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Abstract .  In this paper we prove an estimate of  the rate of convergence of the approximation scheme 

for the nonlinear minimum time problem presented in [2]. The estimate holds provided the system have 

time-optimal controls with bounded variation. This estimate is of  order v with respect to the 

discretization step in time, if the minimal time function is H61der continuous of exponent v. The proof 

combines the convergence result obtained in [2] by PDE methods, with direct control-theoretic 

arguments. 

1. I n t r o d u c t i o n .  

In this paper we continue the study of an approximation scheme for the classical minimum time 

problem for nonlinear systems which we began in [2]. 

We consider the continuous-time controlled dynamical system in IR N 

(1.1) ~ y' = b(y,  (x) 
t y(0)  = x 

and the corresponding discrete-time system, with time step h > 0, 

(I .2) 
xj+ = xj + h b(xj ,a j)  
X 0  = X 

where the controls are taken in a given set A~IR M. For a given compact target set T we are interested 

in the minimum times T(x) and hNh(x) taken respectively by systems (1.1) and (1.2) to reach T ,  

where Nh(x ) indicates the minimum number of discrete steps. Note that T is finite only on the set R 

of  points controllable to the target T in finite time, that it tends to +~  near DR and that R is not 

known a priori. We recall that the Dynamic Programming method provides time-optimal controIs in 

feedback form for the discrete-time problem, once the discrete Bellman equation for N h is solved. 

In [2] we considered the new unknown functions 



(1.3) 
1 - e -T(x), if T(x)<+-- ,  

v(x) := 

L 1 , i f  T(x)=+**,  
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Vh(X) : = f  1 -, e -hNh(x),  if Nh(X)<+**,.. 

1 i f  Nh (x ' )=+o* ,  

and, under general controllability assumptions on both (1.1) and (1.2) around T,  we proved that v h 

converge to v as h tends to 0, uniformly on compact subset of ]R N, which implies the convergence of 

hN h to T on compact subsets of R .  This result was obtained by applying to the Bellman equations for 

the discrete-time and the continuous-time control problems a technique for passing to the limit in first 

order nonlinear equations first used by Barles-Perthame [5]. A crucial role in the proof is played by a 

comparison theorem between semicontinuous viscosity sub and supersolutions proved in [ 1]. 

In this paper we give an estimate of the rate of convergence of hN h to T using direct, control- 

theoretic methods. Roughly speaking, the main result says that if T is HOlder continuous of exponent v 

, for a compact subsets K of ~ there is a constant C such that 

(1.4) I h N h ( X ) - T ( x )  < C h  v forany x ~ K ,  

provided the system satisfies in K the property of the "bound on the variation of the optimal controls": 

(BV) there exists a constant C O such that, for all xe K ,  there is a time-optimal control with total 

variation less then C O , bringing system (1.1) to the target T.  

This property is well known for linear systems (see e.g. Hajek [16]), because the optimal control is 

bang-bang with a bound on the number of switchings. Many papers have been devoted recently to prove 

similar regularity properties for smooth systems, nonlinear in the state x and affine in the scalar control 

(x, in the case T =  {0}. Sussman [31] has described a class of such systems which behave as linear 

systems. In general, however, the optimal control is known not to be bang-bang, and many authors have 

addressed the problem of proving that optimal trajectories are finite concatenations of bang and singular 

arcs, with a bound on the number of switchings. From these results one expects that (BV) hold, at least 

generically, if the state-space dimension N is small: see Sussman [32,33] for N=2,  Bressan [6] and 

Sch~ittler [25,26] for N=3, Krener-Sch~ittler [19] and SchSttler [27] for some results in dimension 4. We 

recall also the negative results of Kupka [20] and Kawski [18] in higher dimensions. As regards the 

HOlder continuity of the minimal time function T ,  we refer to Liverovskii [21], Stefani [30] and the 

references therein for T=  {0}, and to Bardi-Soravia [4] and Soravia [28] for more general targets. 

