Euler's Method applied to the control of switched systems

FORMATS 2017 - Berlin

Laurent Fribourg¹

September 6, 2017

¹LSV - CNRS & ENS Cachan

L. Fribourg

Euler's method and switched systems

September 6, 2017 1 / 44

 Objective: control of switched systems: determine the active mode of the system over time (each mode described by ODE)

- Objective: control of switched systems: determine the active mode of the system over time (each mode described by ODE)
- basic techniques:
 - space discretization (with tiles/boxes/interval vectors)
 - interval arithmetic used for set-valued integration

- Objective: control of switched systems: determine the active mode of the system over time (each mode described by ODE)
- basic techniques:
 - space discretization (with tiles/boxes/interval vectors)
 - interval arithmetic used for set-valued integration
- alternative techniques:
 - error bound for Euler's method sharply estimated
 - application to controlled stability of switched systems

- Objective: control of switched systems: determine the active mode of the system over time (each mode described by ODE)
- basic techniques:
 - space discretization (with tiles/boxes/interval vectors)
 - interval arithmetic used for set-valued integration
- alternative techniques:
 - error bound for Euler's method sharply estimated
 - application to controlled stability of switched systems

joint work with: A. Le Cöent, F. de Vuyst, L. Chamoin, J. Alexandre dit Sandretto, A. Chapoutot

Outline

- 1 Switched systems
- 2 Interval-based integration
- 3 Euler-based integration
- 4 Application to controlled stability
- 5 Compositional Euler's method

6 Final remarks

Outline

1 Switched systems

- 2 Interval-based integration
- 3 Euler-based integration
- 4 Application to controlled stability
- 5 Compositional Euler's method

6 Final remarks

Switched systems

A continuous switched system

 $\dot{x}(t) = f_{\sigma(t)}(x(t))$

• state $x(t) \in \mathbb{R}^n$

- control rule $\sigma(\cdot) : \mathbb{R}^+ \longrightarrow U$
- finite set of modes $U = \{1, \dots, N\}$

Switched systems

A continuous switched system

 $\dot{x}(t) = f_{\sigma(t)}(x(t))$

state $x(t) \in \mathbb{R}^n$

- control rule $\sigma(\cdot) : \mathbb{R}^+ \longrightarrow U$
- finite set of modes $U = \{1, \dots, N\}$

Focus on time-sampled switched systems: given a stepsize (or "sampling period") $\tau > 0$, the mode switching occurs at times τ , 2τ , ...

Switched systems

A continuous switched system

 $\dot{x}(t) = f_{\sigma(t)}(x(t))$

state $x(t) \in \mathbb{R}^n$

- control rule $\sigma(\cdot) : \mathbb{R}^+ \longrightarrow U$
- finite set of modes $U = \{1, \dots, N\}$

Focus on time-sampled switched systems: given a stepsize (or "sampling period") $\tau > 0$, the mode switching occurs at times τ , 2τ , ...

The control σ is a piecewise constant function with equal steps of length τ , and height value in U

$$\begin{pmatrix} T_1 \\ T_2 \end{pmatrix} = \begin{pmatrix} -\alpha_{21} - \alpha_{e1} - \alpha_f \mathbf{u}_1 & \alpha_{21} \\ \alpha_{12} & -\alpha_{12} - \alpha_{e2} - \alpha_f \mathbf{u}_2 \end{pmatrix} \begin{pmatrix} T_1 \\ T_2 \end{pmatrix} + \begin{pmatrix} \alpha_{e1} T_e + \alpha_f T_f \mathbf{u}_1 \\ \alpha_{e2} T_e + \alpha_f T_f \mathbf{u}_2 \end{pmatrix}.$$

$$\begin{pmatrix} \overline{T}_1 \\ \overline{T}_2 \end{pmatrix} = \begin{pmatrix} -\alpha_{21} - \alpha_{e1} - \alpha_f \mathbf{u}_1 & \alpha_{21} \\ \alpha_{12} & -\alpha_{12} - \alpha_{e2} - \alpha_f \mathbf{u}_2 \end{pmatrix} \begin{pmatrix} \overline{T}_1 \\ \overline{T}_2 \end{pmatrix} + \begin{pmatrix} \alpha_{e1} \, \overline{T}_e + \alpha_f \, \overline{T}_f \, \mathbf{u}_1 \\ \alpha_{e2} \, \overline{T}_e + \alpha_f \, \overline{T}_f \, \mathbf{u}_2 \end{pmatrix}$$

$$\bullet \quad \text{Modes:} \quad \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \text{; stepsize } \tau$$

$$T_1(t) = f_1(T_1(t), T_2(t), u_1)$$
$$\dot{T}_2(t) = f_2(T_1(t), T_2(t), u_2)$$
$$\bullet \text{ Modes: } \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix}; \text{ stepsize } \tau$$

$$\begin{aligned} T_1(t) &= f_1(T_1(t), T_2(t), u_1) \\ \dot{T}_2(t) &= f_2(T_1(t), T_2(t), u_2) \end{aligned}$$

$$\bullet \quad \mathsf{Modes:} \ \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} &= \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix}; \text{ stepsize } \tau \end{aligned}$$

$$\bullet \quad \mathsf{pattern:} \ \pi \text{ is a finite sequence of modes, e.g.} \ \begin{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} \end{pmatrix}$$

$$\begin{aligned} \dot{T}_1(t) &= f_1(T_1(t), T_2(t), u_1) \\ \dot{T}_2(t) &= f_2(T_1(t), T_2(t), u_2) \end{aligned}$$

$$\blacksquare \text{ Modes: } \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix}; \text{ stepsize } \tau \end{aligned}$$

$$\blacksquare \text{ pattern: } \pi \text{ is a finite sequence of modes, e.g. } \begin{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} \end{pmatrix}$$

state-dependent control: select at each τ a mode/pattern according to current state value x, in order to satisfy a desired property (eg: stability)

L. Fribourg

Given a a "safety" set S and a "recurrence" set $R \subseteq S$,

Given a a "safety" set S and a "recurrence" set $R \subseteq S$,

select at each $t = \tau$, 2τ , ..., a mode $j \in U$ (according to value x(t)) in order to satisfy

Given a a "safety" set S and a "recurrence" set $R \subseteq S$,

select at each $t = \tau$, 2τ , ..., a mode $j \in U$ (according to value x(t)) in order to satisfy

(R, S)-stability:

Given a a "safety" set S and a "recurrence" set $R \subseteq S$, select at each $t = \tau$, 2τ , ..., a mode $j \in U$ (according to value x(t)) in order to satisfy

(R, S)-stability: x(t) returns to Rwhile never leaving S

Outline

1 Switched systems

- 2 Interval-based integration
- 3 Euler-based integration
- 4 Application to controlled stability
- 5 Compositional Euler's method

6 Final remarks

standard numerical methods compute <u>approximations</u> to a mathematically correct result (due to finite representation of reals).

