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Motivation

Objective: control of switched systems: determine the active mode of
the system over time (each mode described by ODE)

basic techniques:

space discretization (with tiles/boxes/interval vectors)

interval arithmetic used for set-valued integration

alternative techniques:

error bound for Euler’s method sharply estimated

application to controlled stability of switched systems

joint work with: A. Le Cöent, F. de Vuyst, L. Chamoin, J. Alexandre dit
Sandretto, A. Chapoutot
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Switched systems

Switched systems
A continuous switched system

ẋ(t) = fσ(t)(x(t))

state x(t) ∈ Rn

control rule σ(·) : R+ −→ U

finite set of modes U = {1, . . . ,N}

Focus on time-sampled switched systems:
given a stepsize (or “sampling period”) τ > 0,

the mode switching occurs at times τ , 2τ , . . .

The control σ is a piecewise constant function
with equal steps of length τ , and height value in U
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Switched systems

Example: Two-room apartment

˙(
T1

T2

)
=

(
−α21 − αe1 − αf u1 α21

α12 −α12 − αe2 − αf u2

)(
T1

T2

)
+

(
αe1Te + αf Tf u1
αe2Te + αf Tf u2

)
.

Modes:

(
u1
u2

)
=

(
0
0

)
,

(
0
1

)
,

(
1
0

)
,

(
1
1

)
; stepsize τ

pattern: π is a finite sequence of modes, e.g.

((
0
1

)
·
(

0
0

)
·
(

1
1

))
state-dependent control: select at each τ a mode/pattern according to
current state value x , in order to satisfy a desired property (eg: stability)
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Ṫ2(t) = f2(T1(t),T2(t), u2)

Modes:

(
u1
u2

)
=

(
0
0

)
,

(
0
1

)
,

(
1
0

)
,

(
1
1

)
; stepsize τ

pattern: π is a finite sequence of modes, e.g.

((
0
1

)
·
(

0
0

)
·
(

1
1

))
state-dependent control: select at each τ a mode/pattern according to
current state value x , in order to satisfy a desired property (eg: stability)

L. Fribourg Euler’s method and switched systems September 6, 2017 6 / 44



Switched systems

Controlled stability

Given a a “safety” set S and a “recurrence” set R ⊆ S ,

select at each t = τ , 2τ , . . . , a mode j ∈ U (according to value x(t))
in order to satisfy

(R,S)-stability:
x(t) returns to R
while never leaving S
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Interval-based integration

Interval arithmetic vs. standard arithmetic1

standard numerical methods compute approximations to a
mathematically correct result (due to finite representation of reals).

interval methods [Moore66] manipulate set-valued real expressions:
“interval vectors” or “boxes”

they give bounds that are guaranteed to contain the mathematically
correct result, using rules of the form:

[a] + [b] = [a + b, a + b]

[a] · [b] = [min{ab, ab, ab, ab},max{ab, ab, ab, ab}]

they can account for

rounding errors

inaccuracies in measurements of inputs

uncertainty on parameters, disturbance, errors from the model

1Jackson 2011: https://cs.uwaterloo.ca/.../hybrid2011/slides/KenJackson.pdf
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Interval-based integration

Interval-based integration2

For f : Rn −→ Rn, we consider the ODE

ẋ(t) = f (x(t)), x(0) = x0

solution denoted by x(t; x0) (or simply x(t))

Goal: Given an interval I0 at t = t0 , construct a sequence of intervals:

1 I1 containing at t1 = t0 + τ :
x(t1; I0) ≡ {x(t1; x0) | x0 ∈ I0}

2 I2 containing at t2 = t1 + τ :
x(t2; I1) ≡ {x(t2; x1) | x1 ∈ I1}

3 . . .

2idem.
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Interval-based integration

Interval-based integration3

Given Ij an interval for t = tj , compute a (super)set of solutions Ij+1

at tj+1 = tj + τ via a two-step method:

1 Algorithm I: compute an a priori enclosure Fj :

x(t; Ij) ⊆ Fj for all t ∈ [tj , tj+1]

2 Algorithm II: compute a tighter enclosure Ij+1:

x(t; Ij) ⊆ Ij+1 ⊂ Fj at t = tj+1

3idem.
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Interval-based integration

Algorithm I: a priori enclosure method4

Basic property: If there exists an interval F :

1 I0 ⊆ F , and

2 I0 + [0, τ ] · f (F ) ⊆ F

then there exists a unique solution x(t; x0) for all t ∈ [0, τ ], x0 ∈ I0.
Furthermore: x(t; x0) ∈ F .

