Introduction à Coq and math-comp

François Thiré
January 24, 2019

Organisation du cours

Organisation:

- 8 séances sur Coq + SSreflect
- 4 séances sur l'implémentation de CDCL (un squelette sera fourni en OCaml)

Évaluation:

- Coq: projet à rendre
- CDCL: projet à rendre

Coéfficient à déterminer.

Pourquoi faire de la preuve formelle

Pourquoi Coq?

Deux success stories:

- CompCert (X. Leroy)
- Feit Thompson (G. Gonthier)

Point stage

- Nantes - Galinette
- Nice (Sophia) - Marelle
- Strasbourg (J. Narboux)

Venez m'en parler!

Coq en quelques mots

- Un langage de spécification: Gallina
- Un langage pour écrire ses preuves: les tactiques
- Un langage de commande pour donner des ordres à Coq : Vernacular

Coq en quelques mots

- Un langage de spécification: Gallina
- Un langage pour écrire ses preuves: les tactiques
- Un langage de commande pour donner des ordres à Coq : Vernacular

Coq en quelques mots

- Un langage de spécification: Gallina
- Un langage pour écrire ses preuves: les tactiques
- Un langage de commande pour donner des ordres à Coq : Vernacular

Coq utilise l'isomorphisme de Curry-Howard
(grande victoire de l'informatique !!!)

Coq is hard!

- Gallina
- Vernacular
- Tactics
- Goal
- Hypothesis
- Coercions
- Canonical Structures
- Modules
- Types
- Terms
- Unification
- Matching
- Implicit Parameters
- Proof by Reflection
- Propositions
- Meta-variables
- Inductions

SSreflect \& math-comp

- Un autre langage de tactique
- S'interface bien avec math-comp (énorme bibliothèque de maths prouvée en Coq)
- Utilise un paradigme : la réflection! (on verra ce paradigme à l'oeuvre plus tard)

Pointers

- The mathematical component book (A. Mahboubi \& E. Tassi)
- The SSreflect manual (G. Gonthier, A. Mahboubi, E. Tassi)
- (Advanced) X. Leroy (Collège de France lectures)

Introduction to natural numbers

First thing first

From mathcomp Require Import all_ssreflect.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.

Figure 1: Coq

Natural numbers (Peano numbers)

$$
\begin{array}{ll}
& \text { Inductive nat }: \text { Set }:= \\
\text { type nat }=Z \mid S \text { of nat } \quad \mid 0: \text { nat }
\end{array}
$$

Figure 2: OCaml

Recursive Functions (1/2)

$$
\begin{aligned}
& \text { let } \mathrm{rec} \text { add } \mathrm{n} \mathrm{~m}= \\
& \text { match } \mathrm{n} \text { with } \\
& \mid \mathrm{Z}->\mathrm{m} \\
& \text { | } \mathrm{S} \mathrm{n}->\mathrm{S} \text { (add } \mathrm{n} \mathrm{~m})
\end{aligned}
$$

Figure 4: OCaml

Fixpoint add (n m : nat) : match n with

$$
\begin{aligned}
& \text { | } 0=>\mathrm{m} \\
& \text { | } \mathrm{S} \mathrm{n}=>\text { S (add } \mathrm{n} \text { m) } \\
& \text { end. }
\end{aligned}
$$

Figure 5: Coq

Terminaison

Fixpoint loop (n : nat) : nat := loop n.

Figure 6: Coq

Terminaison

Fixpoint loop (n : nat) : nat := loop n.
Figure 6: Coq

Error:
Recursive definition of loop is ill-formed.
In environment
loop : nat -> nat
n : nat
Recursive call to loop has principal argument equal
\rightarrow to "n" instead of
a subterm of "n".
Recursive definition is: "fun n : nat => loop n".
Figure 7: Error message

Recursive function (2/2)

```
Fixpoint add (n m : nat) : nat :=
    match n with
    | 0 => m
    | S n => S (add n m)
    end.
```

Figure 8: Coq
add is defined
add is recursively defined (decreasing on 1st argument)
Figure 9: Message

Our first proof

Lemma addn0 : forall n , plus $\mathrm{n} 0=\mathrm{n}$. Proof. by elim=> // n IH.
Qed.

Figure 10: Coq

Our first proof

Lemma addn0 : forall n , plus $\mathrm{n} 0=\mathrm{n}$. Proof. by elim=> // n IH.
Qed.

