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m basic techniques:

m space discretization (with tiles/boxes/interval vectors)

m interval arithmetic used for set-valued integration

m alternative techniques:

m error bound for Euler's method sharply estimated

m application to controlled stability of switched systems

joint work with: A. Le Cdent, F. de Vuyst, L. Chamoin, J. Alexandre dit
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Switched systems
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m state x(t) € R”
m control rule o(-) : Rt — U

m finite set of modes U = {1,..., N}
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A continuous switched system

m state x(t) € R”

m control rule o(-) : Rt — U

m finite set of modes U = {1,..., N}
Focus on time-sampled switched systems:

given a stepsize (or “sampling period”) 7 > 0,
the mode switching occurs at times 7, 27, ...
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Switched systems

Switched systems

A continuous switched system

m state x(t) € R”
m control rule o(-) : Rt — U

m finite set of modes U = {1,..., N}

Focus on time-sampled switched systems:
given a stepsize (or “sampling period”) 7 > 0,
the mode switching occurs at times 7, 27, ...

The control ¢ is a piecewise constant function
with equal steps of length 7, and height value in U
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Switched systems

Example: Two-room apartment
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heater 1 O, =0y, heater 2
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Switched systems

Example: Two-room apartment

T, T,
heater 1 o, =0, heater 2
a (T, =T Ju, a,(T,—T,)u,
! !
¢ o3 Uor * heat exchange
T(’
T(t) = A(Tu(t), Ta(t), tn)
Ta(t) = H(Ta(t), Ta(t), )

1

1071
H(Th
, 1) ; stepsize T

e v (1) = (0).(2) (o)
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Switched systems

Example: Two-room apartment

T, T,
heater 1 o,=0, heater 2
‘ - h
o (T,~T )y, (T, ~T)u
¢ (SO Uer * heat exchange
T

m Modes: <u1> = < > ( ) < ) ( ) stepsize T

U>

. - 0 0 1
m pattern: 7 is a finite sequence of modes, e.g. 1) o) {1
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Switched systems

Example: Two-room apartment

T, T,
heater 1
a (T, =T Ju,
1 i
¢ o3 Uor * heat exchange
T(’
. (Ta(t), To(t), 1)

f t), T»
To(t) = H(Ta(t), T2(t), u2)

t
i uy o 0 0 1 1 . .
m Modes: <u2> = <0> , <1> <0) , (1> ; stepsize T
. - 0 0 1
m pattern: 7 is a finite sequence of modes, e.g. ((l) . (O) . (1)>

m state-dependent control: select at each 7 a mode/pattern according to
current state value x, in order to satisfy a desired property (eg: stability)
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Controlled stability
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Controlled stability

Given a a “safety” set S and a “recurrence” set R C S,

select at each t =7, 27, .

.., amode j € U (according to value x(t))
in order to satisfy

T,4
il . o 2\ S
(R, S)-stability: 22°C S
x(t) returns to R < ©x
while never leaving S L
18°C
18°C 22°C T,
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Outline

Interval-based integration
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Interval arithmetic vs. standard arithmetic?

m standard numerical methods compute approximations to a
mathematically correct result (due to finite representation of reals).

Jackson 2011: https://cs.uwaterloo.ca/.../hybrid2011/slides/KenJackson.pdf
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Interval arithmetic vs. standard arithmetic?

m standard numerical methods compute approximations to a
mathematically correct result (due to finite representation of reals).

m interval methods [Moore66] manipulate set-valued real expressions:
“interval vectors” or “boxes”

m they give bounds that are guaranteed to contain the mathematically
correct result, using rules of the form:

m[a] +[b] =[a+ b3+ b]

m [a] - [b] = [min{ab, ab, ab, ab}, max{ab, ab, ab,ab}]
m they can account for

m rounding errors

m inaccuracies in measurements of inputs

m uncertainty on parameters, disturbance, errors from the model

Jackson 2011: https://cs.uwaterloo.ca/.../hybrid2011/slides/KenJackson.pdf
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Interval-based integration

Interval-based integration?
For f : R” — R", we consider the ODE

x(t) = f(x(1), x(0) =xo

solution denoted by x(t; xo) (or simply x(t))

2idem.
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Interval-based integration

Interval-based integration?
For f : R” — R", we consider the ODE

x(t) = f(x(2)),  x(0) = xo
solution denoted by x(t; xo) (or simply x(t))