Proof based on Banach fixed-point th., and Picard-Lindelöf operator

(Tu)(t) = x0 +

∫ t

0
f (u(s))ds.

The construction of F relies on fixed-point acceleration heuristics
(“widening”) using adjustment of stepsize τ .

4idem
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Interval-based integration

Algorithm II: tighter enclosure5

Using F , compute a tighter enclosure I1 of x(t; I0) for t = τ .

Approach: Taylor series + remainder term.

x1 = x0 +
k−1∑
i=1

τ i · f (i)(x0) + τk · f (k)(y), for some y ∈ F .

Hence

I1 = I0 +
k−1∑
i=1

τ i · f (i)(I0) + τk · f (k)(F )

NB: with this algo, |I1| > |I0|
– even if the true solutions contract!

→ further refinement needed

5idem
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Interval-based integration

Wrapping effect6

A simple rotation:

ẋ =

(
0 1
−1 0

)
x ; x0 ∈ I0

The solution is x(t) =

(
cos(t) sin(t)
−sin(t) cos(t)

)
x0, where x0 ∈ I0

I0 can be viewed as a parallelepiped.

At each step, the parallelepiped is rotated
and has to be wrapped by another one.

At t = 2π, the blow up factor is by a factor
e2π ≈ 535, as the stepsize tends to zero.

6idem
L. Fribourg Euler’s method and switched systems September 6, 2017 14 / 44



Interval-based integration

Wrapping effect6

A simple rotation:
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e2π ≈ 535, as the stepsize tends to zero.
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Interval-based integration

(Dis)advantages of interval methods7

Advantages over standard numerical methods:

1 ensure a unique solution exists

2 provide guaranteed bounds on the solution

3 can be efficient for problems with ranges of parameters

Disadvantages

1 computation is time consuming

2 harder to implement than standard numerical methods

3 error bounds may be too large

7idem
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Euler-based integration

Outline

1 Switched systems

2 Interval-based integration

3 Euler-based integration

4 Application to controlled stability

5 Compositional Euler’s method

6 Final remarks
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Euler-based integration

Euler’s approximation x̃(t) of x(t)

x̃(t) = x̃(ti ) + (t − ti ) · f (x̃(ti ))

Piecewise linear fn.:
at each step, constant derivative of x̃(t) (= f (x̃(ti )) deriv. at starting pt)
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Euler-based integration

Classical error bound (using Lipschitz constant L)

The error at t = t0 + kτ is: ‖x(t)− x̃(t)‖.

If f is Lipschitz cont. (‖f (y)− f (x)‖ ≤ L‖y − x‖), then:

error(t) ≤ τM

2L
(eL(t−t0) − 1)

where L is the Lipschitz constant of f (and M an upper bound on f ′′).

In case of “stiff” equations, L can be very big!

Idea: exploit another constant λ that will allow for a sharper estimation of
Euler’s error
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Euler-based integration

One-sided Lipschitz (OSL) constant λ

λ ∈ R is a constant s.t., for all x , y ∈ S :

〈f (y)− f (x), y − x〉 ≤ λ‖y − x‖2

where 〈·, ·〉 denote the scalar product of two vectors of Rn

λ can be < 0 (→ contractivity)

even in case λ > 0, in practice: λ� L
−→ sharper estimation of Euler error

λ can be computed using constraint optimization algorithms
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Euler-based integration

Hypotheses

(H0) (Lipschitz): for all j ∈ U, there exists a constant Lj > 0 such that:

‖fj(y)− fj(x)‖ ≤ Lj ‖y − x‖ ∀x , y ∈ S .

(H1) (one-sided Lipschitz): for all j ∈ U, there exists a constant λj ∈ R
such that

〈fj(y)− fj(x), y − x〉 ≤ λj ‖y − x‖2 ∀x , y ∈ T 8,

The constants Cj for all j ∈ U are defined as follows:

Cj = sup
x∈S

Lj‖fj(x)‖.

8T is the one-step expansion of S under all the modes j of U
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Euler-based integration

Notations
Let xj(t) the solution at time t of the system under mode j with (implicit)
initial point x0

ẋ(t) = fj(x(t)),

x(0) = x0.

