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Organisation du cours

Organisation:

• 8 séances sur Coq + SSreflect

• 4 séances sur l’implémentation de CDCL (un squelette sera

fourni en OCaml)

Évaluation:

• Coq: projet à rendre

• CDCL: projet à rendre

Coéfficient à déterminer.
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Pourquoi faire de la preuve formelle
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Pourquoi Coq ?

Deux success stories:

• CompCert (X. Leroy)

• Feit Thompson (G. Gonthier)
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Point stage

• Nantes - Galinette

• Nice (Sophia) - Marelle

• Strasbourg (J. Narboux)

Venez m’en parler !
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Coq en quelques mots

• Un langage de spécification : Gallina

• Un langage pour écrire ses preuves : les tactiques

• Un langage de commande pour donner des ordres à Coq :

Vernacular
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Coq en quelques mots

• Un langage de spécification : Gallina

• Un langage pour écrire ses preuves : les tactiques

• Un langage de commande pour donner des ordres à Coq :

Vernacular

Coq utilise l’isomorphisme de Curry-Howard

(grande victoire de l’informatique !!!)
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Coq is hard!

• Gallina

• Vernacular

• Tactics

• Goal

• Hypothesis

• Coercions

• Canonical Structures

• Modules

• Types

• Terms

• Unification

• Matching

• Implicit Parameters

• Proof by Reflection

• Propositions

• Meta-variables

• Inductions
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SSreflect & math-comp

• Un autre langage de tactique

• S’interface bien avec math-comp (énorme bibliothèque de

maths prouvée en Coq)

• Utilise un paradigme : la réflection! (on verra ce paradigme à

l’oeuvre plus tard)
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Pointers

• The mathematical component book (A. Mahboubi & E. Tassi)

• The SSreflect manual (G. Gonthier, A. Mahboubi, E. Tassi)

• (Advanced) X. Leroy (Collège de France lectures)
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Introduction to natural numbers



First thing first

From mathcomp Require Import all_ssreflect.

Set Implicit Arguments.

Unset Strict Implicit.

Unset Printing Implicit Defensive.

Figure 1: Coq
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Natural numbers (Peano numbers)

type nat = Z | S of nat

Figure 2: OCaml

Inductive nat : Set :=

| 0 : nat

| S : nat -> nat.

Figure 3: Coq
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Recursive Functions (1/2)

let rec add n m =

match n with

| Z -> m

| S n -> S (add n m)

Figure 4: OCaml

Fixpoint add (n m : nat) : nat :=

match n with

| 0 => m

| S n => S (add n m)

end.

Figure 5: Coq
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Terminaison

Fixpoint loop (n : nat) : nat := loop n.

Figure 6: Coq

Error:

Recursive definition of loop is ill-formed.

In environment

loop : nat -> nat

n : nat

Recursive call to loop has principal argument equal

to "n" instead of↪→

a subterm of "n".

Recursive definition is: "fun n : nat => loop n".

Figure 7: Error message
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Recursive function (2/2)

Fixpoint add (n m : nat) : nat :=

match n with

| 0 => m

| S n => S (add n m)

end.

Figure 8: Coq

add is defined

add is recursively defined (decreasing on 1st argument)

Figure 9: Message
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Our first proof

Lemma addn0 : forall n, plus n 0 = n.

Proof.

by elim=> // n IH.

Qed.

Figure 10: Coq

What The Hell?!?
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Recap

• We use Coq as an interactive tool

• It is more restrictive than OCaml (don’t upset him)

• Error messages are ruthless

• The tactic language is hard

• Proofs cannot be read, they have to be executed.
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Let’s see Pai Mei



Basic rules 1

Well-defined1 objects have a type.

Check 3.

Check (3 + 3).

Check true.

Check (2 + 2 = 5).

Check (2 + 2 = False).

Check add.

About add.

Well-typed propositions might not be provable.

When the object is a definition, an inductive or a recursive

function, we can use the command About instead to have more

information.
1The meaning of well-typed won’t be defined here.
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Basic rules 2

One can defined new definitions with the commands: Definition

Definition foo : nat := 4.

Definition bar : bool := true.

Definition foo_type := nat.

Definition bar2 : foobar := true.

Definition awesome_theorem := 2 + 2 = 4.

A type can be omitted while defining a new proposition.
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One can define new types with the command: Inductive.

Inductive nat : Set :=

| 0 : nat

| S : nat -> nat.

Inductive bool : Set :=

| true : bool

| false : bool.

Inductive seq (A : Set) : Type :=

| Nil : seq A

| Cons : A -> seq A -> seq A.
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One can define recursive functions with the command Fixpoint.

The function has to have a decreasing argument!

Fixpoint add (n m : nat) {struct n} : nat :=

match n with

| 0 => m

| S n => S (add n m)

end.

Coq is gentle enough to guess the decreasing argument for you.
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One may use the command Notation to pretty-print objects.

Notation "n + m" := (add n m).

Standard definitions such as add,times, less than, . . . comes with a

notation.
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One may use the command Locate to search a notation.

Locate "+".

Notation

"{ A } + { B }" := sumbool A B : type_scope (default

interpretation)↪→

"A + { B }" := sumor A B : type_scope (default

interpretation)↪→

"m + n" := Nat.add m n : coq_nat_scope"m + n" :=

addn_rec m n : nat_rec_scope↪→

"m + n" := addn m n : nat_scope (default

interpretation)"x + y" := sum x y : type_scope↪→

Figure 11: Message
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Parameters which are guessable by Coq can be omitted.