In a forthcoming paper [3] we treat the general case where no regularity of the optimal controls is 

known, by using a completely different method based on the theory of viscosity solutions and introduced 

by Souganidis [29] and Capuzzo Dolcetta-Ishii [10] for other control problems. This method leads to 

estimates worse than (1.4), namely of order v/2 with respect to h .  In [I0] an estimate of order v is 

also proved, under additional assumptions different from ours, and by a different method. 

The reader will find in [ 1,2] a basic bibliography on the minimum time problem and on the theory 

of viscosity solutions for Hamilton-Jacobi equations. Our approach to numerical solutions of control 



105 

problems follows Capuzzo Dolcetta [7], Capuzzo Dolcetta-Ishii [9], Souganidis [29], Falcone [13,14], 

see also the survey paper by Capuzzo Dolcetm-Falcone [8] which traces its origin back to Bellman's time. 

The numerical solution of the minimum time problem has been studied by many authors by 

completely different methods and mostly in the linear case. See e.g. Falb-De Jong [12], 'Canon-Cullum- 

Polak [6], Neustadt [26], Eaton [10], Fujisawa-Yasuda [16], Hajek-Krabs [17], Rabinovich [27] and 

the references therein. 

2. Definitions and preliminary results. 

We assume that the set of adrm'ssible controls A is a subset of ~ M  and we define the set A of 

admissible control functions appearing in (1.1) to be 

A := {to(.): [0,+,,0[ --~ A ,  measurable}. 

We will use a/so the following subset of contro/functions 

Ph := {cc(-)eA constant on [ih,(i+l)h[, V i e  1~}, 

for h>0. The general structural assumptions on b and T we need are the following 

(At) 

b: ]RNxA-- -~IR N is c o n t i n u o u s , l b ( x , a ) - b ( y , a ) ]  < Llx-y I 

and lb(y,a)l < K( l+ ly l ) ,  V x ,ye  IR N and "v' ae  A ; 

T i s  compact  ; 

(A2) there exists 7, 0<7~I, such that ]b(x,a) - b(x,a')[ _< Lr~a - a']7 Va,a'e A and [xl_<r. 

Let us denote y(x,t,ct) = y(t,o~) the solution of (1.1) and define ~h(X,t,cz) = ~h(t,cc):= x[t /hi  for any 

oc(.)~ Ph where {xj} is the solution of (1.2) with aj = cc(jh), and [.] denotes the integer part. Using 

Gronwall Lemma it is easy to check that if 

y(t,cc) _<Y V 

then 

t ~ [0,s] , where 0c(.)a Pfi , 

< K ( I + Y )  e L th  , V t ~ [ 0 , s ] .  

We define the set 

R : =  {x~ ~ N :  there exists cc(.)~ A and t > 0 such that y(x,t,ct) ~ T}.  
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The time necessary to drive system (1.1) to the target T by applying the control function o~(t) is 

tx(C~) := inf {t : y(x,t,c~)~ T } <  +,,0, 

where tx=+~, if y(x,-,(~) never reaches the target. The minimum time function is given by 

T(x):-- inf tx(Ot ). 
(x~ A 

Notice that T : 5~---)[0,+~[. Obviously T~R and T(x)=0 for any x~ 

A discrete version of the minimum time problem can be obtained replacing (1.1) with the Euler 
scheme (1.2) with step h, h > 0. The state xj of the discretized problem is then observed only at times 

tj = jh and aj ~ A for all j~ I~ (just to simplify notations xj and aj will sometimes denote also the 

whole sequences {xj} and {aj} ). We can define the analogous of R ,  tx(O0 and T(x) for this new 

problem, 

P~h := {x~ ]RN: there exists {aj} andj~ l~I such that xj ~ T} 

nh(a j ,x):= min{j~ N :xj  ~ T }  < + ~ ,  

where nh=+** if xj never reaches the target, 

Nh(X ) := inf nh(a j ,x). 
{aj} 

Besides the previous assumptions, we need the small time local controllability of both the 

continuous-time and discrete-time systems, in a slightly stronger form than in [2]. Set 

d(x) := dist (x, 3 T ) ,  X 5 := {x : dist(x, ~X) < 5}. 