¹Jackson 2011: https://cs.uwaterloo.ca/.../hybrid2011/slides/KenJackson.pdf

Euler's method and switched systems

- standard numerical methods compute <u>approximations</u> to a mathematically correct result (due to finite representation of reals).
- interval methods [Moore66] manipulate set-valued real expressions: "interval vectors" or "boxes"

¹Jackson 2011: https://cs.uwaterloo.ca/.../hybrid2011/slides/KenJackson.pdf

- standard numerical methods compute <u>approximations</u> to a mathematically correct result (due to finite representation of reals).
- interval methods [Moore66] manipulate set-valued real expressions: "interval vectors" or "boxes"
- they give bounds that are guaranteed to <u>contain</u> the mathematically <u>correct</u> result, using rules of the form:

¹Jackson 2011: https://cs.uwaterloo.ca/.../hybrid2011/slides/KenJackson.pdf

- standard numerical methods compute <u>approximations</u> to a mathematically correct result (due to finite representation of reals).
- interval methods [Moore66] manipulate set-valued real expressions: "interval vectors" or "boxes"
- they give bounds that are guaranteed to <u>contain</u> the mathematically <u>correct</u> result, using rules of the form:

 $\bullet \ [a] + [b] = [\underline{a} + \underline{b}, \overline{a} + \overline{b}]$

 $^{1} Jackson \ 2011: \ https://cs.uwaterloo.ca/.../hybrid2011/slides/KenJackson.pdf$

- standard numerical methods compute <u>approximations</u> to a mathematically correct result (due to finite representation of reals).
- interval methods [Moore66] manipulate set-valued real expressions: "interval vectors" or "boxes"
- they give bounds that are guaranteed to <u>contain</u> the mathematically <u>correct</u> result, using rules of the form:
 - $\bullet \ [a] + [b] = [\underline{a} + \underline{b}, \overline{a} + \overline{b}]$
 - $\bullet \ [a] \cdot [b] = [\min\{\underline{ab}, \underline{a}\overline{b}, \overline{a}\underline{b}, \overline{a}\overline{b}\}, \max\{\underline{ab}, \underline{a}\overline{b}, \overline{a}\underline{b}, \overline{a}\overline{b}\}]$

 ${}^1 Jackson \ 2011: \ https://cs.uwaterloo.ca/.../hybrid2011/slides/KenJackson.pdf$

- standard numerical methods compute <u>approximations</u> to a mathematically correct result (due to finite representation of reals).
- interval methods [Moore66] manipulate set-valued real expressions: "interval vectors" or "boxes"
- they give bounds that are guaranteed to <u>contain</u> the mathematically <u>correct</u> result, using rules of the form:
 - $\bullet \ [a] + [b] = [\underline{a} + \underline{b}, \overline{a} + \overline{b}]$
 - $\bullet \ [a] \cdot [b] = [\min\{\underline{ab}, \underline{a}\overline{b}, \overline{a}\underline{b}, \overline{a}\overline{b}\}, \max\{\underline{ab}, \underline{a}\overline{b}, \overline{a}\underline{b}, \overline{a}\overline{b}\}]$
- they can account for
 - rounding errors
 - inaccuracies in measurements of inputs

uncertainty on parameters, disturbance, errors from the model

 ${}^1 Jackson \ 2011: \ https://cs.uwaterloo.ca/.../hybrid2011/slides/KenJackson.pdf$

For $f : \mathbb{R}^n \longrightarrow \mathbb{R}^n$, we consider the ODE

 $\dot{x}(t) = f(x(t)), \quad x(0) = x_0$

solution denoted by $x(t; x_0)$ (or simply x(t))

²idem.

For $f : \mathbb{R}^n \longrightarrow \mathbb{R}^n$, we consider the ODE

 $\dot{x}(t) = f(x(t)), \quad x(0) = x_0$

solution denoted by $x(t; x_0)$ (or simply x(t))

<u>Goal</u>: Given an interval I_0 at $t = t_0$, construct a sequence of intervals:

²idem.

For $f : \mathbb{R}^n \longrightarrow \mathbb{R}^n$, we consider the ODE

 $\dot{x}(t) = f(x(t)), \quad x(0) = x_0$

solution denoted by $x(t; x_0)$ (or simply x(t))

<u>Goal</u>: Given an interval I_0 at $t = t_0$, construct a sequence of intervals:

1 I_1 containing at $t_1 = t_0 + \tau$: $x(t_1; I_0) \equiv \{x(t_1; x_0) \mid x_0 \in I_0\}$

L. Fribourg

For $f : \mathbb{R}^n \longrightarrow \mathbb{R}^n$, we consider the ODE

 $\dot{x}(t) = f(x(t)), \quad x(0) = x_0$

solution denoted by $x(t; x_0)$ (or simply x(t))

<u>Goal</u>: Given an interval I_0 at $t = t_0$, construct a sequence of intervals:

- **1** I_1 containing at $t_1 = t_0 + \tau$: $x(t_1; I_0) \equiv \{x(t_1; x_0) \mid x_0 \in I_0\}$
- **2** I_2 containing at $t_2 = t_1 + \tau$: $x(t_2; I_1) \equiv \{x(t_2; x_1) \mid x_1 \in I_1\}$

L. Fribourg

September 6, 2017 10 / 44

For $f : \mathbb{R}^n \longrightarrow \mathbb{R}^n$, we consider the ODE

 $\dot{x}(t) = f(x(t)), \quad x(0) = x_0$

solution denoted by $x(t; x_0)$ (or simply x(t))

<u>Goal</u>: Given an interval I_0 at $t = t_0$, construct a sequence of intervals:

- **1** I_1 containing at $t_1 = t_0 + \tau$: $x(t_1; I_0) \equiv \{x(t_1; x_0) \mid x_0 \in I_0\}$
- 2 l_2 containing at $t_2 = t_1 + \tau$: $x(t_2; l_1) \equiv \{x(t_2; x_1) \mid x_1 \in l_1\}$

L. Fribourg

3 . . .

Given I_j an interval for $t = t_j$, compute a (super)set of solutions I_{j+1} at $t_{i+1} = t_i + \tau$ via a two-step method:

Given l_j an interval for $t = t_j$, compute a (super)set of solutions l_{j+1} at $t_{j+1} = t_j + \tau$ via a two-step method:

1 Algorithm I: compute an a priori enclosure F_j :

 $x(t; I_j) \subseteq F_j$ for all $t \in [t_j, t_{j+1}]$

Given I_j an interval for $t = t_j$, compute a (super)set of solutions I_{j+1} at $t_{j+1} = t_j + \tau$ via a two-step method:

1 Algorithm I: compute an a priori enclosure F_j :

 $x(t; I_j) \subseteq F_j$ for all $t \in [t_j, t_{j+1}]$

2 Algorithm II: compute a tighter enclosure l_{j+1} :

Algorithm I: a priori enclosure method⁴

Basic property: If there exists an interval *F*:

- 1 $I_0 \subseteq F$, and
- **2** $I_0 + [0, \tau] \cdot f(F) \subseteq F$
Algorithm I: a priori enclosure method⁴

Basic property: If there exists an interval F:

1 $I_0 \subseteq F$, and

2 $I_0 + [0, \tau] \cdot f(F) \subseteq F$

then there exists a unique solution $x(t; x_0)$ for all $t \in [0, \tau]$, $x_0 \in I_0$. Furthermore: $x(t; x_0) \in F$.

