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Numerical approximation

We will describe a method to construct approximation schemes for the
Isaacs equation which keep the main informations of the game/control
problem.

This approach leads to the numerical approximation of a first order PDE
derived by a discretization of the original control problem and by a discrete
DP principle.

Naturally, one can also choose to construct directly an approximation
scheme for the Isaacs equation based on the discretization of the PDE,
e.g. using a Finite Difference (FD) scheme.



Features of the DP scheme

The schemes have a natural interpretation which comes from the
Discrete Dynamic Programming Principle

Approximate feed-back controls can be obtained without extra
computations on the nodes.

Once the value function is computed we easily obtain approximate
optimal trajectories.

Natural extensions to high-order methods.
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Time discretization

By applying the change of variable (Kružkov)

v(x) = 1− e−T (x)

we rewrite the equation in the new variable

v(x) + sup
a∈A

[−f (x , a) · ∇v ] = 1 (HJ)

v(x) = 0 on T
v(x) = 1 on ∂R

As we have seen, we can drop the second boundary condition.



Time discretization

Time step h = ∆t > 0
Discrete times tj = jh, j ∈ N

Discrete dynamical system{
xj+1 = xj + hf (xj , aj)
x0 = x

We define the reachable set for the discrete dynamical system

Rh ≡ {x ∈ RN : ∃ {aj} and j ∈ N such that xj ∈ T }



Discrete Minimum Time Function

Let us define

nh({aj}, x) =

{
+∞ x /∈ Rh

min{∈ N : xj ∈ T } ∀ x ∈ Rh

Nh(x) = min
{aj}

nh({aj}, x)

The discrete analogue of the minimum time function is Nh(x)h.



The discrete time Bellman equation

As in the continuous problem, we change the variable

vh(x) = 1− e−hNh(x),

again we have 0 ≤ vh ≤ 1.
By the Discrete Dynamic Programming Principle we get

vh(x) = S(vh)(x) on Rh \ T . (HJh)

where
S(vh)(x) ≡ min

a∈A

[
e−hvh(x + hf (x , a))

]
+ 1− e−h

which is complemented by the boundary condition

vh(x) = 0 on T (BC)



Characterization of vh

Note that x ∈ RN \ Rh implies that x + hf (x , a) ∈ RN \ Rh

So we can extend vh to RN setting

vh(x) = 1 on RN \ Rh .

THEOREM
vh is the unique bounded solution of (HJh)− (BC ).



Local Controllability

Let T be defined as

T ≡ {x : gi (x) ≤ 0 ∀ i = 1, . . . ,M}

where gi ∈ C 2(RN) and |∇gi (x)| > 0 for any x such that gi (x) = 0.

LOCAL CONTROLLABILITY
∀ x ∈ T such that gi (x) = 0 (i.e. belonging to ∂T ) ∃ a ∈ A for which

f (x , a) · ∇gi (x) < 0.



Convergence

THEOREM (convergence, Bardi-F (1990)
Let the assumptions of the Lemma be satisfied and let T be compact with
nonempty interior.
Then, for h→ 0+

vh → v locally uniformly in RN

h Nh → T locally uniformly in R

.



Error estimate

Let us assume Q is a compact subset of R where the following condition
holds:

∃ C0 > 0 : ∀ x ∈ Q there is a time optimal control with (BV)

total variation less than C0 bringing the system to T .

THEOREM (Bardi-F. (1990))
Let the assumptions of theorem hold true and let Q be a compact subset
of R where (BV) holds.
Then ∃ h,C > 0:

|T (x)− h Nh(x)| ≤ Ch , ∀ x ∈ Q, ∀ h ≤ h



First order scheme

COROLLARY
Under the same hypotheses there exists two positive constants h and C :

|v(x)− vh(x)| ≤ Ch ∀ x ∈ Q, h ≤ h

This means that the rate of convergence of the approximation scheme is 1.
Note that also high-order methods can be obtained more accurate schemes
for the dynamics (e.g. Runge-Kutta).



Space discretization

We need a grid to obtain a fully discrete scheme.
We can use a lattice or a triangulation of a rectangle Q in R2, Q ⊃ T .

