Homework 7

To hand in on November 22th at the beginning of the exercise session, or by mail (before 14:00) at marie.fortin@lsv.fr.

Answers can be written in french or in english.

Exercise 1. Fix a set of atomic propositions AP, and $\Sigma = 2^{\text{AP}}$. Recall that $\sigma, \rho \in \Sigma^{\omega}$ are stuttering equivalent, written $\sigma \sim \rho$, when there exist infinite integer sequences $0 = i_0 < i_1 < \cdots$ and $0 = k_0 < k_1 < \cdots$ such that for all $\ell \ge 0$,

$$\sigma(i_{\ell}) = \sigma(i_{\ell}+1) = \dots = \sigma(i_{\ell+1}-1) = \rho(k_{\ell}) = \rho(k_{\ell}+1) = \dots = \rho(k_{\ell+1}-1),$$

where $\sigma(i) \in \Sigma$ denotes the letter at position *i* in σ .

A language $L \subseteq \Sigma^{\omega}$ is stutter-invariant if for all stuttering equivalent words $\sigma, \rho \in \Sigma^{\omega}$, we have $\sigma \in L$ if and only if $\rho \in L$.

1. Show that if φ is an LTL(AP, U) formula, then $L(\varphi) = \{ \sigma \in \Sigma^{\omega} \mid \sigma, 0 \models \varphi \}$ is stutter-invariant.

A word $\sigma \in \Sigma^{\omega}$ is *stutter-free* if, for all $i \in \mathbb{N}$, either $\sigma(i) \neq \sigma(i+1)$, or $\sigma(i) = \sigma(j)$ for all $j \geq i$. Notice that if σ is stutter-free, any suffix of σ is also stutter-free.

- 2. Show that for all $\sigma \in \Sigma^{\omega}$, there exists a unique $\sigma' \in \Sigma^{\omega}$ such that σ' is stutter-free and $\sigma \sim \sigma'$.
- 3. Given $a \in \Sigma$, we write a for the formula $\bigwedge_{p \in a} p \land \bigwedge_{p \notin a} \neg p$. That is, $\sigma, i \models a$ if and only if $\sigma(i) = a$.
 - (a) Give a formula $\psi_{a,a}$ in LTL(AP, U) such that for all *stutter-free* words $\sigma \in \Sigma^{\omega}$, we have $\sigma, 0 \models \psi_{a,a}$ if and only if $\sigma, 0 \models a \land X a$.
 - (b) Let $a, b \in \Sigma$ with $a \neq b$. Give a formula $\psi_{a,b}$ in LTL(AP, U) such that for all stutter-free words $\sigma \in \Sigma^{\omega}$, we have $\sigma, 0 \models \psi_{a,b}$ if and only if $\sigma, 0 \models a \land X b$.
- 4. Let φ be any LTL(AP, X, U) formula. Construct by induction on φ an LTL(AP, U) formula $\tau(\varphi)$ such that for all *stutter-free* words $\sigma \in \Sigma^{\omega}$, we have $\sigma, 0 \models \varphi$ iff $\sigma, 0 \models \tau(\varphi)$.
- 5. Let φ be an LTL(AP, X, U) formula such that $L(\varphi)$ is stutter-invariant. Show that $L(\varphi) = L(\tau(\varphi))$.