Algorithm I: a priori enclosure method⁴

Basic property: If there exists an interval F:

1 $I_0 \subseteq F$, and

2 $I_0 + [0, \tau] \cdot f(F) \subseteq F$

then there exists a unique solution $x(t; x_0)$ for all $t \in [0, \tau]$, $x_0 \in I_0$. Furthermore: $x(t; x_0) \in F$.

Proof based on Banach fixed-point th., and Picard-Lindelöf operator

$$(Tu)(t) = x_0 + \int_0^t f(u(s))ds.$$

⁴idem

Algorithm I: a priori enclosure method⁴

Basic property: If there exists an interval F:

1 $I_0 \subseteq F$, and

2 $I_0 + [0, \tau] \cdot f(F) \subseteq F$

then there exists a unique solution $x(t; x_0)$ for all $t \in [0, \tau]$, $x_0 \in I_0$. Furthermore: $x(t; x_0) \in F$.

Proof based on Banach fixed-point th., and Picard-Lindelöf operator

$$(Tu)(t) = x_0 + \int_0^t f(u(s))ds.$$

The construction of F relies on fixed-point acceleration heuristics ("widening") using adjustment of stepsize τ .

⁴idem

L. Fribourg

Using *F*, compute a tighter enclosure I_1 of $x(t; I_0)$ for $t = \tau$.

Using F, compute a tighter enclosure I_1 of $x(t; I_0)$ for $t = \tau$.

Approach: Taylor series + remainder term.

$$\mathbf{x_1} = \mathbf{x_0} + \sum_{i=1}^{k-1} \tau^i \cdot f^{(i)}(\mathbf{x_0}) + \tau^k \cdot f^{(k)}(\mathbf{y}), \text{ for some } \mathbf{y} \in \mathbf{F}.$$

Using F, compute a tighter enclosure I_1 of $x(t; I_0)$ for $\underline{t = \tau}$.

Approach: Taylor series + remainder term.

$$\mathbf{x_1} = \mathbf{x_0} + \sum_{i=1}^{k-1} \tau^i \cdot f^{(i)}(\mathbf{x_0}) + \tau^k \cdot f^{(k)}(\mathbf{y}), \text{ for some } \mathbf{y} \in \mathbf{F}.$$

Hence

⁵idem

L. Fribourg

Using F, compute a tighter enclosure I_1 of $x(t; I_0)$ for $\underline{t = \tau}$.

Approach: Taylor series + remainder term.

$$\mathbf{x_1} = \mathbf{x_0} + \sum_{i=1}^{k-1} \tau^i \cdot f^{(i)}(\mathbf{x_0}) + \tau^k \cdot f^{(k)}(\mathbf{y}), \text{ for some } \mathbf{y} \in \mathbf{F}.$$

Hence

⁵idem

Wrapping effect⁶

A simple rotation:

$$\dot{x} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} x; \quad x_0 \in I_0$$

The solution is $x(t) = \begin{pmatrix} \cos(t) & \sin(t) \\ -\sin(t) & \cos(t) \end{pmatrix} x_0$, where $x_0 \in I_0$

 l_0 can be viewed as a parallelepiped.

Wrapping effect⁶

A simple rotation:

The

$$\begin{split} \dot{x} &= \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} x; \quad x_0 \in I_0 \\ \text{solution is } x(t) &= \begin{pmatrix} \cos(t) & \sin(t) \\ -\sin(t) & \cos(t) \end{pmatrix} x_0, \text{ where } x_0 \in I_0 \end{split}$$

 l_0 can be viewed as a parallelepiped.

At each step, the parallelepiped is rotated and has to be wrapped by another one.

Wrapping effect⁶

A simple rotation:

$$\begin{split} \dot{x} &= \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} x; \quad x_0 \in I_0 \\ \end{split}$$
The solution is $x(t) = \begin{pmatrix} \cos(t) & \sin(t) \\ -\sin(t) & \cos(t) \end{pmatrix} x_0$, where $x_0 \in I_0$

 l_0 can be viewed as a parallelepiped.

At each step, the parallelepiped is rotated and has to be wrapped by another one.

At $t = 2\pi$, the blow up factor is by a factor $e^{2\pi} \approx 535$, as the stepsize tends to zero.

(Dis)advantages of interval methods⁷

Advantages over standard numerical methods:

- **1** ensure a unique solution exists
- 2 provide guaranteed bounds on the solution
- 3 can be efficient for problems with ranges of parameters

(Dis)advantages of interval methods⁷

Advantages over standard numerical methods:

- **1** ensure a unique solution exists
- 2 provide guaranteed bounds on the solution
- 3 can be efficient for problems with ranges of parameters

Disadvantages

- **1** computation is time consuming
- 2 harder to implement than standard numerical methods
- **3** error bounds may be too large

⁷idem

Outline

- 1 Switched systems
- 2 Interval-based integration
- 3 Euler-based integration
- 4 Application to controlled stability
- 5 Compositional Euler's method

6 Final remarks

Euler's approximation $\tilde{x}(t)$ of x(t)

$$ilde{oldsymbol{x}}(t) = ilde{oldsymbol{x}}(t_i) + (t - t_i) \cdot f(ilde{oldsymbol{x}}(t_i))$$

Euler's approximation $\tilde{x}(t)$ of x(t)

$$ilde{\mathbf{x}}(t) = ilde{\mathbf{x}}(t_i) + (t - t_i) \cdot f(ilde{\mathbf{x}}(t_i))$$

Piecewise linear fn.:

at each step, constant derivative of $\tilde{\mathbf{x}}(t)$ (= $f(\tilde{\mathbf{x}}(t_i))$ deriv. at starting pt)

• The error at $t = t_0 + k\tau$ is: $||x(t) - \tilde{x}(t)||$.

• The error at $t = t_0 + k\tau$ is: $||x(t) - \tilde{x}(t)||$.

If f is Lipschitz cont. $(||f(y) - f(x)|| \le L ||y - x||)$, then:

$$\operatorname{error}(t) \leq rac{ au M}{2L}(e^{L(t-t_0)}-1)$$

where L is the Lipschitz constant of f (and M an upper bound on f'').

• The error at $t = t_0 + k\tau$ is: $||x(t) - \tilde{x}(t)||$.

If f is Lipschitz cont. $(||f(y) - f(x)|| \le L ||y - x||)$, then:

$$\operatorname{error}(t) \leq \frac{ au M}{2L}(e^{L(t-t_0)}-1)$$

where L is the Lipschitz constant of f (and M an upper bound on f'').

■ In case of "stiff" equations, *L* can be very big!

• The error at $t = t_0 + k\tau$ is: $||x(t) - \tilde{x}(t)||$.

If f is Lipschitz cont. $(||f(y) - f(x)|| \le L ||y - x||)$, then:

$$\operatorname{error}(t) \leq rac{ au M}{2L}(e^{L(t-t_0)}-1)$$

where L is the Lipschitz constant of f (and M an upper bound on f'').

