Exercise 1 (Complexity of LTL(X)). We want to show that LTL(X) existential model checking is NP-complete (instead of PSPACE-complete for full LTL(SU)).

1. Given $\varphi \in \text{LTL}(X)$, the *temporal depth* of φ is defined as follows:

\[
\begin{align*}
 d(\top) = d(p) &= 0 & d(\neg \varphi) &= d(\varphi) \\
 d(\varphi \lor \varphi') &= \max\{d(\varphi), d(\varphi')\} & d(X \varphi) &= 1 + d(\varphi)
\end{align*}
\]

Show by induction on φ that for all $\varphi \in \text{LTL}(X)$ and $w \in \Sigma^\omega$, if u is the prefix of length $d(\varphi) + 1$ of w, we have $w, 0 \models \varphi$ iff $u\emptyset^\omega, 0 \models \varphi$.

2. Show that $\text{MC}_3(X)$ is in NP:

 Input: $\varphi \in \text{LTL}(X)$ and a finite Kripke structure M.

 Question: Does $M \models_3 \varphi$?

3. Reduce 3SAT to $\text{MC}_3(X)$ in order to prove NP-hardness.