Given an (approximate) initial point x̃0 ∈ S and a mode j ∈ U,

the Euler approximate, denoted by x̃j(t; x̃0), is defined by:

x̃j(t; x̃0) = x̃0 + t · fj(x̃0), with t ∈ [0, τ ]

We are going to determine an upper bound δj(t) to

errorj(t) ≡ ‖xj(t; x0)− x̃j(t; x̃0)‖,

assuming errorj(0) ≡ ‖x0 − x̃0‖ ≤ δ0 for some δ0 ∈ R+.
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Euler-based integration

Basic result: local error δj(t) using λj

Theorem

Given a system satisfying (H0-H1), an approximate initial pt x̃0, a positive
real δ0 and j ∈ U, we have:

For all initial point x0 ∈ B(x̃0, δ0),

xj(t; x0) ∈ B(x̃j(t; x̃0), δj(t)) for all t ∈ [0, τ ].

with

if λj < 0 : δj(t) =

(
(δ0)2eλj t +

C2
j

λj 2

(
t2 + 2t

λj
+ 2

λj 2

(
1− eλj t

))) 1
2

if λj = 0 : δj(t) =
(

(δ0)2et + C 2
j (−t2 − 2t + 2(et − 1))

) 1
2

if λj > 0 :

δj(t) =

(
(δ0)2e3λj t +

C2
j

3λj 2

(
−t2 − 2t

3λj
+ 2

9λj 2

(
e3λj t − 1

))) 1
2
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Euler-based integration

Application to one-step controlled safety

Given a ball B0 ≡ B(x̃0, δ0) ⊂ S , safely control B0 during one step, select j ∈ U:

xj(t;B0) ⊆ S , ∀t ∈ [0, τ ]

  

~x0

B(~x 0 ,δ ( 0))

S

x0

x1 ~x1

B(~x1 ,δ ( τ ))

it suffices to find j ∈ U: B1 ≡ B(x̃1, δj(τ)) ⊆ S with x̃1 ≡ x̃0 + τ · fj(x̃0)

provided δj verified to be convex on [0, τ ]
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Euler-based integration

Remarks on the form of δj(·)
ex: DC-DC converter

modes given by ẋ(t) = Aσ(t)x(t) + Bσ(t) with σ(t) ∈ U = {1, 2},

A1 =

(
− rl

xl
0

0 − 1
xc

1
r0+rc

)
B1 =

( vs
xl
0

)

A2 =

(
− 1

xl
(rl + r0.rc

r0+rc
) − 1

xl
r0

r0+rc
1
xc

r0
r0+rc

− 1
xc

r0
r0+rc

)
B2 =

( vs
xl
0

)
with xc = 70, xl = 3, rc = 0.005, rl = 0.05, r0 = 1, vs = 1.

λ1 −0.0142
λ2 0.142
C1 6.7126× 10−5

C2 2.6229× 10−2
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Euler-based integration

Remarks on the form of δj(·)
ex: DC-DC converter

λ1 = −0.0142 < 0 λ2 = 0.142 > 0

For mode 1 (λ1 < 0): optimal stepsize τ corresponding to minimum of δ1
For mode 2 (λ2 > 0): δ2 always ↗

→ suggests subsampling of τ for achieving better precision
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Euler-based integration

No wrapping effect in the rotation example

ẋ =

(
0 1
−1 0

)
x

constants: λ = 0, C = 4.2, L = 1
initial error: δ0 = 0.1
stepsize: τ = 0.005
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Euler-based integration

Recap’: Interval-based vs. Euler-based method

input/output: intervals I0, I1 vs ball B0 ≡ B(C0, δ0), B1 ≡ B(C1, δ1)

method: I1 computed from I0 using intermediate structure F

vs. B1 evaluated directly from C0 and δ0
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Euler-based integration

Euler-based integration (vs. interval integration)

Advantages:

1 Computationally very cheap (standard arithmetic, no need for
computation of f derivatives, δj pre-computed)

2 allows a priori for longer stepsize τ (often)

3 reduces wrapping effect (sometimes)

4 well-suited to controlled safety

Limits:

less precise than interval-based integration method

(1st order Taylor method vs. higher order Taylor method)
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Application to controlled stability

One-step controlled safety

Given a ball B0 ≡ B(x̃0, δ0) ⊆ S , select a mode j :

xj(t;B0) ⊆ S for all t ∈ [0, τ ]

  

~x0

B(~x 0 ,δ ( 0))

S

x0

x1 ~x1

B(~x1 ,δ ( τ ))

