with |s| = 1, there is a maximal

element bq,d,s ∈ {0, 1}n for the order �s such that

G, q |=M(L,T) (Qixi)1≤i≤l Γd,s,bq,d,s (11)

By Proposition 32, Dd
s,0 is universal; therefore, for any complete valuation χ, G, q |=χ

Γd,s,0. This trivially implies that any M(L, T) map ∆ is a witness that Formula (11)
holds for bq,d,s = 0. So there is at least one element of {0, 1}n to fill the role of bq,d,s for

CVIT 2016

23:30 Dependencies in Strategy Logic

Formula (11) and, because �s is a total quasi order, there must exist a maximal element.
On the other hand, unicity is not guaranteed: if h1 =s h2 then L(Ds,h1) = L(Ds,h2) thus
Γd,s,h1 = Γd,s,h2 and

G, q |=M(L,T) (Qixi)1≤i≤l Γd,s,h1 ⇐⇒ G, q |=M(L,T) (Qixi)1≤i≤l Γd,s,h2

Characterisation bq,d,s ∈ {0, 1}n is an element such that
a. G, q |=M(L,T) (Qixi)1≤i≤l Γd,s,bq,d,s
b. for any h ∈ {0, 1}n with bq,d,s ≺s h, we have G, q 6|=M(L,T) (Qixi)1≤i≤l Γd,s,h

3. Fix some s ∈ {0, 1}n with |s| = 2 and an extended partition τ = {(sκ, qκ, dκ) | 1 ≤ κ ≤ 2}
of s. By definition of τ , for any κ ≤ 2 we have |sκ| < |s| = 2 i.e. |sκ| = 1 thus bqκ,dκ,sκ
have been defined just before. We define cs,τ by

cs,τ = (s1 f bq1,d1,s1) g (s2 f bq2,d2,s2)

The partition τ models a possible way for the goals to split; cs,τ then regroups the b
elements adequate to τ in a single element of {0, 1}n. Ergo cs,τ carries information about
the best that can be achieved just after the goals split along τ . The cs,τ belonging to
{0, 1}n, we can compare it to other elements of {0, 1}n carrying other information using
the quasi-orders described in Section 5. Using these comparisons, we will then deduce
an optimal approach.

Induction step (1 < α ≤ n)

The induction step is slightly more involved.
1. For any d ∈ VS and any two s, h of {0, 1}n with |s| = α, we define an operator Γd,s,h by

Γd,s,h = Γstickd,s,h ∨ Γsepd,s,Υ where Υ = {τ ∈ Part(s) | h �s cs,τ}

We recall that cs,τ was defined at the previous step of the induction. Figure 12 gives an
intuition.

2. As before, for any q, any d ∈ VS and any s ∈ {0, 1}n with |s| = α, there is a maximal
element bq,d,s ∈ {0, 1}n for the order �s such that

G, q |=M(L,T) (Qixi)1≤i≤l Γd,s,bq,d,s (12)

Similarly to the initial step, we show that such an element bq,d,s exists by proving that
Formula (12) holds for bq,d,s = 0. Fn is upward closed so 0 is a minimal element of
�s (no matter s) and for any τ ∈ Part(s), 0 �s cs,τ . Now, consider any given complete
valuation χ. First of two possibilities: after some finite history ρ, χ splits the outcomes
of the goals enabled by s into different paths following a partition τ0, then we get

G, q |=χ Γsepd,s,Υ for Υ = {τ ∈ Part(s) | 0 �s cs,τ} = Part(s)

Second possibility: all the outcomes (enabled by s) follow the same infinite path. Ds,0
is universal (Proposition 32) so we get G, q |=χ Γstickd,s,0 . This means that, whatever the
value of χ, it holds that G, q |=χ Γd,s,0. Hence, as for the initial case, anyM(L, T) map
is a witness that Formula (12) holds for Γd,s,0. As for the initial step, unicity is not
guaranteed: if h1 =s h2 then L(Ds,h1) = L(Ds,h2) thus Γstickd,s,h1