In case of "stiff" equations, L can be very big!

<u>Idea</u>: exploit another constant λ that will allow for a sharper estimation of Euler's error

• $\lambda \in \mathbb{R}$ is a constant s.t., for all $x, y \in S$:

$$\langle f(y) - f(x), y - x \rangle \leq \lambda \|y - x\|^2$$

where $\langle \cdot, \cdot \rangle$ denote the scalar product of two vectors of \mathbb{R}^n

• $\lambda \in \mathbb{R}$ is a constant s.t., for all $x, y \in S$:

$$\langle f(y) - f(x), y - x \rangle \leq \lambda \|y - x\|^2$$

where $\langle\cdot,\cdot\rangle$ denote the scalar product of two vectors of \mathbb{R}^n

• λ can be < 0 (\rightarrow contractivity)

• $\lambda \in \mathbb{R}$ is a constant s.t., for all $x, y \in S$:

$$\langle f(y) - f(x), y - x \rangle \leq \lambda \|y - x\|^2$$

where $\langle\cdot,\cdot\rangle$ denote the scalar product of two vectors of \mathbb{R}^n

- λ can be < 0 (\rightarrow contractivity)
- even in case $\lambda > 0$, in practice: $\lambda \ll L$ \longrightarrow sharper estimation of Euler error

• $\lambda \in \mathbb{R}$ is a constant s.t., for all $x, y \in S$:

$$\langle f(y) - f(x), y - x \rangle \leq \lambda \|y - x\|^2$$

where $\langle\cdot,\cdot\rangle$ denote the scalar product of two vectors of \mathbb{R}^n

- λ can be < 0 (\rightarrow contractivity)
- even in case $\lambda > 0$, in practice: $\lambda \ll L$ \longrightarrow sharper estimation of Euler error

• λ can be computed using constraint optimization algorithms

Hypotheses

(H0) (Lipschitz): for all $j \in U$, there exists a constant $L_j > 0$ such that:

 $\|f_j(y)-f_j(x)\|\leq L_j\|y-x\|\quad \forall x,y\in S.$

⁸ T is the one-step expansion of S under all the modes j of U

Hypotheses

(H0) (Lipschitz): for all $j \in U$, there exists a constant $L_j > 0$ such that:

 $\|f_j(y)-f_j(x)\|\leq L_j\|y-x\|\quad \forall x,y\in S.$

(H1) (one-sided Lipschitz): for all $j \in U$, there exists a constant $\lambda_j \in \mathbb{R}$ such that

$$\langle f_j(y) - f_j(x), y - x
angle \leq rac{\lambda_j}{y} \|y - x\|^2 \quad orall x, y \in T^8,$$

 ${}^{8}T$ is the one-step expansion of S under all the modes j of U

Hypotheses

(H0) (Lipschitz): for all $j \in U$, there exists a constant $L_j > 0$ such that:

 $\|f_j(y)-f_j(x)\|\leq L_j\|y-x\|\quad \forall x,y\in S.$

(H1) (one-sided Lipschitz): for all $j \in U$, there exists a constant $\lambda_j \in \mathbb{R}$ such that

$$\langle f_j(y) - f_j(x), y - x \rangle \leq \lambda_j \|y - x\|^2 \quad \forall x, y \in T^8,$$

The constants C_j for all $j \in U$ are defined as follows:

 $C_j = \sup_{x \in S} L_j \|f_j(x)\|.$

 ${}^{8}T$ is the one-step expansion of S under all the modes j of U

Let $x_j(t)$ the solution at time t of the system under mode j with (implicit) initial point x^0

 $\dot{x}(t) = f_j(x(t)),$ $x(0) = x^0.$

Let $x_j(t)$ the solution at time t of the system under mode j with (implicit) initial point x^0

 $\dot{x}(t) = f_j(x(t)),$ $x(0) = x^0.$

Given an (approximate) initial point $\tilde{x}^0 \in S$ and a mode $j \in U$, the Euler approximate, denoted by $\tilde{x}_j(t; \tilde{x}^0)$, is defined by: $\tilde{x}_i(t; \tilde{x}^0) = \tilde{x}^0 + t \cdot f_i(\tilde{x}^0)$, with $t \in [0, \tau]$

Let $x_j(t)$ the solution at time t of the system under mode j with (implicit) initial point x^0

 $\dot{x}(t) = f_j(x(t)),$ $x(0) = x^0.$

Given an (approximate) initial point $\tilde{x}^0 \in S$ and a mode $j \in U$, the Euler approximate, denoted by $\tilde{x}_j(t; \tilde{x}^0)$, is defined by: $\tilde{x}_j(t; \tilde{x}^0) = \tilde{x}^0 + t \cdot f_j(\tilde{x}^0)$, with $t \in [0, \tau]$

We are going to determine an upper bound $\delta_j(t)$ to

$$\operatorname{error}_{j}(t) \equiv \|x_{j}(t; x^{0}) - \tilde{x}_{j}(t; \tilde{x}^{0})\|,$$

Let $x_j(t)$ the solution at time t of the system under mode j with (implicit) initial point x^0

 $\dot{x}(t) = f_j(x(t)),$ $x(0) = x^0.$

Given an (approximate) initial point $\tilde{x}^0 \in S$ and a mode $j \in U$, the Euler approximate, denoted by $\tilde{x}_j(t; \tilde{x}^0)$, is defined by: $\tilde{x}_j(t; \tilde{x}^0) = \tilde{x}^0 + t \cdot f_j(\tilde{x}^0)$, with $t \in [0, \tau]$

We are going to determine an upper bound $\delta_j(t)$ to

$$\operatorname{error}_{j}(t) \equiv \|x_{j}(t;x^{0}) - \tilde{x}_{j}(t;\tilde{x}^{0})\|,$$

for some $\delta^0 \in \mathbb{R}_+$.

assuming error_{*j*}(0) $\equiv ||x^0 - \tilde{x}^0|| \leq \delta^0$

Theorem

Given a system satisfying (H0-H1), an approximate initial pt \tilde{x}^0 , a positive real δ^0 and $j \in U$, we have:

Theorem

Given a system satisfying (H0-H1), an approximate initial pt \tilde{x}^0 , a positive real δ^0 and $j \in U$, we have:

For all initial point $x^0 \in B(\tilde{x}^0, \delta^0)$,

 $x_j(t;x^0) \in B(ilde{x}_j(t; ilde{x}^0),\delta_j(t)) \quad ext{ for all } t \in [0, au].$

Theorem

Given a system satisfying (H0-H1), an approximate initial pt \tilde{x}^0 , a positive real δ^0 and $j \in U$, we have:

For all initial point $x^0 \in B(\tilde{x}^0, \delta^0)$,

 $x_j(t;x^0) \in B(ilde{x}_j(t; ilde{x}^0),\delta_j(t)) \quad ext{ for all } t \in [0, au].$

with

• if
$$\lambda_j < 0$$
: $\delta_j(t) = \left((\delta^0)^2 e^{\lambda_j t} + \frac{C_j^2}{\lambda_j^2} \left(t^2 + \frac{2t}{\lambda_j} + \frac{2}{\lambda_j^2} \left(1 - e^{\lambda_j t} \right) \right) \right)^{\frac{1}{2}}$