Goal: Given an interval Iy at t = tp , construct a sequence of intervals:

y
]
; N T= 7[y1]
N
N
T

True solutions

to t t t3 t

2idem.
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Interval-based integration

Interval-based integration®
Given /; an interval for t = t;, compute a (super)set of solutions /1
at tj;1 = t; + 7 via a two-step method:

aem.
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Interval-based integration

Interval-based integration®
Given /; an interval for t = t;, compute a (super)set of solutions /1
at tj;1 = t; + 7 via a two-step method:

Algorithm |: compute an a priori enclosure F;:

x(t; ;) C Fj for all t € [tj, tjq1]

Algorithm Il: compute a tighter enclosure /i, 1:

x(t;[) Sl CFatt=t

aem.
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Algorithm |: a priori enclosure method*

Basic property: If there exists an interval F:
Iy € F, and
Io+10,7]-f(F)C F

*idem
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Algorithm |: a priori enclosure method*
Basic property: If there exists an interval F:

Iy € F, and

lo+10,7]-f(F) S F

then there exists a unique solution x(t; xg) for all t € [0, 7], xo € o.
Furthermore: x(t; xp) € F.

*idem
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Algorithm |: a priori enclosure method*

Basic property: If there exists an interval F:
Iy € F, and
Io+10,7]-f(F)C F

then there exists a unique solution x(t; xg) for all t € [0, 7], xo € o.
Furthermore: x(t; xp) € F.

Proof based on Banach fixed-point th., and Picard-Lindelof operator

(Tu)(t) = xo Jr/o f(u(s))ds.

*idem
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Algorithm |: a priori enclosure method*

Basic property: If there exists an interval F:
Iy € F, and
Io+10,7]-f(F)C F

then there exists a unique solution x(t; xg) for all t € [0, 7], xo € o.
Furthermore: x(t; xp) € F.

Proof based on Banach fixed-point th., and Picard-Lindelof operator
t
(Tu)(t) = xo +/ f(u(s))ds.
0

The construction of F relies on fixed-point acceleration heuristics
(“widening") using adjustment of stepsize 7.

*idem
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Interval-based integration

Algorithm [I: tighter enclosure
Using F, compute a tighter enclosure /1 of x(t; ) for t = 7.

5

Sidem
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Interval-based integration

Algorithm [I: tighter enclosure
Using F, compute a tighter enclosure /1 of x(t; ) for t = 7.

5

Approach: Taylor series 4+ remainder term.

k—1
X1 = Xg + ZTi . f(i)(xo) + 7k f(k)(y), for some y € F.
i=1

Sidem
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Interval-based integration

Algorithm [I: tighter enclosure
Using F, compute a tighter enclosure /1 of x(t; ) for t = 7.

5
Approach: Taylor series 4+ remainder term.
k—1 ) )
X1 =x0+ ZT’ D (x0) + 75 - FK)(y), for some y € F.
i=1

Hence

k—1
h=1lo+> 7 fD()+ 7% FR(F)
: i=1

Sidem
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Interval-based integration

Algorithm [I: tighter enclosure
Using F, compute a tighter enclosure /1 of x(t; ) for t = 7.

5

Approach: Taylor series 4+ remainder term.
k—1 ) )
X1 = Xg + ZT’ . f(’)(xo) + 7. f(k)(y), for some y € F.
i=1

Hence

k—1
h=1lo+> 7 fD()+ 7% FR(F)
: i=1

NB: with this algo, |/1| > ||
— even if the true solutions contract!
— further refinement needed

Sidem
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Wrapping effect®

A simple rotation:

x

Il
N
=)
—_
o =

>x; xo € Io

—
>
o
w0
o
c
=,
(o]
=]
&

X
—
[
N—r
Il
7N

) X0, Where xg € Iy

lp can be viewed as a parallelepiped.

1]
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Wrapping effect®

A simple rotation:

0 1
x = 10 X, Xxg €Iy
The solution is x(t) = <_C:Sr$(tg) ZE(?)) X0, Where xg € Iy

lo can be viewed as a parallelepiped.

At each step, the parallelepiped is rotated
and has to be wrapped by another one.

At t = 27, the blow up factor is by a factor
e’™ ~ 535, as the stepsize tends to zero.