= Γstickd,s,h2
and h1 �s cs,τ

iff h2 �s cs,τ , so

G, q |=M(L,T) (Qixi)1≤i≤l Γd,s,h1 ⇐⇒ G, q |=M(L,T) (Qixi)1≤i≤l Γd,s,h2

P. Gardy, P. Bouyer, N.Markey 23:31

q0

q

A hypothetical history
leading to q in G and d
in D

ρ′Dd
s,h 3

Or

q1
s1

q2
s2

ρ′

q

ρ′

|= Γd1,s1,b1 |= Γd2,s2,b2

The goals ψj with
s(j) = 1 separ-
ate according to a
partition τ made
of (s1, q1, d1) and
(s2, q2, d2)

|= Γstickd,s,h |= Γsepd,s,h if h �s (b1 f s1) g (b2 f s2)

|= Γd,s,h iff either |= Γstickd,s,h or |= Γsepd,s,h

Figure 12 The Γd,s,h operator

Characterisation bq,d,s ∈ {0, 1}n is an element such that
a. G, q |=M(L,T) (Qixi)1≤i≤l Γd,s,bq,d,s
b. for any h ∈ {0, 1}n with bq,d,s ≺s h, we have G, q 6|=M(L,T) (Qixi)1≤i≤l Γd,s,h

3. In the case of α < n, fix some s ∈ {0, 1}n with |s| = α + 1 and an extended partition
τ = {(sκ, qκ, dκ) | 1 ≤ κ ≤ λ , λ ≥ 2} of s. By definition of τ , for any κ ≤ λ we have
|sκ| < |s| = α + 1, and the element bqκ,dκ,sκ has been defined on previous steps of the
induction. We define cs,τ by

cs,τ = (s1 f bq1,d1,s1) g . . .g (sλ f bqλ,dλ,sλ)

I Remark. To find each b element effectively, we can build a set of parity games (one for
each k ∈ {0, 1}n) using techniques similar to the ones developed in Annex B and solve each
one. The game with the highest k in which the existential player P∃ can win is then the b
element. More technical details can be found in [9] (Section 7.4.6, though some notations
are different).

Intermediary results
We now focus on results derived from the elements defined previously. From the definition
of the definitions of the b’s elements, we get

I Lemma 34. For any state q, any d ∈ VS and any s ∈ {0, 1}n, there is a M(L, T) map
%q,d,s for (Qixi)1≤i≤l witnessing that

G, q |=M(L,T) (Qixi)1≤i≤l Γd,s,bq,d,s

We also highlight a peculiar Γ operator whose parameters are set by φ. In the big induc-
tion, we inductively defined both the Γ’s operators, the b’s elements and the c’s elements.
In a way, ΓFn is what we find at the very top of the induction. Notice that for any two

CVIT 2016

23:32 Dependencies in Strategy Logic

f, f ′ ∈ Fn, we have f =1 f ′ and thus L(D1,f) = L(D1,f ′). By definition of the Γstick
operators, for d ∈ VS, Γstickd,1,f = Γstickd,1,f ′ . We then set

ΓstickFn = Γstickd0,1,f and ΓFn = ΓstickFn ∨ Γsepd0,1,ΥFn

where f is any element in Fn, d0 is the initial vector of states and with ΥFn = {τ ∈ Part(1) |
c1,τ ∈ Fn}. Thus the operator ΓFn is the element of the Γ family of operators where d is
the initial vector of state, s = 1 and h is an element of Fn.

The same way we highlighted ΓFn in the family of all Γ’s operators, we highlight two
M(L, T) maps %1 and %1. The map %1 corresponds to %q0,d0,1 while the map %1 corresponds
to %q0,d0,1.

I Lemma 35. If G, q0 |=M(L,T) (Qixi)1≤i≤l ΓFn , then %1 witness that G, q0 |=M(L,T)

(Qixi)1≤i≤lΓFn .

The proof is a simple application of Lemma 34.