Inductive seq {A : Set} : Type :=

| Nil : seq

| Cons : A -> seq -> seq.

Check (Cons 3 Nil).
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Exercices

• What is the type of 2+2?

• What is the type of nat?

• What is the type of 2+2=4?

• Define the function odd : nat -> bool

• Define the function even : nat -> bool

• Define a notation .+1 for the successor of a natural number

• Define the concatenation on seq with the notation ++

• (With the manual) How to define in a mutual way even and

odd?

23



Book exercices

At home, do the exercises of the (chapter 1) mathcomp Book!
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Computation



Computation in Coq

One may ask Coq to compute using the command

Eval compute in t.

Eval compute in (2 + 2).

Eval compute in nat.

Eval compute in odd 3.

Computation plays a main role in proof assistants. It influences a

lot the definitions and the proofs!
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Proving stuff



Theorems, Lemmas, ...

A theorem is introduced by either the keyword Theorem or Lemma.

It does not matter, except for the reader.

Lemma foo : 2 + 2 = 4.

Theorem bar (x : nat) : x + x = 2 * x.

Theorem foobar : forall (x : nat), even x -> odd x.+1.
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Proof

A proof is introduced by the command Proof. and finishes with

the command Qed..

Inside a proof, only some commands and tactics are allowed.
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Our first tactic

A trivial goal can be solved with the tactic by [].

Goal 2 + 2 = 4. by [].

Goal 2 + 3 = 4. Fail by []. (* Not provable *)

Goal 3 < 4. by [].

Goal forall x, x < 3 -> x < 4. Fail by [].(* Not trivial *)

Goal forall x, x < 3 -> x.+1 < 4. by [].(* trivial *)

Goal forall x y, x <= y -> x.+1 <= y.+1. by [].

Learning what is trivial or not for Coq is a long journey.

IMHO, the genius behind math-comp is specially to find definitions

that makes things trivial.
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Proving equalities

An equality can be proven trivially if the two sides are equal

modulo computation.

About eq.

Goal forall (x : nat), x = x. by [].

Goal 2 + 2 = 4. by [].

Goal forall (n m : nat), n + m = n + m. by [].
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Reasoning by cases

One can make a reasoning by case with the tactic case.

Goal forall (b:bool), b || ~~b.

(* two cases. either b is true, either b is false *)

case.

(* case 1: b is true, the goal is true || false *)

by [].

(* case 2: b is false, the goal is false || true *)

by [].
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Moving things around

One can introduce things into the goal or put them out into the

context using the tactic move

Goal forall (b:bool), b || ~~b.

move=> b.

move: b.

move=> b.

case: b.

by [].

by [].

The real things happen thanks to =>, move basically does nothing.
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Moving things around and destruct

=> can be combined with other tactics such as case.

Lemma leqn0 n : (n <= 0) = (n == 0).

Proof.

case: n => [| k].

[...|...|...] is an intro pattern that allows you to select a goal

and name things when a tactic creates several subgoals.
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Exercises

Prove the following lemmas:

• Lemma leqn0 n : (n <= 0) = (n == 0).

• Lemma negbK b : ~~ (~~ b) = b.

• Lemma addSn m n : m.+1 + n = (m + n).+1.
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You can use /= to simplify a goal and // to close trivial goals.

They can be combined as //=.

Goal forall b, true || b = (b && false) || true.

case => /=.
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You can use the tactic rewrite to use a lemma where the

statement looks like forall a ... b, t = u where t occurs in

your goal.

Lemma muln_eq0 m n : (m * n == 0) = (m == 0) || (n ==

0).↪→

Proof.

case: m => [|m] //.

case: n => [|k] //.

rewrite muln0.

Figure 12: Coq

The rewrite tactics accepts that lemmas can be chained without

having to repeat the tactic rewrite
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Modifiers can be used with the rewrite tactic:

• ! to use the lemma as many times as possible (can loop)

• ! to use the lemma if possible

• - to rewrite from right to left

Lemma leq_mul2l m n1 n2 : (m * n1 <= m * n2) = (m ==

0) || (n1 - n2) == 0.↪→

Proof.

rewrite !leqE -mulnBr muln_eq0.
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You can use the tactic apply: to use a lemma where the statement

looks like forall a ... b, t -> u when your goal is u.

Lemma leqnn n : n <= n. Proof. Admitted.

Lemma example a b : a + b <= a + b.

Proof. by apply: leqnn. Qed.

Figure 13: Coq
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Proof by induction are handled thanks to the tactic elim:

Lemma addn0 m : m + 0 = m.

Proof.

elim: m => [ // |m IHm].

Figure 14: Coq
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Exercise

Asumme the following lemmas:

• Lemma contraLR (c b : bool) : (~~ c -> ~~ b) ->

(b -> c).

• Lemma dvdn_addr m d n : d %| m -> (d %| m + n) =

(d %| n).

• Lemma dvdn_fact m n : 0 < m <= n -> m %| n‘!.

• Lemma prime_gt0 p : prime p -> 0 < p.

• Lemma gtnNdvd n d : 0 < n -> n < d -> (d %| n) =

false.

• Lemma prime_gt1 p : prime p -> 1 < p.

Prove

• Lemma example m p : prime p -> p %| m ‘! + 1 -> m

< p.
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