NOTATIONS

xi : nodes of the grid

d : the number of nodes

k := max diameter of the cells (or triangles)

Sets of Indices:

IT := {i ∈ N : xi ∈ T }(target nodes)

Iout := {i ∈ N : xi + hf (xi , a) /∈ Q, ∀ a}(internal nodes)

Iin := {i ∈ N : xi + hf (xi , a) ∈ Q}(boundary nodes)



Fully discrete scheme

We want to solve the the problem

v(xi ) = min
a∈A

[e−hv(xi + hf (xi , a)] + 1− e−h, ∀xi ∈ Iin,

v(xi ) = 0 ∀xi ∈ IT

v(xi ) = 1 ∀xi ∈ Iout

To get a finite dimensional problem we introduce the space of piecewise
linear functions

W k := {w : Q → [0, 1] : w ∈ C (Q) and ∇w = constant in Sj}



Fixed point problem

This means that we choose a piecewise linear (P1) reconstruction for
v(xi + hf (xi , a)).
In fact, for any i ∈ I in , xi + hf (xi , a) ∈ Q, there exists a vector of
coefficients,λij(a):

0 ≤ λij(a) ≤ 1,
d∑

j=1

λij(a) = 1

and

xi + hf (xi , a) =
L∑

j=1

λij(a)xj (convex combination)

so we are writing xi + hf (xi , a) in local coordinates.



Fixed point problem

Let us define the matrix Λ := {λij}. We define the operator S : Rd → Rd

Si (U) :=


min
a∈A

[e−hΛi (a)U] + 1− e−h , ∀ i ∈ Iin

0 ∀ i ∈ IT
1 ∀ i ∈ I out

Since β := e−h ∈ (0, 1), the operator S = {Si} takes its values in [0, 1]d

S : [0, 1]d → [0, 1]d

and has a unique fixed point.



S properties

THEOREM
S : [0, 1]d → [0, 1]d and

‖S(U)− S(V )‖∞ ≤ β‖U − V ‖∞

Sketch of the proof
S is monotone, i.e.

U ≤ V ⇒ S(U) ≤ S(V )

Then, for any U ∈ [0, 1]d

1− β = Si (0) ≤ Si (U) ≤ Si (1) = 1, ∀ i ∈ Iin

where 1 ≡ (1, 1, . . . , 1). This implies, S : [0, 1]d → [0, 1]d



S is a contraction

For any i ∈ Iin, we have

Si (U)− Si (V ) ≤ βΛi (â)(U − V )

and since ‖Λi (a)‖ ≤ 1, ∀ a ∈ A, this implies

‖Si (U)− S(V )‖∞ ≤ β‖U − V ‖∞.



Monotone convergence

The scheme
Un+1 ≡ S(Un)

converges for every initial condition U0.

However, choosing U0 ∈ [0, 1]d

U0
i =

{
0 ∀ i ∈ IT
1 elsewhere

we have
U0 ∈ U+ ≡ {U ∈ [0, 1]L : U ≥ S(U)}



Monotone convergence

The sequence Un starting from that U0 (which is a discrete supersolution)
s monotone decreasing .
This stems from the monotonicity of the discrete operator S , so

Un ↘ U∗

by the fixed point argument.
Note that monotonicity allows to accelerate convergence.



How the informations flow

The information flows from the target to the other nodes of the grid.
In fact, on the nodes in Q \ T , U0

i = 1.

But starting from the first step of the algorithm the value of the internal
nodes immediately decreases since, by the local controllability assumption,
the Euler scheme drives them to the target where the value is set to 0.
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Back to the Pursuit-Evasion game

Using the same change of variable v(x) = 1− e−T (x) we can set the
Isaacs equation in RN{

v(x) + min
b∈B

max
a∈A

[−f (x , a, b) · ∇v(x)] = 1 in RN \ T
v(x) = 0 for x ∈ ∂T

(I)

The discretization in time and space leads to the

Fully discrete scheme for games

w(xi ) = max
b

min
a

[βw(xi + hf (xi , a, b)] + 1− β for i ∈ Iin

w(xi ) = 1 for i ∈ Iout2
w(xi ) = 0 for i ∈ IT ∪ Iout1



Fully discrete scheme for games

where

β = e−h

Iin = {i : xi ∈ Q \ T }
IT = {i : xi ∈ T ∩ Q}
Iout1 = {i : xi /∈ Q2}

Iout2 = {i : xi /∈ Q2 \ Q}
Q = Q1 ∩ Q2



Properties of the scheme for games

THEOREM
The operator S : [0, 1]L → [0, 1]L, moreover:

U ≤ V ⇒ S(U) ≤ S(V )

S is a contraction map.

Let U∗ be the unique fixed point, we define

w(xi ) = U∗i ∀ i

w(x) =
∑

j λij(a, b)w(xj)



Convergence for games

Naturally w depends on the discretization steps, h and k .

THEOREM
Let T be the closure of an open set with Lipschitz boundary, “diam
Q → +∞” and v continuous. Then

wh,k → v on compact sets of RN

for h→ 0+ and k
h → 0+.