Assembling optimal M(L, T) maps
Having done this preliminary work, we may now build aM(L, T) map θ to define an optimal
behaviour for (Qixi)1≤i≤l To define the map, we start on the root and progress inductively
along the histories. Given a history ρ and a function w ∈ (Hist → Act)V∀ , we can know
which goal is still following ρ. Indeed, assume θ has been defined on strict prefixes of ρ, we
say that a goal ψj = βjϕj is active on ρ w.r.t θ(w) whenever

∀i < |ρ|, ∆(ρ(i),mi) = ρ(i+ 1)
{
with mi : Agt→ Act is defined by
∀A ∈ Agt. mi(A) = θ(w)(βj(A))(ρ≤i)

Under these circumstances, we denote by sρ,θ(w) ∈ {0, 1}n the unique element such that
sρ,θ(w)(j) = 1 iff βj is active on ρ w.r.t θ(w).

The idea behind θ is to combine together the maps defined in Lemmas 34 and 35. We
start by defining θ that aims to satisfy (Qixi)i≤l Fn(βjϕj)j≤n.

If xi ∈ V∀, we must set θ(w)(xi)(ρ) = w(xi)(ρ) whatever the inputs w ∈ (Hist→ Act)V∀

and ρ ∈ Hist by definition of maps (of any kind).
If xi ∈ V∃, we use the maps defined in Lemmas 34 and 35. Consider a history ρ, a
function w ∈ (Hist→ Act)V∀ and a variable xi ∈ V such that θ has been defined on strict
prefixes of ρ. Then, θ being already defined on strict prefixes of ρ and having unordered
prefix dependencies, we can know the active goals on ρ for θ(w), and we represent them
by an element sρ,θ(w) of {0, 1}n. We decompose ρ in two parts ρ1 and ρ2 (ρ = ρ1.ρ2)
such that ρ2 represents the part of ρ that is followed by exactly the goals of sρ,θ(w), i.e.
ρ1 is the maximal prefix such that sρ1,θ(w) 6= sρ,θ(w).

First of two possibilities: sρ,θ(w) = 1 and ρ1 = ε. Then θ follows the map %1 of
Lemma 35 and we set θ(w)(xi)(ε) = %1(w)(xi)(ε).
Second possibility: sρ,θ(w) 6= 1 and ρ1 is not empty. The map θ then regroups
the important information of ρ1 in the vector of state dρ1 = succ(d0, ρ1) of D.
The behaviour of θ on ρ then follows the maps of Lemma 34, meaning that we set
θ(w)(xi)(ρ) = %last(ρ1),dρ1 ,sρ,u

(w−→ρ1)(xi)(ρ2).

Having defined θ, we proceed similarly to define a map θ for ¬φ trying to ensure
Fn(βjϕj)j≤n.

P. Gardy, P. Bouyer, N.Markey 23:33

Concluding the proof
I Lemma 36. There exists a valuation χ of domain V such that θ(χ|V∀) = χ and θ(χ|V∃) =
χ. Moreover χ satisfies

G, q0 |=χ ΓFn ⇒ ∀w ∈ (HistG → Act)V
∀
G, q0 |=θ(w) F

n(βjϕj)1≤j≤n

G, q0 |=χ ¬ΓFn ⇒ ∀w ∈ (HistG → Act)V
∃
G, q0 |=θ(w) F

n(βjϕj)1≤j≤n

Proof. Both θ and θ are M(L, T) maps, we can therefore apply the technique used in
Annex E to get a valuation χ such that θ(χ|V∀) = χ and θ(χ|V∃) = χ.

It remains to prove the two implications, we start by proving the first one. In the
following, assume that

G, q0 |=χ ΓFn (13)

We start with a preliminary result

I Lemma 37. Given a semi-stable set Fn, s1, s2 ∈ {0, 1}n such that s1 f s2 = 0 and
f, g ∈ {0, 1}n such that f �s1 g and f �s2 g. Then f �s1gs2 g.