We will assume for some 5 > 0 ,  0 < 13, 4, 11 < I ,  

(A3) T(x) < C 1 d ~ (x) for all xE c~ ,  

(A4) h Nh(X ) < C 2 d~(x) + C 3 h 1] for all x~ T 5 . 

In [2] we proved that a sufficient condition for both (A3) and (A4) to hold with J] = ~ = rl = C 3 = 1 is 

the following 



(A5) 
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T =  {x :g i (x )_<0 'v ' i= l  .... M} where g i e C 2 ( l R  N) and 

IVgi(x)l  > 0 for all  x such that  g i (x )=0  ; 

V xe 3 T  3 a~ A such that gi(x)=0 impl ies  b(x ,a) .Vgi(x)  < 0. 

Hypothesis (A5) means that ~T  is piecewise C 2 and at each point of the boundary the controller can 

choose a vector field pointing inward T. A simple special case of (A5) is 

I 
T is the closure of an open set with C 2 boundary  ; 

inf b(x, a)-n(x) < 0 for all xe ~ T ,  
a ~  A 

where n(x) represents the outward normal  to T a t  x. 

(A3) is essentially equivalent to the HSlder continuity with exponent 13 of the minimum time function T. 

Necessary and sufficient conditions for it have been studied e.g. by Petrov [23], Liverovskii [21], 

Stefani [30] for the case T={0} (see also the references~therein), and by the authors [2], Bardi-Soravia 

[4] and Soravia [28] for more general targets and l] = 1 or 1/2. 
Due to the discretization of the dynamics, a crucial role will be played by control functions in Ph' 

so it is interesting to approximate controls in A with controls belonging to T h. For a function o~ : 

I---fiR M we denote the total variation by V(a,I):-- ~ V(c~i,I) , 
m 

i= l , . . ,M 

where V(cLi,I ) is the usual total variation of the i-th component of c~ in the bounded interval I. 

Lemma 2.1 

I f  ~ e A has 6ounded variation in [O,R], then for  any h > 0 there e~-tsts an ah~  Ph such that 
R 

(2.2) ~ c~(s) - (Xh(S) ds < h V(a,[O,R]) q 

0 
Proof. 
Set Ik:=[kh, (k+l)h[ for k=0,1 ..... n ,  n such that (n+l)h < R < (n+2)h and In+l:=[(n+l)h,R].  We 

can define c~ h in I k as any value taken up by (x in the same interval, or for instance 

Then 

and (2.2) follows easily. 

ah(S):= lim a(t) forse  I k- 
t--.->kh + 

f _ O~h(S ) V(a, I  k) , ~(s) ds < h 

I k 

In the previous paper [2] we have proved the following result (the definition of v and v h is 

(1.3)): 
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Theorem 2,2 
Assume (A1), (A3), (A4). Then v h converge to v uniformly on compact subsets of  IR N. 

Corollary 2.3 

Under the assumptions of Theorem 2~2 for any given compact subset K of  R there 

exist -h and T, such that 

K ~ P , h  and  hNh(x) <'~, V h < h , ' ~ ' x ~  K .  

Proof. 
Since v h converges uniformly to v on K and v < 1 - • on K for some positive E, we have 

s 
V h < l -  ~ , on K ,  

for h < h, which gives the conclusion. # 

3. Estimates. 

Lemma 3.1 

Assume (AI),  (A3), (A4) and let K be a compact subset o f  R .  Then there exist two positive 

constants -h and C such that 

T(x) - hNh(x) < Ch 13 for any x ~ K v h < h. 

Proof. 
For x fixed in K we choose {aj} such that nh(a j,  x) = Nh(X) and define a(s)  = a[s/h ]. Let us 

choose "F as in Corollary 2.3. Then (AI) and Gronwall 's Lemma imply (see Lemma 1 in [1]) the 

existence of a constant Y, depending only on K ,  such that 

y(x,t,(x) _.<Y V x a  K ,  t < T .  