Figure 10: Coq

What The Hell?!?

Recap

- We use Coq as an interactive tool
- It is more restrictive than OCaml (don't upset him)
- Error messages are ruthless
- The tactic language is hard
- Proofs cannot be read, they have to be executed.

Let's see Pai Mei

Basic rules 1

Well-defined ${ }^{1}$ objects have a type.

Check 3.
Check (3 + 3).
Check true.
Check (2 + 2 = 5).
Check (2 + 2 = False).
Check add.
About add.

Well-typed propositions might not be provable.

When the object is a definition, an inductive or a recursive function, we can use the command About instead to have more information.
${ }^{1}$ The meaning of well-typed won't be defined here.

Basic rules 2

One can defined new definitions with the commands: Definition
Definition foo : nat := 4.
Definition bar : bool := true.
Definition foo_type := nat.
Definition bar2 : foobar := true.
Definition awesome_theorem := $2+2=4$.

A type can be omitted while defining a new proposition.

One can define new types with the command: Inductive.
Inductive nat : Set :=
| 0 : nat
| S : nat -> nat.

Inductive bool : Set :=
| true : bool
| false : bool.

Inductive seq (A : Set) : Type :=
| Nil : seq A
| Cons : A -> seq A -> seq A.

One can define recursive functions with the command Fixpoint.

The function has to have a decreasing argument!

Fixpoint add (n m : nat) \{struct n\} : nat := match n with
| 0 => m
| $\mathrm{S} \mathrm{n}=>\mathrm{S}$ (add n m)
end.

Coq is gentle enough to guess the decreasing argument for you.

One may use the command Notation to pretty-print objects.

Notation "n + m" := (add n m).

Standard definitions such as add,times, less than, ... comes with a notation.

One may use the command Locate to search a notation.
Locate "+".

Notation

$$
\begin{aligned}
& "\{A\}+\{B \text { \}" := sumbool A B : type_scope (default } \\
& \rightarrow \text { interpretation) } \\
& \text { "A }+\{B \text { \}" := sumor A B : type_scope (default } \\
& \rightarrow \text { interpretation) } \\
& \text { "m + n" := Nat.add m n : coq_nat_scope"m + n" := } \\
& \rightarrow \text { addn_rec m } \mathrm{n}: \text { nat_rec_scope } \\
& \text { "m + n" := addn m } \mathrm{n}: \text { nat_scope (default } \\
& \rightarrow \text { interpretation)"x + y" }:=\text { sum } \mathrm{x} y: \text { type_scope }
\end{aligned}
$$

Figure 11: Message

Parameters which are guessable by Coq can be omitted.

```
Inductive seq \{A : Set\} : Type :=
| Nil : seq
| Cons : A -> seq -> seq.
```

Check (Cons 3 Nil).

Exercices

- What is the type of $2+2$?
- What is the type of nat?
- What is the type of $2+2=4$?
- Define the function odd : nat -> bool
- Define the function even : nat -> bool
- Define a notation .+1 for the successor of a natural number
- Define the concatenation on seq with the notation ++
- (With the manual) How to define in a mutual way even and odd?

Book exercices

At home, do the exercises of the (chapter 1) mathcomp Book!

Computation

Computation in Coq

One may ask Coq to compute using the command Eval compute in t.

Eval compute in (2 + 2).
Eval compute in nat.
Eval compute in odd 3.

Computation plays a main role in proof assistants. It influences a lot the definitions and the proofs!

Proving stuff

Theorems, Lemmas,

A theorem is introduced by either the keyword Theorem or Lemma.
It does not matter, except for the reader.

Lemma foo : $2+2=4$.
Theorem bar (x : nat) : $\mathrm{x}+\mathrm{x}=2 * \mathrm{x}$.
Theorem foobar : forall (x : nat), even x-> odd x.+1.

A proof is introduced by the command Proof. and finishes with the command Qed..

Inside a proof, only some commands and tactics are allowed.

Our first tactic

A trivial goal can be solved with the tactic by [].
Goal $2+2=4$. by [].
Goal $2+3$ = 4. Fail by []. (* Not provable *)
Goal 3 < 4. by [].
Goal forall $\mathrm{x}, \mathrm{x}<3->\mathrm{x}<4$. Fail by []. (* Not trivial *,
Goal forall $x, x<3->x .+1<4$. by []. (* trivial *)
Goal forall $\mathrm{x} y, \mathrm{x}<=\mathrm{y}->\mathrm{x} .+1<=\mathrm{y} .+1$. by [].