Proof. Because f �s1 g and f �s2 g, we have

∀i ∈ {1, 2} ∀h ∈ {0, 1}n (f f si) g (hf si) ∈ Fn ⇒ (g f si) g (hf si) ∈ Fn (14)

Consider h′ ∈ {0, 1}n such that α = (f f (s1 g s2)) g (h′ f (s1 g s2)) is in Fn. Define the
element h = α f s2, then (f f s2) g (h f s2) = (f f (s1 g s2)) g (h′ f (s1 g s2)) ∈ Fn.
Using (14) with s2 and h, we get β = (g f s2) g (h f s2). As s1 f s2 = 0, we can write
β = (f f s1) g (g f s2) g (h′ f (s1 g s2)) ∈ Fn.

Now consider h = β f s1, we have (f f s1)g (hf s1) = β ∈ Fn. Using (14) with s1 and
h, we get (g f (s1 g s2)) g (h′ f (s1 g s2)) ∈ Fn. Therefore Fn(f, s1 g s2) ⊆ Fn(g, s1 g s2)
and f �s1gs2 g. J

We fix some notations specific to this proof then prove some intermediary results.

Notations For a fixed parameter w ∈ (HistG → Act)V∀ ,
we call πwj the outcome out(βj(θ(w)), q0).
we set fw to be the {0, 1}n element such that fw(j) = 1 if, and only if, πwj satisfies ϕj .
for any history ρ we call sρ,w the {0, 1}n element such that sρ,w(j) = 1 if, and only if,
out(βj(θ(w)), q0) follows ρ.
finally, we define Rw ⊆ {0, 1}n ×HistG , the relation such that (s, ρ) ∈ Rw if, and only if,
s = sρ,w and ρ is minimal (meaning for any prefix ρ′ of ρ, (s, ρ′) 6∈ Rw).

I Proposition 38. For any w ∈ (HistG → Act)V∀ , using the notations presented above, it
holds

∀s ∈ {0, 1}n. ∀ρ ∈ HistG . (s, ρ) ∈ Rw ⇒ blast(ρ),dρ,s �s f
w

where dρ = succ(d0, ρ) (the vector of states accessible by ρ from the initial vector of states).

Proof. Fix some w ∈ (HistG → Act)V∀ , we proceed by induction on the size of s from 1 to
n.

CVIT 2016

23:34 Dependencies in Strategy Logic

The initial case (|s| = 1) Consider any history ρ such that (s, ρ) ∈ Rw. As |s| = 1 and
(s, ρ) ∈ Rw, there is a unique goal, say βj0ϕj0 , following ρ. By definition of θ, πj0 = ρ.η

where η is the outcome4 obtained through βj0

(
%last(ρ),dρ,s(w−→ρ)

)
starting in last(ρ).

Note that because |s| = 1, Γdρ,s,blast(ρ),dρ,s
= Γstickdρ,s,blast(ρ),dρ,s

. The map %last(ρ),dρ,s is a
M(L, T) witness that G, q0 |=M(L,T) (Qixi)1≤i≤lΓdρ,s,blast(ρ),dρ,s

, therefore it also witnesses
that G, q0 |=M(L,T) (Qixi)1≤i≤lΓstickdρ,s,blast(ρ),dρ,s

. By definition of the Γstick operators, this

implies that all its outcomes are accepted by the automaton Ddρ
s,blast(ρ),dρ,s

; in particular, η is

accepted by Ddρ
s,blast(ρ),dρ,s

.

The automaton D
dρ
s,blast(ρ),dρ,s

accepts paths which give better results for the objectives
(βjϕj)j|s(j)=1 than blast(ρ),dρ,s. In our case this means that fw does better than blast(ρ),dρ,s
for s, i.e. blast(ρ),dρ,s �s fw.

The induction step (|s| = α) We assume that the Proposition 38 holds for elements s of
size |s| < α. Consider for the induction step a history ρ such that (s, ρ) ∈ Rw.