Theorem

Given a system satisfying (H0-H1), an approximate initial pt \tilde{x}^0 , a positive real δ^0 and $j \in U$, we have:

For all initial point $x^0 \in B(\tilde{x}^0, \delta^0)$,

 $x_j(t;x^0) \in B(ilde{x}_j(t; ilde{x}^0),\delta_j(t)) \quad ext{ for all } t \in [0, au].$

with

• if
$$\lambda_j < 0$$
: $\delta_j(t) = \left((\delta^0)^2 e^{\lambda_j t} + \frac{C_j^2}{\lambda_j^2} \left(t^2 + \frac{2t}{\lambda_j} + \frac{2}{\lambda_j^2} \left(1 - e^{\lambda_j t} \right) \right) \right)^{\frac{1}{2}}$
• if $\lambda_j = 0$: $\delta_j(t) = \left((\delta^0)^2 e^t + C_j^2 (-t^2 - 2t + 2(e^t - 1)))^{\frac{1}{2}}$

Theorem

Given a system satisfying (H0-H1), an approximate initial pt \tilde{x}^0 , a positive real δ^0 and $j \in U$, we have:

For all initial point $x^0 \in B(\tilde{x}^0, \delta^0)$,

 $x_j(t;x^0) \in B(ilde{x}_j(t; ilde{x}^0),\delta_j(t)) \quad ext{ for all } t \in [0, au].$

with

$$if \lambda_{j} < 0: \ \delta_{j}(t) = \left((\delta^{0})^{2} e^{\lambda_{j}t} + \frac{C_{j}^{2}}{\lambda_{j}^{2}} \left(t^{2} + \frac{2t}{\lambda_{j}} + \frac{2}{\lambda_{j}^{2}} \left(1 - e^{\lambda_{j}t} \right) \right) \right)^{\frac{1}{2}}$$

$$if \lambda_{j} = 0: \ \delta_{j}(t) = \left((\delta^{0})^{2} e^{t} + C_{j}^{2} (-t^{2} - 2t + 2(e^{t} - 1))) \right)^{\frac{1}{2}}$$

$$if \lambda_{j} > 0:$$

$$\delta_{j}(t) = \left((\delta^{0})^{2} e^{3\lambda_{j}t} + \frac{C_{j}^{2}}{3\lambda_{j}^{2}} \left(-t^{2} - \frac{2t}{3\lambda_{j}} + \frac{2}{9\lambda_{j}^{2}} \left(e^{3\lambda_{j}t} - 1 \right) \right) \right)^{\frac{1}{2}}$$
Given a ball $B^0 \equiv B(\tilde{x}^0, \delta^0) \subset S$, safely control B^0 during one step, select $j \in U$:

 $x_j(t; B^0) \subseteq S, \quad \forall t \in [0, \tau]$

Given a ball $B^0 \equiv B(\tilde{x}^0, \delta^0) \subset S$, safely control B^0 during one step, select $j \in U$:

 $x_j(t; B^0) \subseteq S, \quad \forall t \in [0, \tau]$

Given a ball $B^0 \equiv B(\tilde{x}^0, \delta^0) \subset S$, safely control B^0 during one step, select $j \in U$:

 $x_j(t; B^0) \subseteq S, \quad \forall t \in [0, \tau]$

it suffices to find $j \in U$: $B^1 \equiv B(\tilde{x}^1, \delta_j(\tau)) \subseteq S$ with $\tilde{x}^1 \equiv \tilde{x}^0 + \tau \cdot f_j(\tilde{x}^0)$

Given a ball $B^0 \equiv B(\tilde{x}^0, \delta^0) \subset S$, safely control B^0 during one step, select $j \in U$:

 $x_j(t; B^0) \subseteq S, \quad \forall t \in [0, \tau]$

it suffices to find $j \in U$: $B^1 \equiv B(\tilde{x}^1, \delta_j(\tau)) \subseteq S$ with $\tilde{x}^1 \equiv \tilde{x}^0 + \tau \cdot f_j(\tilde{x}^0)$ provided δ_j verified to be convex on $[0, \tau]$

L. Fribourg

Remarks on the form of $\delta_j(\cdot)$

ex: DC-DC converter

modes given by $\dot{x}(t) = A_{\sigma(t)}x(t) + B_{\sigma(t)}$ with $\sigma(t) \in U = \{1, 2\}$,

$$A_1 = \begin{pmatrix} -\frac{r_l}{x_l} & 0\\ 0 & -\frac{1}{x_c}\frac{1}{r_0 + r_c} \end{pmatrix} \quad B_1 = \begin{pmatrix} \frac{v_s}{x_l} \\ 0 \end{pmatrix}$$

$$A_{2} = \begin{pmatrix} -\frac{1}{x_{l}} (r_{l} + \frac{r_{0} \cdot r_{c}}{r_{0} + r_{c}}) & -\frac{1}{x_{l}} \frac{r_{0}}{r_{0} + r_{c}} \\ \frac{1}{x_{c}} \frac{r_{0}}{r_{0} + r_{c}} & -\frac{1}{x_{c}} \frac{r_{0}}{r_{0} + r_{c}} \end{pmatrix} \quad B_{2} = \begin{pmatrix} \frac{v_{s}}{x_{l}} \\ 0 \end{pmatrix}$$

with $x_c = 70$, $x_l = 3$, $r_c = 0.005$, $r_l = 0.05$, $r_0 = 1$, $v_s = 1$.

λ_1	-0.0142		
λ_2	0.142		
C_1	6.7126×10^{-5}		
<i>C</i> ₂	$2.6229 imes 10^{-2}$		

Remarks on the form of $\delta_j(\cdot)$ ex: DC-DC converter

For mode 1 ($\lambda_1 < 0$): optimal stepsize τ corresponding to minimum of δ_1 For mode 2 ($\lambda_2 > 0$): δ_2 always \nearrow \rightarrow suggests subsampling of τ for achieving better precision No wrapping effect in the rotation example

$$\dot{x} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} x$$

No wrapping effect in the rotation example

$$\dot{x} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} x$$

constants: $\lambda = 0$, C = 4.2, L = 1initial error: $\delta^0 = 0.1$ stepsize: $\tau = 0.005$

No wrapping effect in the rotation example

$$\dot{x} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} x$$

constants: $\lambda = 0$, C = 4.2, L = 1initial error: $\delta^0 = 0.1$ stepsize: $\tau = 0.005$

• input/output: intervals I_0 , I_1 vs ball $B_0 \equiv B(C_0, \delta_0)$, $B_1 \equiv B(C_1, \delta_1)$

■ <u>input/output</u>: intervals I_0 , I_1 vs ball $B_0 \equiv B(C_0, \delta_0)$, $B_1 \equiv B(C_1, \delta_1)$ ■ method: I_1 computed from I_0 using intermediate structure F

 $\underline{\text{input/output: intervals } I_0, I_1 \text{ vs ball } B_0 \equiv B(C_0, \delta_0), B_1 \equiv B(C_1, \delta_1)}$