Then (2.1) gives 

y (hNh(X , a )  - Yh(hNh(X), (x) ~K( I+Y)eLTh  =: C4h,  

8 
and we have, for h < - -  

C 4' 

Thus by (A3) 

which ends the proof. 

y(hNh(X), %. 

T(x)<hNh(X ) + C  1 4 hl3 , 

# 

Theorem 3.2 

Assume (AI),  (A2), (A4) and let xe R.  Suppose there is a sequence a n in A with 
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t im tx(C~n) = T(x) such that 
n - - - ~ + ~  

V(C~n,[0,T(x)+l]) < C O foral l  n. 

Then there exist two positive constants -h and C, depending only on Ixl , an upper bound on T(x), 
and the constants appearing in the hypotheses, such that 

hNh(x) - T(x) < Ch v f o r  off h < h ,  

where v = min {7~, 11} . 

Proof. 
Let T be an upper bound on T(x) .  Since (A1) implies I y(x,t,o0-x I < (1+ l x I) (e K t l ) ,  we can 

choose a constant Y, depending only on txl, K and T such that ly(t,ct)l < Y, for all t < T(x)+l .  Fix h 
> 0 and let e t e  A be such that 

n 

(3.1) tx(C~n) - h < T(x). 

By Lemma 2.1 there exist ~h = (an)he Ph such that 

T+I 

J C ~ n ( S ) - ~ h ( S ) ] d s < h C o ,  ' v ' n .  

We have the following estimate 

t 

y(t,Ct n) - y(t ,~h) [ <: J b(y(s,O~n(S)),CXn(S)) - b(y(s,ah(S)),~h(S)) ds _< 

t 

< L Y ~ o h T T l ' l / Y +  I L l y ( S , a n ( S ) ) - y ( s , c ~ h ( S ) )  ds , 

which implies 

ly( t ,a  n) - y(t,~h) I < L y  CY o hYTI-1/Te Lt , V t < T + 1. 

Combining this with (2.1) we get 

(3.2) y(t,Otn) - Yh(t,CCh) < C5h7, 'v' t < T + 1, 

for a positive constant C 5 depending only on Ixl, T ,  C o, and the constants in (A1)(A2). Next (3.1), 

h<l and (3.2) imply Yh(tx(CZn),ah) e TCsh- Y. Thus we take h < ~55J and obtain from (A4) 



110 

hNh(X) < T(x) + h + C 2 C ~ h ~'~ + C3 hrl , 

which concludes the proof. # 

The following result gives conditions under which the convergence of the discrete minimum time 

function to T(x) is of order 1 with respect to h .  

Corollary 3.3 
Assume (A1), (A2) with 7 = 1 and(A5).  Suppose K is a compact subset of R where (BV) holds. 

Then there exist two positive constants "h and C such that 

I T(x) - hNh(X) I < Ch for arty x ~ K V h <_ -h. 

Proof. 
By Lemma 5.1 in [2], (A5) implies (A3) with 13 = 1 and the continuity o f T  on the points of 0T.  Then 

v is continuous in ]R N by the argument at the end of the proof of Thm. 3.3 of [2]. Since R={ x: v(x) 

<1 }, R is open. Then,  

T(x) _< T <+~, V xe  K .  

By Lemma 4.1 in [2], (A5) implies also (A4) with ~ = 11 = C 3 = 1. Then the conclusion follows from 

(BV), Lemma 3.1 and Theorem 3.2. # 

Corollary 3.4 

Under the hypothesis of Corollary 3.3, there exist two positive constants h and C such that 

] v ( x ) - v h ( x ) ] < C h  V x ~  9( and h<h. 

Proof. 
We prove the estimate for V-Vh, the other being completely analogous. Without any loss of generality 

we consider the case T(x) > hNh(X ). We have 

v(x) - Vh(X ) = -  e -0 (hNh(X) - T(x)) < e -T Ch 

where in the equality we used the mean value theorem, for some -3 ~ [hNh(X), T(x)]. # 
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