1]
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Interval-based integration

(Dis)advantages of interval methods’

Advantages over standard numerical methods:
ensure a unique solution exists
provide guaranteed bounds on the solution

can be efficient for problems with ranges of parameters

"idem
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Interval-based integration

(Dis)advantages of interval methods’

Advantages over standard numerical methods:
ensure a unique solution exists
provide guaranteed bounds on the solution

can be efficient for problems with ranges of parameters

Disadvantages
computation is time consuming
harder to implement than standard numerical methods

error bounds may be too large

"idem
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Outline

Euler-based integration
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Euler-based integration

Euler's approximation X(t) of x(t)
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Euler-based integration

Euler's approximation X(t) of x(t)

—>

Piecewise linear fn.:
at each step, constant derivative of X(t) (= f(X(t;)) deriv. at starting pt)
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Euler-based integration

Classical error bound (using Lipschitz constant L)

m The error at t = tp + k7 is: ||x(t) — X(t)]].
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Euler-based integration

Classical error bound (using Lipschitz constant L)

m The error at t = tp + k7 is: ||x(t) — X(t)]].

If £ is Lipschitz cont. (||f(y) — f(x)| < L]y — x|

), then:

™™

2L (eL(tfto) o 1)

error(t) <

where L is the Lipschitz constant of f (and M an upper bound on ).
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m The error at t = tp + k7 is: ||x(t) — X(t)]].

If £ is Lipschitz cont. (||f(y) — f(x)| < L]y — x|

), then:

™™

2L (eL(tfto) o 1)

error(t) <

where L is the Lipschitz constant of f (and M an upper bound on ).

m In case of “stiff’ equations, L can be very big!
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Euler-based integration

Classical error bound (using Lipschitz constant L)

m The error at t = tp + k7 is: ||x(t) — X(t)]].

If £ is Lipschitz cont. (||f(y) — f(x)|| < L|ly — x||), then:
7M L(t f)
< — 0) _
error(t) oL (e 1)

where L is the Lipschitz constant of f (and M an upper bound on ).

m In case of “stiff’ equations, L can be very big!

Idea: exploit another constant A that will allow for a sharper estimation of
Euler's error
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One-sided Lipschitz (OSL) constant A

m )\ € R is a constant s.t., for all x,y € S:

(F(y) = £(x),y = x) < Ally = x||?

where (-, -) denote the scalar product of two vectors of R”
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One-sided Lipschitz (OSL) constant A

m )\ € R is a constant s.t., for all x,y € S:

(F(y) = £(x),y = x) < Ally = x||?

where (-, -) denote the scalar product of two vectors of R”
m )\ can be < 0 (— contractivity)

m even in case A > 0, in practice: A< L
— sharper estimation of Euler error

m )\ can be computed using constraint optimization algorithms

L. Fribourg Euler's method and switched systems September 6, 2017 19 / 44



Hypotheses

(HO) (Lipschitz): for all j € U, there exists a constant L; > 0 such that:

15(y) = O < Lilly =x[I vx,y €S.

8T is the one-step expansion of S under all the modes j of U
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Hypotheses

(HO) (Lipschitz): for all j € U, there exists a constant L; > 0 such that:
1fi(y) = 0Ol < Lilly = xI[ ¥x,y € S.

(H1) (one-sided Lipschitz): for all j € U, there exists a constant \; € R
such that

(Fly) = £i(x),y —x) < Ajlly = x|* Vx,y € T8,

8T is the one-step expansion of S under all the modes j of U
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Hypotheses

(HO) (Lipschitz): for all j € U, there exists a constant L; > 0 such that:

15(y) = O < Lilly =x[I vx,y €S.

(H1) (one-sided Lipschitz): for all j € U, there exists a constant \; € R
such that

(Fly) = £i(x),y —x) < Ajlly = x|* Vx,y € T8,

The constants C; for all j € U are defined as follows:

G =sup Li||fi(x)|.
x€S

8T is the one-step expansion of S under all the modes j of U
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Euler-based integration

Notations

Let x;(t) the solution at time t of the system under mode j with (implicit)
initial point x°
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Euler-based integration

Notations

Let x;(t) the solution at time t of the system under mode j with (implicit)
initial point x°

x(t) = fi(x(t)),
XO.

Given an (approximate) initial point X° € S and a mode j € U,

the Euler approximate, denoted by )“g(t;)?o), is defined by:

%(t:%°) =0+t £(x%), with t €[0,7]
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initial point x°

x(t) = fi(x(t)),
XO.