Convergence: discontinuous value

Let w ε
n be the sequence generated by the numerical scheme with target

Tε = {x : d(x , T ) ≤ ε}

THEOREM
For all x there exists the limit

w(x) = lim
ε→0+
n→+∞
n≥n(ε)

w ε
n(x)

and it coincides with the lower value V of the game with target T , i.e.

w = V

The convergence is uniform on every compact set where V is continuous.



Error estimates (Soravia (1998))

Assume for simplicity Lf ≤ 1 and v Lipschitz continuous.

Then,

‖wh,k − v‖∞ ≤ Ch1/2

(
1 +

(
k

h

)2
)



Synthesis of Feedback Controls

The algorithm computes also an approximate optimal control at each
point of the grid . However by w we can also compute an approximate
optimal feedback at each point of Q, i.e. we can define the feedback map
F : Q → A

x → F (x) = akx feedback

where akx is the argmin of

I k(x , a) ≡ e−hw(x + hf (x , a)) + 1− e−h

Note that I k(x , ·) has a minimum over A (compact), but the minimum
point may be not unique.



Feedback selection

We want to construct a selection, e.g. take a strictly convex φ and define

Ak
x = {a∗ ∈ A : I kx (x , a∗) = min

A
I k(x , a)}

The selection is
arg min

Ak
x

φ(a)



Discrete optimal trajectories

To compute the discrete optimal trajectories, we define the piecewise
constant control (in time)

ak(s) = akyn,h s ∈ [nh, (n + 1)h[

where yn,h = state of the Euler scheme, step h.

Error estimates of the approximation of feedbacks and optimal trajectories
are available for control problems (F. 2001).



Feedback controls for games

The algorithm computes an approximate optimal control couple (a∗, b∗) at
each point of the grid. By w we can also compute an approximate optimal
feedback at every point of Q.

(a∗, b∗) ≡ argminmax{e−hw(x + hf (x , a, b))}+ 1− e−h

In case of multiple solutions we can select a unique couple, e.g.
minimizing two convex functionals.

We can also introduce an inertia criterium to stabilize the trajectories, i.e.
if a at step n + 1 the set of optimal couples contains (a∗n, b

∗
n) we keep it.



Eikonal equation

Distance from the origin. Ω = {(0, 0)} , c(x , y) ≡ 1
Exact solution: T (x , y) =

√
(x2 + y2)

method ∆x L∞ error L1 error CPU time (sec)

SL (46 its.) 0.08 0.0329 0.3757 8.4
FM-FD 0.08 0.0875 0.7807 0.5

FM-SL 0.08 0.0329 0.3757 0.7

FM-FD: Fast Marching Method based on define differences
FM-SL: Fast Marching Method based on the DP scheme (semi-lagrangian)



Minimum time problem with variable velocity

Eikonal equation with velocity c(x , y) = |x + y |.



The Tag-Chase Game

Dynamics
fP(y , a, b) = vPa fE (y , a, b) = vEb

vP = 2 vE = 1

Admissible control sets
A = B = B(0, 1)

Relative coordinates
x̃ = (xE − xP) cos θ − (yE − yP) sin θ
ỹ = (xE − xP) sin θ − (yE − yP) cos θ



Optimal trajectories
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The Tag-Chase game with directional constraints

Dynamics
fP(y , a, b) = vPa fE (y , a, b) = vEb

vP = 2 vE = 1

Admissible control sets
A = B(0, 1)

B = B(0, 1) \ S

where
S = (ρ cos θ, ρ sin θ), θ ∈ (θ1, θ2), |ρ| ≤ 1

So the pursuer has a forbidden cone of directions.



Value Function

Test 4
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Optimal Trajectories
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The Homicidal chauffeur

Dynamics 
ẋP = vP sin θ
ẏP = vP cos θ
ẋE = vE sin b
ẏE = vE cos b

θ̇ = R
vP

a



Value Function

Test 5
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The value function is discontinuous on the barriers



Optimal Trajectories
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Optimal Trajectories
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Optimal Trajectories (Merz Thesis)



Optimal Trajectories (computed)
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The Tag-chase game in a courtyard, Vp > Ve



The Tag-chase game in a courtyard, Vp > Ve



Efficient methods

In order to overcome the curse of dimensionality and reduce the memory
allocation requirements one can modify the standard approximation
scheme based on a fixed point iteration of a discrete Hamilton-Jacobi
equation derived by DP.

Recent extensions include:
Fast Marching/Fast Sweeping Methods
Parallel Methods
Domain Decomposition techniques
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