It suffices to find j :
B1 ≡ B(x̃1, δ1) ⊆ S with x̃1 = x̃0 + τ · fj(x̃0) and δ1 = δj(τ)

assuming δj (·) convex
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Application to controlled stability

Multi-step controlled safety

Given a ball B0 ≡ B(x̃0, δ0) ⊂ S , select a pattern π (of length k):

x(t;B0) ∈ S for all t ∈ [0, kτ ]

  

~x0

B(~x 0 ,δ )

S

x0

x1

x2

~x1

~x2

B(~x1 ,δπ
1
)

B(~x 2 ,δ π
2
)

It suffices to find a pattern π ≡ j1 · · · jk :

B1 ≡ B(x̃1, δ1j1) ⊂ S , . . . , Bk ≡ B(x̃k , δkjk ) ⊂ S
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Application to controlled stability

Controlled (R,S)-stability

1 Find a set of initial balls B0
i ≡ B(x̃0i , δ

0) ⊂ S covering R

2 For each B0
i select a pattern πi of the form j1 · · · jki :

safety: all the balls B1
i ≡ B(x̃1i , δ

1), ...,Bki
i ≡ B(x̃kii , δ

ki ) are ⊆ S , and

recurrence: the last ball Bki
i is ⊆ R

  

R

S

~x1
~x2

~x3

~x4
~x5

~x6

~x7
~x8

~x9

  

R

S

δ

B(~x 3
1 ,δ π3

1
)

~x3

B(~x 3
2 ,δ π3

2
)
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Application to controlled stability

Euler-based control vs. interval-based control

  

R

S

δ

B(~x 3
1 ,δ π3

1
)

~x3

B(~x 3
2 ,δ π3

2
)

  

Z 3

Z1

Z 4

Z 2

R

S

Z2 '=Post i1
(Z2)

Post i2
(Z2')

Tube i1
(Z2)

Tube i2
(Z2')
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Application to controlled stability

Example: Building ventilation
[Meyer, Nazarpour, Girard, Witrant, 2014]

Dynamics of a four-room apartment:

dTi

dt
=
∑
j∈U*

aij(Tj − Ti ) + δsibi (T
4
si − T 4

i ) + ci max

(
0,

Vi − V *
i

V̄i − V *
i

)
(Tu − Ti ).

with U* = {1, 2, 3, 4, u, o, c}

16 switching modes
(control inputs: V1, V4 ∈ { 0V, 3.5V}, and V2, V3 ∈ { 0V, 3V})
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Application to controlled stability

Building ventilation

Euler DynIBEX

R [20, 22]4

S [19, 23]4

τ 30

Time subsampling No

Complete control Yes Yes

maxj=1,...,16 λj −6.30× 10−3

maxj=1,...,16 Cj 4.18× 10−6

Number of balls/tiles 4096 252
Pattern length 1 1

CPU time 63 seconds 249 seconds

Control based on Euler (left) and interval (right).
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Control based on Euler (left) and interval (right).
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Compositional Euler’s method

Outline

1 Switched systems

2 Interval-based integration

3 Euler-based integration

4 Application to controlled stability

5 Compositional Euler’s method

6 Final remarks
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Compositional Euler’s method

Robust OSL condition w.r.t. disturbance w ∈ W

Consider: ẋ(t) = f (x(t),w(t)) with w(t) ∈W for all t ∈ [0, τ ].

The eq. ẋ = f (x ,w) with w ∈W is said to be robustly OSL
w.r.t disturbance set W if
∃ λ ∈ R and γ ∈ R≥0 s.t.

(HW ): ∀x , x ′ ∈ T , ∀w ,w ′ ∈W

〈f (x ,w)− f (x ′,w ′), x − x ′〉 ≤ λ‖x − x ′‖2 + γ‖x − x ′‖‖w − w ′‖.
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Compositional Euler’s method

E. error function δW in presence of disturbance w ∈ W
Consider the ODE: ẋ(t) = f (x(t),w(t)) with w(t) ∈W for all t ∈ [0, τ ].

if λ < 0,

δW (t) =

(
C2

−λ4

(
−λ2t2 − 2λt + 2eλt − 2

)
+

1

λ2

(
Cγ|W |
−λ

(
−λt + eλt − 1

)