Either there exists a common (infinite) path η such that for any j with s(j) = 1, πj = ρ.η,
i.e. all goals enabled by s always follow the same path ρ.η. We then apply the same
reasoning as done in the initial case and deduce blast(ρ),dρ,s �s fw.
Or, somewhere after ρ, the goals enabled by s split themselves along some extended par-
tition τ = (sκ, qκ, dκ)κ≤λ. We call η the history from the last state of ρ to the point where
the goals split from each other; formally η is obtained by applying βj

(
%last(ρ),dρ,s(w−→ρ)

)
where j is such that s(j) = 1.

We recall the notation for cs,τ :

cs,τ = (s1 f bq1,d1,s1) g . . .g (sλ f bqλ,dλ,sλ)

The map %last(ρ),dρ,s witnesses that G, last(ρ) |=M(L,T) Γd,s,blast(ρ),dρ,s
, therefore η may

reach only a partition τ such that

blast(ρ),dρ,s �s cs,τ (15)

For any κ ≤ λ we have (sκ, ρ.η.qκ) ∈ Rw, and using the induction hypothesis we get

sκ f bqκ,dκ,sκ �sκ fw (16)

so, using Lemma 37 repeatedly on the (sκ)κ≤λ and Inequality 16, we obtain

s1 f bq1,d1,s1 �s1 f
w

⇒ (s1 f bq1,d1,s1) g (s2 f bq2,d2,s2) �s1gs2 f
w

. . .

⇒ (s1 f bq1,d1,s1) g . . .g (sλ f bqλ,dλ,sλ) �s1g...gsλ f
w

⇒ cs,τ �s fw

Combined with Inequality 15, we get blast(ρ),dρ,s �s cs,τ �s fw.

This concludes the induction and the proof of Proposition 38. J

4 which can be written in the following barbaric way: out(βj0 (%last(ρ),dρ,s(w−→ρ)), last(ρ))

P. Gardy, P. Bouyer, N.Markey 23:35

I Proposition 39. bq0,d0,1 ∈ Fn

Proof. Towards a contradiction, assume that bq0,d0,1 ∈ Fn. Then, by definition of the
bq0,d0,1 element5, G, q0 6|=M(L,T) (Qixi)1≤i≤l ΓFn . Applying this to Lemma 35, we have that
the map %1 (and therefore θ which act as %1 before goal goes on different paths) witness
G, q0 6|=M(L,T) (Qixi)1≤i≤l ΓFn . This immediately implies that G, q0 6|=χ ΓFn which is in
contradiction with the Hypothesis 13. J

With these preliminary results, we are now ready to prove the first implication of the
lemma. Consider a function w ∈ (HistG → Act)V∀ . By Proposition 38 applied to w, 1, ε
we get that bq0,d0,1 �1 f

w. Now by Proposition 39, bq0,d0,1 ∈ Fn, therefore the element fw
which is greater than bq0,d0,1 for �1 must also be in Fn, which is equivalent to G, q0 |=θ(w)
Fn(βjϕj)1≤j≤n.

The second implication of the lemma works similarly. J

Lemma 36 allows us to conclude that at least one of φ and ¬φ must hold on G for
|=M(L,T). Lemma 8 implies that at most one can hold. Combining both we get that exactly
one holds. As explained in the paper, a 2 -EXPTIME algorithm can be derived from this
work. J

J Proof of Proposition 23

I Proposition 23. For any non-semi-stable boolean set Fn ⊆ {0, 1}n, there exists a SL[BG]
formula φ built on Fn, a game G and a state q0 such that

G, q0 6|=M(L,T) ¬φ G, q0 6|=M(L,T) φ

Proof. We consider the game G depicted on Figure 13 with two agents and . Let Fn
be a non-semi-stable set over {0, 1}n. Then there must exist f1, f2 ∈ Fn, and s ∈ {0, 1}n,
such that (f1 f s) g (f2 f s̄) /∈ Fn and (f2 f s) g (f1 f s̄) /∈ Fn. We then let