Given an (approximate) initial point X° € S and a mode j € U,

the Euler approximate, denoted by )”g(t;)?o), is defined by:

%(t:%°) =0+t £(x%), with t €[0,7]

We are going to determine an upper bound 0;(t) to

error;(t) = | x;(t; x°) — %;(; 2°)|,
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Euler-based integration

Notations

Let x;(t) the solution at time t of the system under mode j with (implicit)
initial point x°

x(t) = fi(x(t)),
XO.

Given an (approximate) initial point X° € S and a mode j € U,

the Euler approximate, denoted by )”g(t;)?o), is defined by:

%(t:%°) =0+t £(x%), with t €[0,7]

We are going to determine an upper bound 0;(t) to
error;(t) = [|x;(t; x°) — %;(£; £°)],

assuming error;(0) = ||x? — %0|| < 4° for some 0% € R
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Euler-based integration

Basic result: local error 0;(t) using \;
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Euler-based integration

Basic result: local error 0;(t) using \;
Theorem

Given a system satisfying (HO-H1), an approximate initial pt X°, a positive
real ° and j € U, we have:
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Euler-based integration

Basic result: local error 0;(t) using \;
Theorem

Given a system satisfying (HO-H1), an approximate initial pt X°, a positive
real ° and j € U, we have:
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Theorem

Given a system satisfying (HO-H1), an approximate initial pt X°

, a positive
real ° and j € U, we have:

For all initial point x° € B(%°,4°),

x;(t; x°) € B(%(t; %°),0;(t))  forall t € [0, 7].
with

1
2

(RS em)y

mif)\<0: 0j(t) = ((50)2 Nt 4 S
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Basic result: local error 0;(t) using \;
Theorem

Given a system satisfying (HO-H1), an approximate initial pt X°, a positive
real ° and j € U, we have:

For all initial point x° € B(%°,4°),

x;(t; x°) € B(%(t; %°),0;(t))  forall t € [0, 7].
with
1
ey Sy — (502Nt o G (22t L 2 (1 _oan)) )]
mif ;< 0: gi(t) = ((6°)%eN + 54 t+Aj+/\j2(1 elit)

1

mif )\ =0 5,(t) = ((50)2ef + CH(—t2 — 2t + 2(e" — 1))) :
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Euler-based integration

Basic result: local error 0;(t) using \;
Theorem

Given a system satisfying (HO-H1), an approximate initial pt X°

, a positive
real ° and j € U, we have:

For all initial point x° € B(%°,4°),

x;(t; x°) € B(%(t; %°),0;(t))  forall t € [0, 7].
with

[ ] if)\j <0: 51'( ) ((50)2 /\Jt+

1
2

L (P4 g+ a-e))

1
mif )\ =0 5,(t) = ((50)2ef + CH(—t2 — 2t + 2(e" — 1))) :
mif)\>0:

1

C? 3
0i(t) = ((()0)2 :*;AJtJr3A2 (t232;j+%2j2(e3xjt1)>>
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Euler-based integration

Application to one-step controlled safety
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x(t;B°) CS, Vtelo,7]
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Euler-based integration

Application to one-step controlled safety
Given a ball B® = B(x°,4°) C S, safely control B® during one step, select j € U:

x(t;B°) CS, Vtelo,7]

it suffices to find j € U: B = B(%,6;(1)) €S with X! =04 7. £(%°)
provided §; verified to be convex on [0, 7]
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Euler-based integration

Remarks on the form of d;(-)
ex: DC-DC converter
modes given by x(t) = A (»x(t) + By(y) with o(t) € U = {1,2},

_n 0 v
A= 4 11 B = <XI>
< 0 _7c r+re 0

1( ro.re 1 n V.
Ay = X% roroJrrc _iro;zrc B, = <>(<)/>
Xc rotre Xc ro+re

with x. =70, x, =3, r. =0.005,  =0.05 =1, vs = 1.

