TD 5: Büchi Automata and LTL Model-Checking

Exercise 1 (Synchronous Büchi Transducers). Give unambigous synchronous Büchi transducers for the following formulæ:

- 1. SF q
- 2. SG q
- 3. $G(p \rightarrow Fq)$

Exercise 2 (Closure by Complementation). The purpose of this exercise is to prove that $\operatorname{Rec}(\Sigma^{\omega})$ is closed under complement. We consider for this a Büchi automaton $\mathcal{A} = (Q, \Sigma, T, I, F)$, and want to prove that its complement language $\overline{L(\mathcal{A})}$ is in $\operatorname{Rec}(\Sigma^{\omega})$.

We write $q \xrightarrow{u} q'$ for q, q' in Q and $u = a_1 \cdots a_n$ in Σ^* if there exists a sequence of states q_0, \ldots, q_n such that $q_0 = q, q_n = q'$ and for all $0 \le i < n, (q_i, a_{i+1}, q_{i+1})$ is in T. We write in the same way $q \xrightarrow{u}_F q'$ if furthermore at least one of the states q_0, \ldots, q_n belongs to F.

We define the *congruence* $\sim_{\mathcal{A}}$ over Σ^* by

$$u \sim_{\mathcal{A}} v \text{ iff } \forall q, q' \in Q, \ (q \xrightarrow{u} q' \Leftrightarrow q \xrightarrow{v} q') \text{ and } (q \xrightarrow{u}_F q' \Leftrightarrow q \xrightarrow{v}_F q').$$

- 1. Show that $\sim_{\mathcal{A}}$ has finitely many congruence classes [u], for u in Σ^* .
- 2. Show that each [u] for u in Σ^* is in $\operatorname{Rec}(\Sigma^*)$, i.e. is a regular language of finite words.
- 3. Consider the language K(L) for $L \subseteq \Sigma^{\omega}$

$$K(L) = \bigcup_{\substack{u,v \in \Sigma^* \\ [u][v]^{\omega} \cap L \neq \emptyset}} [u][v]^{\omega}$$

Show that K(L) is in $\operatorname{Rec}(\Sigma^{\omega})$ for any $L \subseteq \Sigma^{\omega}$.

- 4. Show that $K(L(\mathcal{A})) \subseteq L(\mathcal{A})$ and $K(\overline{L(\mathcal{A})}) \subseteq \overline{L(\mathcal{A})}$.
- 5. Prove that for any infinite word σ in Σ^{ω} there exist u and v in Σ^* such that σ belongs to $[u][v]^{\omega}$. The following theorem might come in handy when applied to couples of positions (i, j) inside σ :

Theorem 1 (Ramsey, infinite version). Let $E = \{(i, j) \in \mathbb{N}^2 \mid i < j\}$, and $c : E \to \{1, \ldots, k\}$ a k-coloring of E. There exists an infinite set $A \subseteq \mathbb{N}$ and a color $i \in \{1, \ldots, k\}$ such that for all $(n, m) \in A^2$ with n < m, c(n, m) = i.

6. Conclude.

Exercise 3 (Model Checking a Path). Consider the time flow $(\mathbb{N}, <)$. We want to verify a model which is an ultimately periodic word $w = uv^{\omega}$ with u in Σ^* and v in Σ^+ , where $\Sigma = 2^{\text{AP}}$.

Give an algorithm for checking whether $w, 0 \models \varphi$ holds, where φ is a LTL(AP, X, U) formula, in time bounded by $O(|uv| \cdot |\varphi|)$. *Hint: reduce this to a CTL model-checking problem.*

Exercise 4 (Complexity of LTL(F)). Fix $\Sigma = 2^{AP}$ and let $w = w_0 w_1 w_2 \cdots$ be an infinite word in Σ^{ω} . Let

$$\mathsf{alph}(w) = \{a \in \Sigma \mid |w|_a \ge 1\}$$

be the set of letters appearing in w and

$$\inf(w) = \{a \in \Sigma \mid |w|_a = \infty\}$$

be the set of letters appearing infinitely often in w. We consider *decompositions* $u \cdot v$ in $\Sigma^* \times \Sigma^\infty$ (where $\Sigma^\infty = \Sigma^* \cup \Sigma^\omega$) such that $\mathsf{alph}(v) = \mathsf{inf}(v)$; this definition enforces that either $v = \varepsilon$ or v is in Σ^ω . Given an infinite word w there exists a unique decomposition $w = u \cdot v$ with $u \in \Sigma^*$, $v \in (\mathsf{inf}(w))^\omega$, and u of minimal length.

Define the size $||u \cdot v||$ of a decomposition pair $u \cdot v$ as $||u \cdot v|| = |u| + |\inf(v)|$. Our goal is, for any satisfiable φ in LTL(F), to prove the existence of a model $w = u \cdot v$ with $||u \cdot v|| \leq |\varphi|$.

