TD 10: Petri Nets

Exercise 1 (Traffic Lights). Consider again the traffic lights example from the lecture notes:

1. How can you correct this Petri net to avert unwanted behaviours (like \(r \rightarrow ry \rightarrow rr \)) in a 1-safe manner?

2. Extend your Petri net to model two traffic lights handling a street intersection.

Exercise 2 (Producer/Consumer). A producer/consumer system gathers two types of processes:

- **producers** who can make the actions *produce* (\(p \)) or *deliver* (\(d \)), and
- **consumers** with the actions *receive* (\(r \)) and *consume* (\(c \)).

All the producers and consumers communicate through a single unordered channel.

1. Model a producer/consumer system with two producers and three consumers. How can you modify this system to enforce a maximal capacity of ten simultaneous items in the channel?

2. An *inhibitor arc* between a place \(p \) and a transition \(t \) makes \(t \) firable only if the current marking at \(p \) is zero. In the following example, there is such an inhibitor arc between \(p_1 \) and \(t \). A marking \((0, 2, 1)\) allows to fire \(t \) to reach \((0, 1, 2)\), but \((1, 1, 1)\) does not allow to fire \(t \).
Using inhibitor arcs, enforce a priority for the first producer and the first consumer on the channel: the other processes can use the channel only if it is not currently used by the first producer and the first consumer.

Exercise 3 (Model Checking Petri Nets). Let us fix a Petri net \(\mathcal{N} = (P, T, F, W, m_0) \). We consider as usual propositional LTL, with a set of atomic propositions \(\text{AP} \) equal to \(P \) the set of places of the Petri net. We define proposition \(p \) to hold in a marking \(m \) in \(\mathbb{N}^P \) if \(m(p) > 0 \).

The models of our LTL formulae are computations \(m_0 m_1 \cdots \) in \((\mathbb{N}^P)^\omega \) such that, for all \(i \in \mathbb{N} \), \(m_i \xrightarrow{N} m_{i+1} \) is a transition step of the Petri net \(\mathcal{N} \).

1. We want to prove that state-based LTL model checking can be performed in polynomial space for 1-safe Petri nets. For this, prove that one can construct an exponential-sized Büchi automaton \(B_{\mathcal{N}} \) from a 1-safe Petri net that recognizes all the infinite computations of \(\mathcal{N} \) starting in \(m_0 \).

2. In the general case, state-based LTL model checking is undecidable. Prove it for Petri nets with at least two unbounded places, by a reduction from the halting problem for 2-counter Minsky machines.

3. We consider now a different set of atomic propositions, such that \(\Sigma = 2^{\text{AP}} \), and a labeled Petri net, with a labeling homomorphism \(\lambda : T \to \Sigma \). The models of our LTL formulae are infinite words \(a_0 a_1 \cdots \) in \(\Sigma^\omega \) such that \(m_0 \xrightarrow{t_0} \mathcal{N} m_1 \xrightarrow{t_1} \mathcal{N} m_2 \cdots \) is an execution of \(\mathcal{N} \) and \(\lambda(t_i) = a_i \) for all \(i \).

Prove that action-based LTL model checking can be performed in polynomial space for labeled 1-safe Petri nets.

Exercise 4 (VASS). An \(n \)-dimensional vector addition system with states (VASS) is a tuple \(\mathcal{V} = (Q, \delta, q_0) \) where \(Q \) is a finite set of states, \(q_0 \in Q \) the initial state, and \(\delta \subseteq Q \times \mathbb{Z}^n \times Q \) the transition relation. A configuration of \(\mathcal{V} \) is a pair \((q, v) \) in \(Q \times \mathbb{N}^n \). An execution of \(\mathcal{V} \) is a sequence of configurations \((q_0, v_0)(q_1, v_1) \cdots (q_m, v_m) \) such that \(v_0 = \bar{0} \), and for \(0 < i \leq m \), \((q_{i-1}, v_i - v_{i-1}, q_i) \) is in \(\delta \).

1. Show that any VASS can be simulated by a Petri net.
2. Show that, conversely, any Petri net can be simulated by a VASS.

Exercise 5 (VAS). An n-dimensional vector addition system (VAS) is a pair $\langle v_0, W \rangle$ where $v_0 \in \mathbb{N}^n$ is the initial vector and $W \subseteq \mathbb{Z}^n$ is the set of transition vectors. An execution of (v_0, W) is a sequence $v_0v_1\cdots v_m$ where $v_i \in \mathbb{N}$ for all $0 \leq i \leq m$ and $v_i - v_{i-1} \in W$ for all $0 < i \leq m$.

We want to show that any n-dimensional VASS $V = \langle Q, \delta, q_0 \rangle$ can be simulated by an $(n + 3)$-dimensional VAS (v_0, W). Let $k = |Q|$, and q_0, \ldots, q_{k-1} the states of V. We define two functions $a(i) = i + 1$ and $b(i) = (k+1)(k - i)$. We encode a configuration (q_i, v) of V as the vector $(v(1), \ldots, v(n), a(i), b(i), 0)$. For every state q_i, $0 \leq i < k$, we add two transition vectors to W:

\begin{align*}
t_i &= (0, \ldots, 0, -a(i), a(k - 1 - i) - b(i), b(k - 1 - i)) \\
t'_i &= (0, \ldots, 0, b(i), -a(k - 1 - i), a(i) - b(k - 1 - i))
\end{align*}

For every transition $d = (q_i, w, q_j)$ of V, we add one transition vector to W:

\[t_d = (w(1), \ldots, w(n), a(j) - b(i), b(j), -a(i)) \]

1. Show that any execution of V can be simulated by (v_0, W) for a suitable v_0.
2. Conversely, show that this VAS (v_0, W) simulates V faithfully.