M —0.0142
Ao 0.142

Ci | 6.7126 x 107°
G | 2.6229 x 1072
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Euler-based integration

Remarks on the form of 0;(+)

ex: DC-DC converter

0.065 25

0.055 15

delta(t)

0.045 05

5 10 15 20 25 30 0 2 4 6 8 10
time t time t

A= —0.0142 <0 A =0.142 >0

For mode 1 (A1 < 0): optimal stepsize 7 corresponding to minimum of ¢&;
For mode 2 (A, > 0): &, always
— suggests subsampling of 7 for achieving better precision
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Euler-based integration

No wrapping effect in the rotation example

. (0 1
X = _10X
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Euler-based integration

No wrapping effect in the rotation example

. (0 1
x=1_4 0 X
constants: A\=0, C =42, L =1

initial error: §° = 0.1
stepsize: 7 = 0.005
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Euler-based integration
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Euler-based integration

Recap’: Interval-based vs. Euler-based method
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Euler-based integration

Recap’: Interval-based vs. Euler-based method

m input/output: intervals Iy, /1 vs ball By = B(Co, o), B1 = B(C1,01)
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Euler-based integration

Recap’: Interval-based vs. Euler-based method

m input/output: intervals Iy, /1 vs ball By = B(Co, o), B1 = B(C1,01)

m method: /; computed from Iy using intermediate structure F
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Euler-based integration

Recap’: Interval-based vs. Euler-based method

m input/output: intervals Iy, /1 vs ball By = B(Co, o), B1 = B(C1,01)

m method: /; computed from Iy using intermediate structure F

vs. Bj evaluated directly from Cy and dg
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Euler-based integration

Euler-based integration (vs. interval integration)

m Advantages:

Computationally very cheap (standard arithmetic, no need for
computation of f derivatives, J; pre-computed)

allows a priori for longer stepsize 7 (often)
reduces wrapping effect (sometimes)

well-suited to controlled safety
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Euler-based integration

Euler-based integration (vs. interval integration)

m Advantages:

Computationally very cheap (standard arithmetic, no need for
computation of f derivatives, J; pre-computed)

allows a priori for longer stepsize 7 (often)
reduces wrapping effect (sometimes)

well-suited to controlled safety
m Limits:

m less precise than interval-based integration method

(1st order Taylor method vs. higher order Taylor method)
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Outline

Application to controlled stability
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x(t; B CS  forall t €[0,7]
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Application to controlled stability

One-step controlled safety
Given a ball B = B(%°,6%) C S, select a mode j:

x(t; B CS  forall t €[0,7]

It suffices to find j:
Bt=B(x',6) C Swith x'=x"+7-£(x) and d'=5(7)

assuming §;(-) convex
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Multi-step controlled safety
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Application to controlled stability

Multi-step controlled safety
Given a ball B® = B(%°,0%) C S, select a pattern 7 (of length k):

x(t;B°) € S forall t € [0, k7]
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Application to controlled stability

Multi-step controlled safety
Given a ball B® = B(%°,0%) C S, select a pattern 7 (of length k):

x(t;B°) € S forall t € [0, k7]

It suffices to find a pattern m = j1 - - - ji:

1 — 1l 51 k — ok sk
B :B(X,(sjl)CS, ey B :B(X,éjk)CS
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Controlled (R,S)-stability
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Controlled (R,S)-stability

Find a set of initial balls BY = B(x?,6°) C S covering R
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For each B,Q select a pattern m; of the form ji - - - ji.:

i
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Controlled (R,S)-stability

Find a set of initial balls BY = B(x?,6°) C S covering R

For each B,Q select a pattern m; of the form ji - - - ji.:

i

m safety: all the balls B! = B(x!,0'), ..., BF = B(x¥, %) are C S, and

1
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Controlled (R,S)-stability

Find a set of initial balls BY = B(x?,6°) C S covering R
For each B,Q select a pattern ; of the form j; - - ji;:

m safety: all the balls B! = B(x!,0'), ..., BF = B(x¥, %) are C S, and

m recurrence: the last ball B,-k" isCR
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Application to controlled stability

Euler-based control vs. interval-based control

Tube, (Z,)

]
|
"

B(%},8%)
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Application to controlled stability

Example: Building ventilation
[Meyer, Nazarpour, Girard, Witrant, 2014]

Dynamics of a four-room apartment:

*

-,
=V

dT;
= S AT = T+ (T - T+ eimax (0

Jjeu”

AN

with 4" = {1,2,3,4,u, 0, c}

16 switching modes
(control inputs: V4, V4 € { OV, 3.5V}, and Vs, V3 € { OV, 3V})

L. Fribourg Euler's method and switched systems September 6, 2017

) (1=

33/ 44



Application to controlled stability

Building ventilation

Euler ‘ DynIBEX
R [20, 22]*
S [19,23]*
T 30
Time subsampling No
Complete control Yes Yes
maxj—1, 16 \j —6.30 x 1073
maX;=1.....16 CJ 4.18 x 107
Number of balls/tiles 4096 252
Pattern length 1 1
CPU time 63 seconds 249 seconds