• <u>method</u>: l_1 computed from l_0 using intermediate structure F

vs. B_1 evaluated directly from C_0 and δ_0

Euler-based integration (vs. interval integration)

Advantages:

- **1** Computationally very cheap (standard arithmetic, no need for computation of f derivatives, δ_j pre-computed)
- **2** allows a priori for longer stepsize τ (often)
- **3** reduces wrapping effect (sometimes)
- 4 well-suited to controlled safety

Euler-based integration (vs. interval integration)

Advantages:

- **1** Computationally very cheap (standard arithmetic, no need for computation of f derivatives, δ_j pre-computed)
- **2** allows a priori for longer stepsize τ (often)
- **3** reduces wrapping effect (sometimes)
- 4 well-suited to controlled safety

Limits:

less precise than interval-based integration method

(1st order Taylor method vs. higher order Taylor method)

Outline

- 1 Switched systems
- 2 Interval-based integration
- 3 Euler-based integration
- 4 Application to controlled stability
- 5 Compositional Euler's method

6 Final remarks

One-step controlled safety

One-step controlled safety Given a ball $B^0 \equiv B(\tilde{\mathbf{x}}^0, \delta^0) \subseteq S$, select a mode *j*: $x_j(t; B^0) \subseteq S$ for all $t \in [0, \tau]$

One-step controlled safety Given a ball $B^0 \equiv B(\tilde{\mathbf{x}}^0, \delta^0) \subseteq S$, select a mode *j*: $x_j(t; B^0) \subseteq S$ for all $t \in [0, \tau]$

One-step controlled safety Given a ball $B^0 \equiv B(\tilde{\mathbf{x}}^0, \delta^0) \subseteq S$, select a mode *j*: $x_i(t; B^0) \subseteq S$ for all $t \in [0, \tau]$

It suffices to find *j*: $B^{1} \equiv B(\tilde{x}^{1}, \delta^{1}) \subseteq S \text{ with } \tilde{x}^{1} = \tilde{x}^{0} + \tau \cdot f_{j}(\tilde{x}^{0}) \text{ and } \frac{\delta^{1} = \delta_{j}(\tau)}{\delta_{i}(\cdot) \text{ convex}}$

Multi-step controlled safety

Multi-step controlled safety Given a ball $B^0 \equiv B(\tilde{x}^0, \delta^0) \subset S$, select a pattern π (of length k): $x(t; B^0) \in S$ for all $t \in [0, k\tau]$

Multi-step controlled safety Given a ball $B^0 \equiv B(\tilde{\mathbf{x}}^0, \delta^0) \subset S$, select a pattern π (of length k): $x(t; B^0) \in S$ for all $t \in [0, k\tau]$

Multi-step controlled safety Given a ball $B^0 \equiv B(\tilde{\mathbf{x}}^0, \delta^0) \subset S$, select a pattern π (of length k): $x(t; B^0) \in S$ for all $t \in [0, k\tau]$

It suffices to find a pattern $\pi \equiv j_1 \cdots j_k$:

$$B^1 \equiv B(\tilde{x}^1, \delta^1_{j_1}) \subset S, \quad \dots, \quad B^k \equiv B(\tilde{x}^k, \delta^k_{j_k}) \subset S$$

L. Fribourg

1 Find a set of initial balls $B_i^0 \equiv B(\tilde{x}_i^0, \delta^0) \subset S$ covering R

- **1** Find a set of initial balls $B_i^0 \equiv B(\tilde{x}_i^0, \delta^0) \subset S$ covering R
- **2** For each B_i^0 select a pattern π_i of the form $j_1 \cdots j_{k_i}$:

- **1** Find a set of initial balls $B_i^0 \equiv B(\tilde{x}_i^0, \delta^0) \subset S$ covering R
- **2** For each B_i^0 select a pattern π_i of the form $j_1 \cdots j_{k_i}$:
 - safety: all the balls $B_i^1 \equiv B(\tilde{x}_i^1, \delta^1), ..., B_i^{k_i} \equiv B(\tilde{x}_i^{k_i}, \delta^{k_i})$ are $\subseteq S$, and

- **1** Find a set of initial balls $B_i^0 \equiv B(\tilde{x}_i^0, \delta^0) \subset S$ covering R
- **2** For each B_i^0 select a pattern π_i of the form $j_1 \cdots j_{k_i}$:
 - safety: all the balls $B_i^1 \equiv B(\tilde{x}_i^1, \delta^1), ..., B_i^{k_i} \equiv B(\tilde{x}_i^{k_i}, \delta^{k_i})$ are $\subseteq S$, and
 - recurrence: the last ball $B_i^{k_i}$ is $\subseteq R$

- **1** Find a set of initial balls $B_i^0 \equiv B(\tilde{x}_i^0, \delta^0) \subset S$ covering R
- **2** For each B_i^0 select a pattern π_i of the form $j_1 \cdots j_{k_i}$:
 - safety: all the balls $B_i^1 \equiv B(\tilde{x}_i^1, \delta^1), ..., B_i^{k_i} \equiv B(\tilde{x}_i^{k_i}, \delta^{k_i})$ are $\subseteq S$, and
 - <u>recurrence</u>: the last ball $B_i^{k_i}$ is $\subseteq R$

Euler-based control vs. interval-based control

Example: Building ventilation [Meyer, Nazarpour, Girard, Witrant, 2014]

Dynamics of a four-room apartment:

$$\frac{dT_i}{dt} = \sum_{j \in \mathcal{U}^*} a_{ij}(T_j - T_i) + \delta_{s_i} b_i(T_{s_i}^4 - T_i^4) + c_i \max\left(0, \frac{V_i - V_i^*}{\overline{V}_i - V_i^*}\right) (T_u - T_i).$$

with $U^* = \{1, 2, 3, 4, u, o, c\}$

 $\frac{16 \text{ switching modes}}{(\text{control inputs: } V_1, V_4 \in \{ \text{ 0V, } 3.5\text{V} \}, \text{ and } V_2, V_3 \in \{ \text{ 0V, } 3\text{V} \})}$

Building ventilation

	Euler	DynIBEX	
R	[20, 22] ⁴		
S	$[19, 23]^4$		
au	30		
Time subsampling	No		
Complete control	Yes	Yes	
$\max_{j=1,\dots,16}\lambda_j$	$-6.30 imes 10^{-3}$		
$\max_{j=1,\dots,16} C_j$	$4.18 imes10^{-6}$		
Number of balls/tiles	4096	252	
Pattern length	1	1	
CPU time	63 seconds	249 seconds	

Control based on Euler (left) and interval (right).

Building ventilation

Control based on Euler (left) and interval (right).

Outline

- 1 Switched systems
- 2 Interval-based integration
- 3 Euler-based integration
- 4 Application to controlled stability
- 5 Compositional Euler's method

6 Final remarks
Consider: $\dot{x}(t) = f(x(t), w(t))$ with $w(t) \in W$ for all $t \in [0, \tau]$.

Consider: $\dot{x}(t) = f(x(t), w(t))$ with $w(t) \in W$ for all $t \in [0, \tau]$.

