Homework 6

To hand in on November 8th during the partial exam, or by mail (before 14:00) at marie.fortin@lsv.fr.

Answers can be written in french or in english.

Exercise 1 (Complexity of LTL(X)). We want to show that LTL(X) existential model checking is NP-complete (instead of PSPACE-complete for full LTL(SU)).

1. Given $\varphi \in LTL(X)$, the *temporal depth* of φ is defined as follows:

$d(\top) = d(p) = 0$	$d(\neg \varphi) = d(\varphi)$
$d(\varphi \lor \varphi') = \max\{d(\varphi), d(\varphi')\}$	$d(X\varphi) = 1 + d(\varphi)$

Show by induction on φ that for all $\varphi \in LTL(X)$ and $w \in \Sigma^{\omega}$, if u is the prefix of length $d(\varphi) + 1$ of w, we have $w, 0 \models \varphi$ iff $u \emptyset^{\omega}, 0 \models \varphi$.

- 2. Show that $MC^{\exists}(X)$ is in NP: Input: $\varphi \in LTL(X)$ and a finite Kripke structure M. Question: Does $M \models_{\exists} \varphi$?
- 3. Reduce 3SAT to $MC^{\exists}(X)$ in order to prove NP-hardness.