Control based on Euler (left) and interval (right).
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Application to controlled stability

Building ventilation

23 23
room 1 room 1
[~ room 2 [~ room 2
room 3 room 3
2 room4 2 room4
g g
e o
] E
T2 T2t
8 8
£ £
O o
= =
20 20
19 19
0 100 200 300 400 0 100 200 300 400
Time(s) Time(s)
Control based on Euler (left) and interval (right).
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Outline

Compositional Euler's method
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Robust OSL condition w.r.t. disturbance w € W

Consider:  x(t) = f(x(t),w(t)) with w(t)e W forall t e |0,7].
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Robust OSL condition w.r.t. disturbance w € W

Consider:  x(t) = f(x(t),w(t)) with w(t)e W forall t€]0,7].
The eq. x = f(x,w) with w € W is said to be robustly OSL
w.r.t disturbance set W if
dAeRand v € R>p st
(Hw): Vx,x' e T,Vw,w' € W

(Fx, w) = F(x', W), x = X) < Allx = X2+ yllx = X[ [|w = wl].
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Compositional Euler's method

E. error function 0y, in presence of disturbance w € W
Consider the ODE: x(t) = f(x(t),w(t)) with w(t)e W forall t €[0,7].
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Compositional Euler's method

E. error function 0y, in presence of disturbance w € W
The fn ow (s.t: for all t € [0, 7], w(t) € W: |x(t) —X(t)|| < ow(t))
can now be defined by:
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Compositional Euler's method

E. error function 0y, in presence of disturbance w € W

m if A <O,
c 2.2 At
Sy (t) = <77)\4 (7>\ t° — 22X\t + 2e 72)
1 Cy|W
+ = (L (—)\:+e“ —1)
A

A2
~)2 2 1/2
N <(,) (WI/27 xe 1)+>\(50)2e>\f)>> )

—A
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Compositional Euler's method

E. error function 0y, in presence of disturbance w € W

m if A <O,
c 2.2 At
Sy (t) = <j (7/\ t° — 22X\t + 2e 72)
1 Cy|W
+ = (L (—)\:+e“ —1)
A

A2
~)2 2 1/2
N <(,) (WI/27 xe I)M(ﬁo)zw») )

—A

m if A >0,

1 c 2,2 3at
Sw(t) = e (7 (—9/\ 2 — 6At + 2e 72)
Cylw
L (9 (—3>\t+ SN 1)
A

2 2 1/2
Lo <( ) (\va/a (N I)HWO)zem))) @
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Compositional Euler's method

E. error function 0y, in presence of disturbance w € W

m if A <O,
c 2.2 At
Sy (t) = <j (7/\ t° — 22X\t + 2e 72)
1 Cy|W
+ = (L (—)\:+e“ —1)
A

A2
~)2 2 1/2
N <(,) (WI/27 xe I)M(ﬁo)zw») )

Y
= ifA >0,
1 c 2,2 3at
Sw(t) = BN (7 (—9/\ 2 — 6At + 2¢ 72)
CHW
+ 32 (M (—3>\t+ SN 1)
A
2(1W|/2)2 1/2
Lo <( ) (\A /2 axe I)HWO)zem))) @
m ifA=0,

sw(t) = (G (=8 —2t+2¢" —2) + (Cy W] (—t+e' = 1) +((2(IWI/2)°(e" —1)+(6°)e))'/?
3)
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Compositional (R X Ry, 51 x S,)-stability

)'(1 = fl(Xl,Xz)

% = f2(x1, %)
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Compositional Euler's method

Compositional (R X Ry, 51 x S,)-stability

)'(1 = fl(Xl,X2)
)-(2 = f2(X1,X2)
Suppose:
m (Hi1,): %1 = f(x1, %) is robustly OSL w.r.t x; € Ta, with A}, 1.

m (Ha1,): % = f?(x1, %) is robustly OSL w.r.t x; € Ty, with A2, 72,
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Compositional (R X Ry, 51 x S,)-stability

)'(1 = fl(Xl,X2)

)-(2 = f2(X1,X2)

Suppose:
m (Hi1,): %1 = f(x1, %) is robustly OSL w.r.t x; € Ta, with A}, 1.

