MPRI 1-22 Basics of Verification January 10, 2019

TD 12: Petri Net Unfoldings, Pushdown Systems

Exercise 1 (Comparison). Let us compare the reduction technique based on ample sets
with Petri net unfoldings. We shall see that both have advantages and disadvantages
over each other.

For a Petri net N, let U(N) be its unfolding and M (N) be the associated transition
system in which, for simplicity, we assume all actions to be invisible, and that the
independence relation used for reduction is maximal.

1. First, construct a Petri net N with two transitions a,b such that: (i) the input
places of a and b overlap; (ii) a and b are independent in M(N).

In the following, let (Ng)g>1 be a family of 1-safe Petri nets such that for all k, the
size of Ny is O(k).

2. Construct a family of nets such that for all k, any complete prefix of U(Ny) is at
least of size 2%, but red(M(Ny)) is of size O(k).

3. Construct a family of nets such that for all k, red(M(INy)) is at least of size 2,
but there is a complete prefix of U(Ny) of size O(k).

Hint: It suffices to regard nets whose rechability graph is acyclic. For (3), try to construct
Ny, from k separate components such that U(N) is simply the juxtaposition of the
unfoldings of the components.

Exercise 2 (Adequate Partial Orders). A partial order < between events is adequate if
the three following conditions are verified:

(a) < is well-founded,
(b) |t] € [t'] implies ¢ < ¢, and

(c) < is preserved by finite extensions: as in the lecture notes, if ¢ < ¢ and B(t) =
B(t'), and E and E’ are two isomorphic extensions of |¢| and || with |u] = |t|DFE
and |v'| = [¢'| ® F', then u < v’

As you can guess, adequate partial orders result in complete unfoldings. (An event e is
a cutoff if there exists f < e such that the markings associated with e and f are the
same.)

1. Show that <, defined by t <, ¢ iff ||¢|| < |[¢']| is adequate.

2. Construct the finite unfolding of the following Petri net using <s; how does the
size of this unfolding relate to the number of reachable markings?

MPRI 1-22 Basics of Verification January 10, 2019

SR)

N~
[

tg :\C)}: m
Oy

3. Suppose we define an arbitrary total order < on the transitions 7" of the Petri net,
i.e. they are t) < --- < t,,. Given a set S of events and conditions of Q, ¢(S) is
the sequence t!' - - - tin in T* where ij is the number of events labeled by ¢; in S.
We also note < for the lexicographic order on T™.

Show that <. defined by t <. ¢ iff ||[¢]| < |[t']| or ||¢]] = |[¥'|| and ¢(|t]) < ©([t'])
is adequate. Construct the finite unfolding for the previous Petri net using ..

4. There might still be examples where <, performs poorly. One solution would be
to use a total adequate order; why? Give a 1-safe Petri net that shows that <. is
not total.

Exercise 3 (Computing pre*(C')). Consider the pushdown system represented below,
with stack alphabet I' = {a, b}.

Apply the algorithm described in the lecture notes to compute a P-automaton ac-
cepting pre*(pgb*).

Exercise 4 (Labelled Pushdown Systems). Let P = (P,I', A, ¥) be a labelled pushdown
. . a .
system, i.e. the rules in A are of the form pA — qw, where p, ¢ € P are control locations,

MPRI 1-22 Basics of Verification January 10, 2019

A €T and w € I'* are stack symbols, and additionally a € X is an action. The set of
configurations Con(P) consists of the tuples qw with ¢ € P and w € T'*. For two
configurations ¢, ¢ we write ¢ = ¢/, where w € ¥*, if ¢ can be transformed into ¢ by a
sequence of rules whose labels yield w.

Given a regular set of configurations C, it is known how to compute pre*(C) = {c €
Con(P) | 3¢ € C,w € £* : ¢ = ¢ }. If C is accepted by an automaton with n states,
this takes O(n? - |A|) time.

1. Let L C ¥* be a regular language and C be a regular set of configurations. We
define
pre*[L](C) :={c€ Con(P) |3 e C,we L:c= ¢ }.

One can prove that pre*[L](C) is regular. Describe how to compute a finite au-
tomaton accepting pre*[L](C).

2. Give a bound on the amount of time it takes to compute pre*[L](C).

Exercise 5 (Data-flow Analysis). We consider a problem from interprocedural data-flow
analysis. A program consists of a set Proc of procedures that can execute and recursively
call one another. The behaviour of each procedure p is described by a flow graph, an
example with two procedures is shown below.

Nnit Np
T=25 y =2
. o
call(p) skip =0

N9 Lp
skip @ Q

Formally, a flow graph for procedure p € Proc is a tuple G, = (Np, A, Ep, ep,),
where

e N, are the nodes, corresponding to program locations; we denote N := Np.

p€E Proc

o A= ArU{call(p) | p € Proc} are the actions, where A are internal actions (such
as assignments etc); additionally an action can call some procedure. A is identical
for all procedures.

MPRI 1-22 Basics of Verification January 10, 2019

o £, C N, x Ax N, are the edges, labelled with actions from A. We denote
E= UpEProc EP‘

e ¢, is the entry point of procedure p, i.e. when p is called, execution will start at e,.

e 1, is the exit point of p (without any outgoing edges); when z, is reached, p
terminates and execution resumes at last call site of p.

1. Construct a labelled pushdown system with one single control location that ex-
presses the behaviour of the procedures in Proc.

Suppose that the internal actions in Aj describe assignments to global variables,
i.e. they are of the form v := expr, where v is a variable and expr the right-hand-side
expression. If v is a variable, then D, C Ay is the set of actions that assign a value to v
and R, C Ay the set of actions where v occurs on the right-hand side.

Let Init € Proc be an initial procedure and n € N a node in the flow graph. We say
that variable v is live at n if there exists a node n’ and an execution that (i) starts at
emit, (i) passes n, (iii) finally reaches n’ with an action from R,, and (iv) there is no
assignment to v between n and n’ in this execution. (Intuitively, this means that the
value that v has at n matters for some execution; this is used in compiler construction
to determine whether an optimizing compiler may “forget” the value of v at n.) For
instance, in the shown example, the variable x is live at n; and e,, but not in the other
nodes.

2. Describe a regular language L C A* that describes the sequences of actions that
can happen along such executions between n and n’.

3. Describe how, given a variable v, one can compute the set of nodes n such that v
is live at n.