The eq. $\dot{x} = f(x, w)$ with $w \in W$ is said to be robustly OSL w.r.t disturbance set W if

Consider: $\dot{x}(t) = f(x(t), w(t))$ with $w(t) \in W$ for all $t \in [0, \tau]$.

The eq. $\dot{x} = f(x, w)$ with $w \in W$ is said to be robustly OSL w.r.t disturbance set W if

 $\exists \lambda \in \mathbb{R} \text{ and } \gamma \in \mathbb{R}_{>0} \text{ s.t.}$

Consider: $\dot{x}(t) = f(x(t), w(t))$ with $w(t) \in W$ for all $t \in [0, \tau]$.

The eq. $\dot{x} = f(x, w)$ with $w \in W$ is said to be robustly OSL w.r.t disturbance set W if

 $\exists \lambda \in \mathbb{R} \text{ and } \gamma \in \mathbb{R}_{\geq 0} \text{ s.t.}$

 $(H_W): \quad \forall x, x' \in T, \forall w, w' \in W$

 $\langle f(x, w) - f(x', w'), x - x' \rangle \leq \lambda ||x - x'||^2 + \gamma ||x - x'|| ||w - w'||.$

E. error function δ_W in presence of disturbance $w \in W$ Consider the ODE: $\dot{x}(t) = f(x(t), w(t))$ with $w(t) \in W$ for all $t \in [0, \tau]$. E. error function δ_W in presence of disturbance $w \in W$ The fn δ_W (s.t: for all $t \in [0, \tau]$, $w(t) \in W$: $||x(t) - \tilde{x}(t)|| \le \delta_W(t)$) can now be defined by:

E. error function δ_W in presence of disturbance $w \in W$

• if $\lambda < 0$,

$$\begin{split} \delta_{\boldsymbol{W}}(t) &= \left(\frac{C^2}{-\lambda^4} \left(-\lambda^2 t^2 - 2\lambda t + 2e^{\lambda t} - 2\right) \\ &+ \frac{1}{\lambda^2} \left(\frac{C\gamma |\boldsymbol{W}|}{-\lambda} \left(-\lambda t + e^{\lambda t} - 1\right) \right. \\ &+ \left. \lambda \left(\frac{(\gamma)^2 (|\boldsymbol{W}|/2)^2}{-\lambda} (e^{\lambda t} - 1) + \lambda (\delta^0)^2 e^{\lambda t}\right) \right) \right)^{1/2} \end{split}$$
(1)

E. error function δ_W in presence of disturbance $w \in W$

$$\begin{split} \delta_{\boldsymbol{W}}(t) &= \left(\frac{C^2}{-\lambda^4} \left(-\lambda^2 t^2 - 2\lambda t + 2e^{\lambda t} - 2\right) \\ &+ \frac{1}{\lambda^2} \left(\frac{C\gamma |\boldsymbol{W}|}{-\lambda} \left(-\lambda t + e^{\lambda t} - 1\right) \right. \\ &+ \left.\lambda \left(\frac{(\gamma)^2 (|\boldsymbol{W}|/2)^2}{-\lambda} (e^{\lambda t} - 1) + \lambda (\delta^0)^2 e^{\lambda t}\right)\right)\right)^{1/2} \end{split}$$
(1)

• if $\lambda > 0$,

$$\begin{split} \delta_{W}(t) &= \frac{1}{(3\lambda)^{3/2}} \left(\frac{C^{2}}{\lambda} \left(-9\lambda^{2}t^{2} - 6\lambda t + 2e^{3\lambda t} - 2 \right) \right. \\ &+ 3\lambda \left(\frac{C\gamma|W|}{\lambda} \left(-3\lambda t + e^{3\lambda t} - 1 \right) \right. \\ &+ 3\lambda \left(\frac{(\gamma)^{2}(|W|/2)^{2}}{\lambda} (e^{3\lambda t} - 1) + 3\lambda (\delta^{0})^{2} e^{3\lambda t} \right) \right) \bigg)^{1/2} \end{split}$$
(2)

E. error function δ_W in presence of disturbance $w \in W$

$$\delta_{W}(t) = \left(\frac{C^{2}}{-\lambda^{4}} \left(-\lambda^{2} t^{2} - 2\lambda t + 2e^{\lambda t} - 2\right) + \frac{1}{\lambda^{2}} \left(\frac{C\gamma|W|}{-\lambda} \left(-\lambda t + e^{\lambda t} - 1\right) + \lambda \left(\frac{(\gamma)^{2}(|W|/2)^{2}}{-\lambda} (e^{\lambda t} - 1) + \lambda (\delta^{0})^{2} e^{\lambda t}\right)\right)\right)^{1/2}$$
(1)

• if $\lambda > 0$,

$$\begin{split} \delta_{W}(t) &= \frac{1}{(3\lambda)^{3/2}} \left(\frac{C^{2}}{\lambda} \left(-9\lambda^{2}t^{2} - 6\lambda t + 2e^{3\lambda t} - 2 \right) \right. \\ &+ 3\lambda \left(\frac{C\gamma|W|}{\lambda} \left(-3\lambda t + e^{3\lambda t} - 1 \right) \right. \\ &+ 3\lambda \left(\frac{(\gamma)^{2}(|W|/2)^{2}}{\lambda} (e^{3\lambda t} - 1) + 3\lambda (\delta^{0})^{2} e^{3\lambda t} \right) \right) \right)^{1/2} \end{split}$$
(2)

if $\lambda = 0$,

$$\delta_{\boldsymbol{W}}(t) = \left(C^{2}\left(-t^{2}-2t+2e^{t}-2\right) + \left(C_{\boldsymbol{\gamma}}|\boldsymbol{W}|\left(-t+e^{t}-1\right)\right) + \left((\boldsymbol{\gamma})^{2}(|\boldsymbol{W}|/2)^{2}(e^{t}-1) + (\delta^{0})^{2}e^{t}\right)\right)^{1/2}$$
(3)

$$\dot{x}_1 = f^1(x_1, x_2)$$

 $\dot{x}_2 = f^2(x_1, x_2)$

$$\dot{x}_1 = f^1(x_1, x_2)$$

 $\dot{x}_2 = f^2(x_1, x_2)$

Suppose:

- (H_{1,T_2}) : $\dot{x}_1 = f^1(x_1, x_2)$ is robustly OSL w.r.t $x_2 \in T_2$, with λ^1, γ^1 .
- (H_{2,T_1}) : $\dot{x}_2 = f^2(x_1, x_2)$ is robustly OSL w.r.t $x_1 \in T_1$, with λ^2 , γ^2 .

$$\dot{x}_1 = f^1(x_1, x_2)$$

 $\dot{x}_2 = f^2(x_1, x_2)$

Suppose:

- (H_{1,T_2}) : $\dot{x}_1 = f^1(x_1, x_2)$ is robustly OSL w.r.t $x_2 \in T_2$, with λ^1, γ^1 .
- (H_{2,T_1}) : $\dot{x}_2 = f^2(x_1, x_2)$ is robustly OSL w.r.t $x_1 \in T_1$, with λ^2 , γ^2 .