φ = ∀yt . ∀yu . ∀xt . ∃xu . Fn(β1ϕ1, . . . , βnϕn)

where

βi =
{
assign(7→ yt ; 7→ xt) if s(i) = 1
assign(7→ yu ; 7→ xu) if s(i) = 0

and

ϕi =

F p1 ∨ F p2 if f1(i) = f2(i) = 1
F p1 if f1(i) = 1 and f2(i) = 0
F p2 if f1(i) = 0 and f2(i) = 1
false if f1(i) = f2(i) = 0

It is not hard to check that the following holds:

I Lemma 40. Let ρ be a maximal run of G from q0. Let k ∈ {1, 2} be such that ρ visits a
state labelled with pk. Then for any 1 ≤ i ≤ n, we have ρ |= ϕi if, and only if, fk(i) = 1.

5 See the definitions and explanations between Lemma 34 and Lemma 35 page 31

CVIT 2016

23:36 Dependencies in Strategy Logic

q0

qt qu

qt1p1 qt2p2 qu1p1 qu2p2

Figure 13 The two-agents turn-based game G

Then:

I Proposition 41. G, q0 6|=M(L,T) φ

Proof. Towards a contradiction, assume that G, q0 |=M(L,T) φ. We let σt (resp. σu) be the
strategy that maps history q0 to qt (resp. qu). We fix strategy τt such that τt(q0 · qt) = qt1.
There is a strategy τu (with local and timeline dependencies) such that

G, q0 |=χ F
n(β1ϕ1, . . . , βnϕn)

where χ maps yt to σt, y to σu, xt to τt and xu to τu.
Since xu is only jointly applied with yu , the only important information about τu

is its value on history q0σu(q0) = q0qu. This value is then independent on the value of
τt(q0qt) = τt(q0σt(q0)). In particular, writing χ′ for the context obtained from χ by replacing
χ(yt) = τt with τ ′t , where τ ′t(q0qt) = qt2, we also have

G, q0 |=χ′ F
n(β1ϕ1, . . . , βnϕn)

Let v and v′ be the vectors in {0, 1}n representing the values of the goals (β1ϕ1, . . . , βnϕn)
under χ and χ′. Then v and v′ are in Fn. However:

If τu(q0qu) = qu1, then v′ = (f1 f s̄) g (f2 f s).
If τt(q0qt) = qt2, then v = (f1 f s) g (f2 f s̄).

In both cases, by hypothesis, this does not belong to Fn, which is a contradiction. J

Also,

I Proposition 42. G, q0 6|=M(L,T) ¬φ

Proof. Similarly, assume G, q0 |=M(L,T) ¬φ. Fix any three strategies σt, σu and τt respect-
ively intended for the existentially quantified variables yt , yu and xt . Due to the nature
of |=M(L,T), these three strategies are independent from the strategy τu of xu . Consider
then the following strategy τu:

τu(q0.σu(q0)) = τt(q0.σt(q0))

Let χ be the resulting context and v the vector representing the values of the goals (β1ϕ1, . . . , βnϕn)
under χ. Either v = f1 or v = f2; in both case v ∈ Fn, which is a contradiction. J

J

K Tables for Propositions 9 and 10.

P. Gardy, P. Bouyer, N.Markey 23:37

x
2(
q 3

)
x

4(
q 3

)
x

5(
q 3

)

x
1(
q 3

)
x

3(
q 3

)
x

6(
q 3

)

z 1
(q

3.
A

)
y 1

(q
3.
A
.C

)
v 5

(q
3.
D

)
v 6

(q
3.
D

)
w

2(
q 3
.B

)
w

3(
q 3
.B

)
z 4

(q
3.
A

)

∀
∃

∀
∃

∀
∃

∀

?
,?
,A

or
?
,?
,B

A
,?
,?