m (Ha1,): % = f?(x1, %) is robustly OSL w.r.t x; € Ty, with A2, 72,

Theorem (compositionality): If

m o is an (Ry, S1)-stable control of xi(t) with T, as domain of disturbance,
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Compositional (R X Ry, 51 x S,)-stability

X1 = f(x1, %)
X = F2(x1, %)
Suppose:
m (Hi1,): %1 = f(x1, %) is robustly OSL w.r.t x; € Ta, with A}, 1.

m (Ha1,): % = f?(x1, %) is robustly OSL w.r.t x; € Ty, with A2, 72,

Theorem (compositionality): If
m o is an (Ry, S1)-stable control of xi(t) with T, as domain of disturbance,

m 0y is an (Ry, Sp)-stable control of x,(t) with Ty as domain of disturbance,
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Compositional (R X Ry, 51 x S,)-stability

).(1 = fl(Xl,X2)

).(2 = f2(X1,X2)

Suppose:
m (Hi1,): %1 = f(x1, %) is robustly OSL w.r.t x; € Ta, with A}, 1.

m (Ha1,): % = f?(x1, %) is robustly OSL w.r.t x; € Ty, with A2, 72,

Theorem (compositionality): If
m o is an (Ry, S1)-stable control of xi(t) with T, as domain of disturbance,

m 0y is an (Ry, Sp)-stable control of x,(t) with Ty as domain of disturbance,

Then: 0 = o1|op is an (Ry X R», S1 X Sp)-stable control of x(t) = (x1(t), x2(t)).
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Compositional Euler's method

Ex. of centralized vs. distributed Euler-based control

25
~25 =215
e e
4 e
E] 3
g o
g g
2 a
5 5
F 2 )
room 1 room 1
room 2 20 room 2
[——room 3 [——room 3
room4 room4
95 195
0 200 400 600 800 0 200 400 600 800
Time(s) Time(s)
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Compositional Euler's method

Ex. of centralized vs. distributed Euler-based control

25
~25 =215
e e
4 e
E] 3
g o
g g
2 a
5 5
F 2 )
room 1 room 1
room 2 20 room 2
[——room 3 [——room 3
room4 room4
95 195
0 200 400 600 800 0 200 400 600 800
Time(s) Time(s)

m (left) E.-based centralized control: subsampling h = 7,
2% modes, 256 balls — 48 s. of CPU time.
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Compositional Euler's method

Ex.

of centralized vs. distributed Euler-based control

25
~25 =215
e e
4 e
E] 3
g o
g g
2 a
5 5
F 2 )
room 1 room 1
room 2 20 room 2
[——room 3 [——room 3
room4 room4
95 195
0 200 400 600 800 0 200 400 600 800
Time(s) Time(s)

(left) E.-based centralized control: subsampling h = %,
2% modes, 256 balls — 48 s. of CPU time.

(right) E.-based distributed control: subsampling h = 5 | h= T,
22 | 22 modes, 16 | 16 balls  — < 1s. of CPU time.
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Final remarks
Very simple method
Very easy to implement (a few hundreds of lines of Octave)

Fast, but may lack precision
w.r.t. sophisticated refinements of interval-based methods

Method can be adapted to control reachability (instead of stability)

Replacement of forward Euler's method by better numerical schemes
(e.g.: backward Euler, Runge-Kutta of order 4)
does not seem to gain much in the control framework

@ Several examples for which Euler-based control

m beats state-of-art interval-based control (e.g.: building ventilation)

m but the converse is also true! (e.g.: DC-DC converter)

Further experimentations ongoing ...

THANKS!
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Final remarks

Distributed vs. Centralized Control
Centralized control synthesis

Example of a validated pattern of length 2 mapping the “ball” X into R
with S = R + a + ¢ as safety box:

mXCR
v
A Tmx m XT=f(X)CS
[ | m XTF=f(XT)CR

F X m Pattern v - v depends on X
R+a

R+a+e

L. Fribourg Euler's method and switched systems September 6, 2017 42 / 44




Distrib. Control Synth. (of x; using S, as approx. of x;)

Target zone: R=R; X R»

m XiCR;
|
| m X, =1L(X,5%) C S
R m X=X %) C R
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Distrib. Control Synth. (of x, using S; as approx. of xj)

Target zone: R=R; X R»

m Xo C R
X++
- % - - gt @ X = 10(51,%2) € S
R )uz m X =12(51,X7) € R
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I u R+a m Pattern uy - v» depends only on X5
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