Learning what is trivial or not for Coq is a long journey.
IMHO, the genius behind math-comp is specially to find definitions that makes things trivial.

Proving equalities

An equality can be proven trivially if the two sides are equal modulo computation.

About eq.
Goal forall (x : nat), $\mathrm{x}=\mathrm{x}$. by [].
Goal $2+2$ = 4. by [].
Goal forall (n m : nat), $n+m=n+m$ by [].

Reasoning by cases

One can make a reasoning by case with the tactic case.

Goal forall (b:bool), b || ${ }^{\sim}$ b .
(* two cases. either b is true, either b is false *)
case.
(* case 1: b is true, the goal is true |/ false *)
by [].
(* case 2: b is false, the goal is false |/ true *)
by [].

Moving things around

One can introduce things into the goal or put them out into the context using the tactic move

```
Goal forall (b:bool), b || ~~b.
    move=> b .
    move: b.
    move=> b.
    case: b.
    by [].
    by [].
```

The real things happen thanks to =>, move basically does nothing.

Moving things around and destruct

=> can be combined with other tactics such as case.

Lemma leqn0 n : ($\mathrm{n}<=0$) $=(\mathrm{n}==0)$.
Proof.

$$
\text { case: } \mathrm{n}=>[\mid \mathrm{k}] .
$$

[...|.......] is an intro pattern that allows you to select a goal and name things when a tactic creates several subgoals.

Exercises

Prove the following lemmas:

- Lemma leqn0 n : ($\mathrm{n}<=0$) $=(\mathrm{n}==0)$.
- Lemma negbK b : ~~ (~~ b) = b.
- Lemma addSn m n : $\mathrm{m} .+1+\mathrm{n}=(\mathrm{m}+\mathrm{n}) .+1$.

You can use /= to simplify a goal and // to close trivial goals. They can be combined as //=.

Goal forall b, true || b = (b \&\& false) || true. case => /=.

You can use the tactic rewrite to use a lemma where the statement looks like forall a ... b, t = u where toccurs in your goal.

Lemma muln_eq0 $m \mathrm{n}:(\mathrm{m} * \mathrm{n}==0)=(\mathrm{m}==0)| |(\mathrm{n}==$ $\rightarrow 0$).

Proof.
case: $m=>[\mid m] / /$.
case: $\mathrm{n}=>[\mathrm{k}] / /$.
rewrite muln0.
Figure 12: Coq

The rewrite tactics accepts that lemmas can be chained without having to repeat the tactic rewrite

Modifiers can be used with the rewrite tactic:

- ! to use the lemma as many times as possible (can loop)
- ! to use the lemma if possible
- - to rewrite from right to left

Lemma leq_mul2l m n1 n2 : $(\mathrm{m} * \mathrm{n} 1<=\mathrm{m} * \mathrm{n} 2)=(\mathrm{m}==$
$\hookrightarrow 0)|\mid(n 1-n 2)=0$.
Proof.
rewrite !leqE -mulnBr muln_eq0.

You can use the tactic apply: to use a lemma where the statement looks like forall a . . b, t -> u when your goal is u.

Lemma leqnn n : n <= n . Proof. Admitted.

Lemma example a b : $\mathrm{a}+\mathrm{b}<=\mathrm{a}+\mathrm{b}$.
Proof. by apply: leqnn. Qed.

Figure 13: Coq

Proof by induction are handled thanks to the tactic elim:

Lemma addn0 m : m + $0=\mathrm{m}$. Proof.
elim: m => [// |m IHm].

Figure 14: Coq

Exercise

Asumme the following lemmas:

- Lemma contraLR (c b : bool) : (~~ c -> ~~ b) -> (b -> c).
- Lemma dvdn_addr m d n : d \%| m -> (d \%| m + n) = (d \% \| n).
- Lemma dvdn_fact $m \mathrm{n}: 0<\mathrm{m}<=\mathrm{n} \rightarrow \mathrm{m} \% \mid \mathrm{n}]^{6}$!.
- Lemma prime_gt0 p : prime p -> $0<\mathrm{p}$.
- Lemma gtnNdvd n d : $0<n->n<d->(d \% \mid n)=$ false.
- Lemma prime_gt1 p : prime p -> 1 < p.

Prove

- Lemma example m p : prime p \rightarrow p \%|m fl + 1 -> m < p .