+ λ

(
(γ)2(|W |/2)2

−λ
(eλt − 1) + λ(δ0)2eλt

)))1/2

(1)

if λ > 0,

δW (t) =
1

(3λ)3/2

(
C2

λ

(
−9λ2t2 − 6λt + 2e3λt − 2

)
+ 3λ

(
Cγ|W |
λ

(
−3λt + e3λt − 1

)

+ 3λ

(
(γ)2(|W |/2)2

λ
(e3λt − 1) + 3λ(δ0)2e3λt

)))1/2

(2)

if λ = 0,

δW (t) =
(
C2
(
−t2 − 2t + 2et − 2

)
+
(
Cγ|W |

(
−t + et − 1

)
+((γ)2(|W |/2)2(et−1)+(δ0)2et )))1/2

(3)
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Compositional Euler’s method

Compositional (R1 × R2, S1 × S2)-stability

ẋ1 = f 1(x1, x2)

ẋ2 = f 2(x1, x2)

Suppose:

(H1,T2): ẋ1 = f 1(x1, x2) is robustly OSL w.r.t x2 ∈ T2, with λ1, γ1.

(H2,T1): ẋ2 = f 2(x1, x2) is robustly OSL w.r.t x1 ∈ T1, with λ2, γ2.

Theorem (compositionality): If

σ1 is an (R1,S1)-stable control of x1(t) with T2 as domain of disturbance,

σ2 is an (R2,S2)-stable control of x2(t) with T1 as domain of disturbance,

Then: σ = σ1|σ2 is an (R1 × R2,S1 × S2)-stable control of x(t) = (x1(t), x2(t)).
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(H2,T1): ẋ2 = f 2(x1, x2) is robustly OSL w.r.t x1 ∈ T1, with λ2, γ2.

Theorem (compositionality): If

σ1 is an (R1,S1)-stable control of x1(t) with T2 as domain of disturbance,

σ2 is an (R2,S2)-stable control of x2(t) with T1 as domain of disturbance,

Then: σ = σ1|σ2 is an (R1 × R2,S1 × S2)-stable control of x(t) = (x1(t), x2(t)).

L. Fribourg Euler’s method and switched systems September 6, 2017 38 / 44



Compositional Euler’s method

Compositional (R1 × R2, S1 × S2)-stability
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Compositional Euler’s method

Ex. of centralized vs. distributed Euler-based control

(left) E.-based centralized control: subsampling h = τ
20 ,

24 modes, 256 balls → 48 s. of CPU time.

(right) E.-based distributed control: subsampling h = τ
10 | h = τ

1 ,
22 | 22 modes, 16 | 16 balls → < 1 s. of CPU time.
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Final remarks

Final remarks

1 Very simple method

2 Very easy to implement (a few hundreds of lines of Octave)

3 Fast, but may lack precision
w.r.t. sophisticated refinements of interval-based methods

4 Method can be adapted to control reachability (instead of stability)

5 Replacement of forward Euler’s method by better numerical schemes
(e.g.: backward Euler, Runge-Kutta of order 4)

does not seem to gain much in the control framework

6 Several examples for which Euler-based control

beats state-of-art interval-based control (e.g.: building ventilation)

but the converse is also true! (e.g.: DC-DC converter)

7 Further experimentations ongoing ...

THANKS!
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Final remarks

Distributed vs. Centralized Control
Centralized control synthesis

ẋ(t) = fu(x(t))

Example of a validated pattern of length 2 mapping the “ball” X into R
with S = R + a + ε as safety box:

X ⊂ R

X+ = fu(X ) ⊂ S

X++ = fv (X+) ⊂ R

Pattern u · v depends on X
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Final remarks

Distrib. Control Synth. (of x1 using S2 as approx. of x2)

ẋ1(t) = f 1u1(x1(t), x2(t))

ẋ2(t) = f 2u2(x1(t), x2(t))

Target zone: R = R1 × R2

X1 ⊂ R1

X+
1 = f 1u1(X1, S2) ⊂ S1

X++
1 = f 1v1(X+

1 , S2) ⊂ R1

Pattern u1 · v1 depends only on X1
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Final remarks

Distrib. Control Synth. (of x2 using S1 as approx. of x1)

ẋ1(t) = f 1u1(x1(t), x2(t))

ẋ2(t) = f 2u2(x1(t), x2(t))

Target zone: R = R1 × R2

X2 ⊂ R2

X+
2 = f 2u2(S1,X2) ∈ S2

X++
2 = f 2v2(S1,X

+
2 ) ∈ R2

Pattern u2 · v2 depends only on X2
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