C
,∅

¬
ψ

1
,¬
ψ

5

A
,?
,D

A
,A
,D

C
,p

1
p

5
p

6

p
6

p
5

ψ
1
,ψ

5

ψ
1
,¬
ψ

2
,¬
ψ

3
,¬
ψ

5
,¬
ψ

6
(O

K
no

m
at
te
r
ψ

4
)

B
,B
,D

B
,B
,D

p
5

p
6

p
5

p
6

p
6

p
5

p
6

p
5

p
2

p
3

p
3

p
2

p
2

p
3

p
3

p
2

p
4

¬
ψ

1
,ψ

2
,ψ

3
,¬
ψ

4
,ψ

5
,ψ

6

¬
ψ

1
,¬
ψ

2
,¬
ψ

3
,¬
ψ

4
,ψ

5
,ψ

6

¬
ψ

1
,ψ

2
,ψ

3
,¬
ψ

4
,¬
ψ

5
,¬
ψ

6

¬
ψ

1
,¬
ψ

2
,¬
ψ

3
,¬
ψ

4
,¬
ψ

5
,¬
ψ

6

B
,A
,D

A
,B
,D

C
,
p

1

p
5

p
6

p
5

p
6

p
6

p
5

p
6

p
5

p
2

p
3

p
3

p
2

p
2

p
3

p
3

p
2

ψ
1
,ψ

2
,ψ

3
,ψ

4
,ψ

5
,ψ

6

ψ
1
,¬
ψ

2
,¬
ψ

3
,ψ

4
,ψ

5
,ψ

6

ψ
1
,ψ

2
,ψ

3
,ψ

4
,¬
ψ

5
,¬
ψ

6

ψ
1
,¬
ψ

2
,¬
ψ

3
,ψ

4
,¬
ψ

5
,¬
ψ

6

B
,A
,D

A
,B
,D

C
,
∅

p
5

p
6

p
5

p
6

p
6

p
5

p
6

p
5

p
2

p
3

p
3

p
2

p
2

p
3

p
3

p
2

C

¬
ψ

1
,ψ

2
,ψ

3
,¬
ψ

4
,ψ

5
,ψ

6

¬
ψ

1
,¬
ψ

2
,¬
ψ

3
,¬
ψ

4
,ψ

5
,ψ

6

¬
ψ

1
,ψ

2
,ψ

3
,¬
ψ

4
,¬
ψ

5
,¬
ψ

6

¬
ψ

1
,¬
ψ

2
,¬
ψ

3
,¬
ψ

4
,¬
ψ

5
,¬
ψ

6

lo
ca
l

lo
ca
l

lo
ca
l

U
no

rd
er
ed

P
re
fix

U
no

rd
er
ed

P
re
fix

Ta
bl
e
1
Ta

bl
e
fo
r
th
e
pr
oo

fo
fP

ro
po

si
tio

n
9.

CVIT 2016

23:38 Dependencies in Strategy Logic

x
2
(q

3
)

x
4
(q

3
)

x
5
(q

3
)

x
1
(q

3
)

x
3
(q

3
)

x
6
(q

3
)

z 1
(q

3
.A

)

y
1
(q

3
.A
.C

)
v 5

(q
3
.D

)
v 6

(q
3
.D

)
w

2
(q

3
.B

)
w

3
(q

3
.B

)
z 4

(q
3
.A

)

∃
∀

∃
∀

∃
∀

∃

B
,
A
,
D

?
,
A
,
?
or
?
,
D
,
?

p
2

p
4
,
?

C
,
∅

C
,
p

1

p
5

p
5

p
6

¬
ψ

1
,
ψ

2
,
¬
ψ

3
,
ψ

5

¬
ψ

1
,
ψ

2
,
¬
ψ

3
,
ψ

5

ψ
1
,
ψ

2
,
¬
ψ

3
,
¬
ψ

5

B
,
A
,
D

B
,
B
,
?

p
5

p
3

p
4

¬
ψ

1
,
¬
ψ

2
,
ψ

4
,
ψ

5

B
,
A
,
D

A
,
B
,
A

or
A
,
B
,
B
p

4
,
?
or
C
,
∅

p
5

¬
ψ

1
,
ψ

5
,
¬
ψ

6

C
,
p

1
p

6
p

2
C

ψ
1
,
ψ

2
,
¬
ψ

4
,
¬
ψ

5
,
¬
ψ

6
(O

K
no

m
at
te
r
ψ

3
)

