
MPRI 1-22 Basics of Verification January 10, 2019

TD 12: Petri Net Unfoldings, Pushdown Systems

Exercise 1 (Comparison). Let us compare the reduction technique based on ample sets
with Petri net unfoldings. We shall see that both have advantages and disadvantages
over each other.

For a Petri net N , let U(N) be its unfolding andM(N) be the associated transition
system in which, for simplicity, we assume all actions to be invisible, and that the
independence relation used for reduction is maximal.

1. First, construct a Petri net N with two transitions a, b such that: (i) the input
places of a and b overlap; (ii) a and b are independent in M(N).

In the following, let (Nk)k≥1 be a family of 1-safe Petri nets such that for all k, the
size of Nk is O(k).

2. Construct a family of nets such that for all k, any complete prefix of U(Nk) is at
least of size 2k, but red(M(Nk)) is of size O(k).

3. Construct a family of nets such that for all k, red(M(Nk)) is at least of size 2k,
but there is a complete prefix of U(Nk) of size O(k).

Hint: It suffices to regard nets whose rechability graph is acyclic. For (3), try to construct
Nk from k separate components such that U(Nk) is simply the juxtaposition of the
unfoldings of the components.

Exercise 2 (Adequate Partial Orders). A partial order ≺ between events is adequate if
the three following conditions are verified:

(a) ≺ is well-founded,

(b) btc (bt′c implies t ≺ t′, and

(c) ≺ is preserved by finite extensions: as in the lecture notes, if t ≺ t′ and B(t) =
B(t′), and E and E′ are two isomorphic extensions of btc and bt′c with buc = btc⊕E
and bu′c = bt′c ⊕ E′, then u ≺ u′.

As you can guess, adequate partial orders result in complete unfoldings. (An event e is
a cutoff if there exists f ≺ e such that the markings associated with e and f are the
same.)

1. Show that ≺s defined by t ≺s t
′ iff |btc| < |bt′c| is adequate.

2. Construct the finite unfolding of the following Petri net using ≺s; how does the
size of this unfolding relate to the number of reachable markings?

1

MPRI 1-22 Basics of Verification January 10, 2019

p0

p1

p2

t1 t2

t3 t4

3. Suppose we define an arbitrary total order� on the transitions T of the Petri net,
i.e. they are t1 � · · · � tn. Given a set S of events and conditions of Q, ϕ(S) is
the sequence ti11 · · · tinn in T ∗ where ij is the number of events labeled by tj in S.
We also note � for the lexicographic order on T ∗.

Show that≺e defined by t ≺e t
′ iff |btc| < |bt′c| or |btc| = |bt′c| and ϕ(btc)� ϕ(bt′c)

is adequate. Construct the finite unfolding for the previous Petri net using ≺e.

4. There might still be examples where ≺e performs poorly. One solution would be
to use a total adequate order; why? Give a 1-safe Petri net that shows that ≺e is
not total.

Exercise 3 (Computing pre∗(C)). Consider the pushdown system represented below,
with stack alphabet Γ = {a, b}.

p0

p2

p1

p3 p4

p5

p6a | aa
b | ab

a | aa
b | ab

a | aa
b | ab

a | ba
b | bb

b | ε

a | ε

b | ε

a | εa | ε

a | ε

Apply the algorithm described in the lecture notes to compute a P-automaton ac-
cepting pre∗(p6b

∗).

Exercise 4 (Labelled Pushdown Systems). Let P = (P,Γ,∆,Σ) be a labelled pushdown

system, i.e. the rules in ∆ are of the form pA
a
↪→ qw, where p, q ∈ P are control locations,

2

MPRI 1-22 Basics of Verification January 10, 2019

A ∈ Γ and w ∈ Γ∗ are stack symbols, and additionally a ∈ Σ is an action. The set of
configurations Con(P) consists of the tuples qw with q ∈ P and w ∈ Γ∗. For two
configurations c, c′ we write c

w⇒ c′, where w ∈ Σ∗, if c can be transformed into c′ by a
sequence of rules whose labels yield w.

Given a regular set of configurations C, it is known how to compute pre∗(C) = { c ∈
Con(P) | ∃c′ ∈ C,w ∈ Σ∗ : c

w⇒ c′ }. If C is accepted by an automaton with n states,
this takes O(n2 · |∆|) time.

1. Let L ⊆ Σ∗ be a regular language and C be a regular set of configurations. We
define

pre∗[L](C) := { c ∈ Con(P) | ∃c′ ∈ C,w ∈ L : c
w⇒ c′ }.

One can prove that pre∗[L](C) is regular. Describe how to compute a finite au-
tomaton accepting pre∗[L](C).

2. Give a bound on the amount of time it takes to compute pre∗[L](C).

Exercise 5 (Data-flow Analysis). We consider a problem from interprocedural data-flow
analysis. A program consists of a set Proc of procedures that can execute and recursively
call one another. The behaviour of each procedure p is described by a flow graph, an
example with two procedures is shown below.

n2 xInit

n1

eInit

NInit

xp

n3

ep

Np

x = 5

call(p)
skip

skip

y = 2x

x = 0

Formally, a flow graph for procedure p ∈ Proc is a tuple Gp = (Np, A,Ep, ep, xp),
where

• Np are the nodes, corresponding to program locations; we denote N :=
⋃

p∈Proc Np.

• A = AI ∪{ call(p) | p ∈ Proc } are the actions, where AI are internal actions (such
as assignments etc); additionally an action can call some procedure. A is identical
for all procedures.

3

MPRI 1-22 Basics of Verification January 10, 2019

• Ep ⊆ Np × A × Np are the edges, labelled with actions from A. We denote
E :=

⋃
p∈Proc Ep.

• ep is the entry point of procedure p, i.e. when p is called, execution will start at ep.

• xp is the exit point of p (without any outgoing edges); when xp is reached, p
terminates and execution resumes at last call site of p.

1. Construct a labelled pushdown system with one single control location that ex-
presses the behaviour of the procedures in Proc.

Suppose that the internal actions in AI describe assignments to global variables,
i.e. they are of the form v := expr, where v is a variable and expr the right-hand-side
expression. If v is a variable, then Dv ⊆ AI is the set of actions that assign a value to v
and Rv ⊆ AI the set of actions where v occurs on the right-hand side.

Let Init ∈ Proc be an initial procedure and n ∈ N a node in the flow graph. We say
that variable v is live at n if there exists a node n′ and an execution that (i) starts at
eInit , (ii) passes n, (iii) finally reaches n′ with an action from Rv, and (iv) there is no
assignment to v between n and n′ in this execution. (Intuitively, this means that the
value that v has at n matters for some execution; this is used in compiler construction
to determine whether an optimizing compiler may “forget” the value of v at n.) For
instance, in the shown example, the variable x is live at n1 and ep, but not in the other
nodes.

2. Describe a regular language L ⊆ A∗ that describes the sequences of actions that
can happen along such executions between n and n′.

3. Describe how, given a variable v, one can compute the set of nodes n such that v
is live at n.

4