Theorem (compositionality): If

• σ_1 is an (R_1, S_1) -stable control of $x_1(t)$ with T_2 as domain of disturbance,

$$\dot{x}_1 = f^1(x_1, x_2)$$

 $\dot{x}_2 = f^2(x_1, x_2)$

Suppose:

- (H_{1,T_2}) : $\dot{x}_1 = f^1(x_1, x_2)$ is robustly OSL w.r.t $x_2 \in T_2$, with λ^1, γ^1 .
- (H_{2,T_1}) : $\dot{x}_2 = f^2(x_1, x_2)$ is robustly OSL w.r.t $x_1 \in T_1$, with λ^2 , γ^2 .

Theorem (compositionality): If

- σ_1 is an (R_1, S_1) -stable control of $x_1(t)$ with T_2 as domain of disturbance,
- σ_2 is an (R_2, S_2) -stable control of $x_2(t)$ with T_1 as domain of disturbance,

$$\dot{x}_1 = f^1(x_1, x_2)$$

 $\dot{x}_2 = f^2(x_1, x_2)$

Suppose:

- (H_{1,T_2}) : $\dot{x}_1 = f^1(x_1, x_2)$ is robustly OSL w.r.t $x_2 \in T_2$, with λ^1, γ^1 .
- (H_{2,T_1}) : $\dot{x}_2 = f^2(x_1, x_2)$ is robustly OSL w.r.t $x_1 \in T_1$, with λ^2 , γ^2 .

Theorem (compositionality): If

• σ_1 is an (R_1, S_1) -stable control of $x_1(t)$ with T_2 as domain of disturbance,

• σ_2 is an (R_2, S_2) -stable control of $x_2(t)$ with T_1 as domain of disturbance,

Then: $\sigma = \sigma_1 | \sigma_2$ is an $(R_1 \times R_2, S_1 \times S_2)$ -stable control of $x(t) = (x_1(t), x_2(t))$.

Ex. of centralized vs. distributed Euler-based control

Ex. of centralized vs. distributed Euler-based control

• (left) E.-based <u>centralized</u> control: subsampling $h = \frac{\tau}{20}$, 2⁴ modes, 256 balls \rightarrow 48 s. of CPU time.

Ex. of centralized vs. distributed Euler-based control

• (left) E.-based <u>centralized</u> control: subsampling $h = \frac{\tau}{20}$, 2^4 modes, 256 balls \rightarrow 48 s. of CPU time.

• (right) E.-based <u>distributed</u> control: subsampling $h = \frac{\tau}{10} \mid h = \frac{\tau}{1}$, $2^2 \mid 2^2$ modes, 16 | 16 balls $\rightarrow < 1 \ s.$ of CPU time.

Outline

- 1 Switched systems
- 2 Interval-based integration
- 3 Euler-based integration
- 4 Application to controlled stability
- 5 Compositional Euler's method

- Final remarks
 - **1** Very simple method

- **1** Very simple method
- **2** Very easy to implement (a few hundreds of lines of Octave)

- **1** Very simple method
- 2 Very easy to implement (a few hundreds of lines of Octave)
- 3 Fast, but may lack precision
 - w.r.t. sophisticated refinements of interval-based methods

- 1 Very simple method
- 2 Very easy to implement (a few hundreds of lines of Octave)
- **3** Fast, but may lack precision w.r.t. sophisticated refinements of interval-based methods
- 4 Method can be adapted to control reachability (instead of stability)

- 1 Very simple method
- **2** Very easy to implement (a few hundreds of lines of Octave)
- **3** Fast, but may lack precision w.r.t. sophisticated refinements of interval-based methods
- 4 Method can be adapted to control reachability (instead of stability)
- 5 Replacement of forward Euler's method by better numerical schemes (e.g.: backward Euler, Runge-Kutta of order 4) does not seem to gain much in the control framework

- 1 Very simple method
- **2** Very easy to implement (a few hundreds of lines of Octave)
- 3 Fast, but may lack precision w.r.t. sophisticated refinements of interval-based methods
- 4 Method can be adapted to control reachability (instead of stability)
- 5 Replacement of forward Euler's method by better numerical schemes (e.g.: backward Euler, Runge-Kutta of order 4) does not seem to gain much in the control framework
- 6 Several examples for which Euler-based control
 - beats state-of-art interval-based control (e.g.: building ventilation)

- 1 Very simple method
- **2** Very easy to implement (a few hundreds of lines of Octave)
- 3 Fast, but may lack precision w.r.t. sophisticated refinements of interval-based methods
- 4 Method can be adapted to control reachability (instead of stability)
- 5 Replacement of forward Euler's method by better numerical schemes (e.g.: backward Euler, Runge-Kutta of order 4) does not seem to gain much in the control framework
- 6 Several examples for which Euler-based control
 - beats state-of-art interval-based control (e.g.: building ventilation)
 - but the converse is also true! (e.g.: DC-DC converter)

- 1 Very simple method
- **2** Very easy to implement (a few hundreds of lines of Octave)
- 3 Fast, but may lack precision w.r.t. sophisticated refinements of interval-based methods
- 4 Method can be adapted to control reachability (instead of stability)
- 5 Replacement of forward Euler's method by better numerical schemes (e.g.: backward Euler, Runge-Kutta of order 4) does not seem to gain much in the control framework
- 6 Several examples for which Euler-based control
 - beats state-of-art interval-based control (e.g.: building ventilation)
 - but the converse is also true! (e.g.: DC-DC converter)
- 7 Further experimentations ongoing ...

- 1 Very simple method
- **2** Very easy to implement (a few hundreds of lines of Octave)
- 3 Fast, but may lack precision w.r.t. sophisticated refinements of interval-based methods
- 4 Method can be adapted to control reachability (instead of stability)
- 5 Replacement of forward Euler's method by better numerical schemes (e.g.: backward Euler, Runge-Kutta of order 4) does not seem to gain much in the control framework
- 6 Several examples for which Euler-based control
 - beats state-of-art interval-based control (e.g.: building ventilation)
 - but the converse is also true! (e.g.: DC-DC converter)
- **7** Further experimentations ongoing ...

THANKS!

Distributed vs. Centralized Control

Centralized control synthesis

 $\dot{x}(t) = f_u(x(t))$

Example of a validated pattern of length 2 mapping the "ball" X into R with $S = R + a + \varepsilon$ as safety box:

Distrib. Control Synth. (of x_1 using S_2 as approx. of x_2)

 $\dot{x}_1(t) = f_{u_1}^1(x_1(t), x_2(t))$ $\dot{x}_2(t) = f_{u_2}^2(x_1(t), x_2(t))$

Target zone: $R = R_1 \times R_2$

Distrib. Control Synth. (of x_2 using S_1 as approx. of x_1)

 $\dot{x}_1(t) = f_{u_1}^1(x_1(t), x_2(t))$ $\dot{x}_2(t) = f_{u_2}^2(x_1(t), x_2(t))$

Target zone: $R = R_1 \times R_2$