B
,
A
,
D

A
,
B
,
D

p
4
,
?
or
C
,
∅

p
5

p
5

¬
ψ

1
,
ψ

5
,
¬
ψ

6

p
6

p
3

p
4

¬
ψ

1
,
¬
ψ

2
,
ψ

4
,
ψ

5
,
ψ

6
(O

K
no

m
at
te
r
ψ

3
)

B
,
A
,
D

A
,
B
,
D

C
,
p

1
p

6

p
6

ψ
1
,
¬
ψ

5
,
ψ

6

p
5

p
2

C
ψ

1
,
ψ

2
,
¬
ψ

4
,
¬
ψ

5
,
¬
ψ

6
(O

K
no

m
at
te
r
ψ

3
)

lo
ca
l+

si
de

si
de

lo
ca
l+

si
de

lo
ca
l lo

ca
l

lo
ca
l

si
de

lo
ca
l

si
de

Ta
bl
e
2
Se

co
nd

ta
bl
e
fo
r
th
e
pr
oo

fo
fP

ro
p.

9.

P. Gardy, P. Bouyer, N.Markey 23:39

w
x

2
0

0
1

1
x

2
0

1
0

1

θ(
w

)

x
p
1

0
0

0
0

D
ep

en
d
on

no
th
in
g

x
p
2

1
1

1
1

D
ep

en
d
on

no
th
in
g

x
0

1
0

1
D
ep

en
d
on

x
p
1,
x
p
2
an

d
x

2
(x

=
x

2
)

x
1

0
1

0
1

D
ep

en
d
on

x
p
1,
x
p
2
an

d
x

(x
1

=
x

)
x

1
0

0
1

1
D
ep

en
d
on

x
p
1,
x
p
2,
x

an
d
x

2
(x

1
=
x

2
)

re
su
lt

G
oa
l1

ok
no

no
ok

G
oa
l2

no
ok

ok
no

(a
)
B
ui
ld
in
g
th
e
m
ap

θ
to

pr
ov
e
G,
q
|=
M

(L
,S
,T

)
in

P
ro
po

si
tio

n
10
.

if
x
p
2

=
0

if
x
p
1

=
1

if
x
p
1

=
0
an

d
x
p
2

=
1

if
(x

1
=

0)
if
(x

1
=

1)
if
(x

1
=

0)
if
(x

1
=

1)
C
as
e
w
ith

x
1

=
0
an

d
x

1
=

0
;o

th
er

ca
se
s
ar
e
sim

ila
r

w
x

2
-

-
0

1
0

x
2

1
0

-
-

1

θ(
w

)

x
p
1

-
-

1
1

0
x
p
2

0
0

-
-

1
x

-
-

-
-

-
x

1
0

1
-

-
0

x
1

-
-

0
1

0

re
su
lt

G
oa
l1

q.
a
.∅

q.
a
.∅

q.
b.
c.
∅

q.
b.
c.
∅

q.
a
.∅

no
no

no
no

no

G
oa
l2

q.
a
.∅

q.
a
.∅

q.
b.
c.
∅

q.
b.
c.
∅

q.
b.
c.
∅

no
no

no
no

no
(b
)
P
ro
vi
ng
G,
q
6|=
M

(L
,T

)
in

P
ro
p.

10
.

Ta
bl
e
3
Ta

bl
es

fo
r
P
ro
po

si
tio

n
10
.

CVIT 2016

	Introduction
	Definitions
	Concurrent game structures
	Strategy Logic with boolean goals

	Side and future dependencies
	Timeline dependencies
	The fragment SL[EG]
	Proof of Proposition 3
	Proof of Proposition 4
	Proof of Proposition 6
	Proof of Proposition 8
	Proof of Proposition 9
	Proof of Proposition 10
	Proof of Proposition 11
	Proof of Lemma 19
	Proof of Theorem 13
	Proof of Proposition 23
	Tables for Propositions 9 and 10.