- 1. Consider an infinite word w decomposed as $u \cdot v$ and two indices $i, j \ge |u|$ with $w_i = w_j$; show that for all φ in LTL(F), $w, i \models \varphi$ iff $w, j \models \varphi$.
- 2. Let w, w' be two infinite words decomposed as $u \cdot v$ and $u \cdot v'$ (thus with a shared initial prefix) with $\inf(w) = \inf(w')$ and $w_0 = w'_0$ (necessary in case $u = \varepsilon$). Show that for all φ in LTL(F), $w, 0 \models \varphi$ iff $w', 0 \models \varphi$.

Let $\Sigma^{\infty} = \Sigma^* \cup \Sigma^{\omega}$. For a word $\sigma \in \Sigma^{\infty}$, denote by \mathbb{T}_{σ} the set of positions of σ : $\mathbb{T}_{\sigma} = \mathbb{N}$ if $\sigma \in \Sigma^{\omega}$, and $\mathbb{T}_{\sigma} = \{0, \ldots, |\sigma| - 1\}$ if $\sigma \in \Sigma^*$.

Let σ, σ' be words in Σ^{∞} ; σ' is a subword of σ , noted $\sigma' \leq \sigma$, if there exists a monotone injection $f_{\sigma'} : \mathbb{T}_{\sigma'} \to \mathbb{T}_{\sigma}$ s.t. for all $i \in \mathbb{T}_{\sigma'}, \sigma'_i = \sigma_{f_{\sigma'}(i)}$. We denote by $R_{\sigma'} = f_{\sigma'}(\mathbb{T}_{\sigma'})$ the set of preserved positions. Note that for every $R \subseteq \mathbb{T}_{\sigma}$, there exists a unique $\sigma' \leq \sigma$ and $f_{\sigma'}$ such that $R_{\sigma'} = R$.

Given a decomposition $u \cdot v$, a subdecomposition $u' \cdot v'$ is a decomposition such that $u' \leq u$ and $v' \leq v$ (by definition this enforces alph(v') = inf(v')). We write $R_{u'\cdot v'}$ for $R_{u'} \cup \{|u'| + i \mid i \in R_{v'}\}$; this is compatible with the notion of subwords on the words $w' = u' \cdot v'$ and $w = u \cdot v$.

3. Given two subdecompositions $u_1 \cdot v_1$ and $u_2 \cdot v_2$ of some decomposition $u \cdot v$, show that $u' \cdot v'$ with $R_{u'} = R_{u_1} \cup R_{u_2}$ and $R_{v'} = R_{v_1} \cup R_{v_2}$ is a subdecomposition of $u \cdot v$ that verifies $||u' \cdot v'|| \leq ||u_1 \cdot v_1|| + ||u_2 \cdot v_2||$. 4. Consider a formula φ in LTL(F). We denote by $m(\varphi)$ the number of F modalities in φ . Show that φ can be transformed into an equivalent formula $\psi \in \text{NNF}(\mathsf{F},\mathsf{G})$ such that $m(\psi) \leq m(\varphi)$, where $\text{NNF}(\mathsf{F},\mathsf{G})$ is the set of formulæ in negative normal form (where negations only occur in front of atomic fomulæ) using only F and G modalities:

$$\psi ::= p \mid \neg p \mid \psi \lor \psi \mid \psi \land \psi \mid \mathsf{F} \psi \mid \mathsf{G} \psi$$

- 5. Let w be an infinite word in Σ^{ω} decomposed as $w = u \cdot v$ and let ψ in NNF(F, G). Show by induction on ψ that, for all subdecompositions $u' \cdot v'$ of $u \cdot v$ s.t. for all $i \in R_{u' \cdot v'}, w, i \models \psi$, there exists a subdecomposition $\sigma \cdot \tau$ of $u \cdot v$ of size $\|\sigma \cdot \tau\| \leq m(\psi)$ such that, for all subdecompositions $\sigma' \cdot \tau'$ of $u \cdot v$ for which $\sigma \cdot \tau$ is a sub-subdecomposition, and for all $i \in R_{u' \cdot v'} \cap R_{\sigma' \cdot \tau'}, \sigma' \cdot \tau', f_{\sigma' \cdot \tau'}^{-1}(i) \models \psi$.
- 6. Show that for all satisfiable φ in LTL(F), there exists $w = u \cdot v$ with $||u \cdot v|| \le |\varphi|$ such that $w, 0 \models \varphi$.
- 7. Show that SAT(LTL(F)) and $MC^{\exists}(LTL(F))$ are in NP.
- 8. Show that SAT(LTL(F)) and $MC^{\exists}(LTL(F))$ are NP-hard.