Homework 5

To hand in on October 25th at the beginning of the exercise session, or by mail (before 14:00) at marie.fortin@lsv.fr.

Answers can be written in french or in english.

Fix $AP = \{p, q\}$.

- 1. Give a deterministic synchronous Büchi transducer \mathcal{A}_1 with 2 states for the formula $\varphi_1 = \mathsf{Y}\, p$. Prove that the transducer is correct, i.e., that $[\![\mathcal{A}_1]\!] = [\![\mathsf{Y}\, p]\!]$.
- 2. Give a deterministic synchronous Büchi transducer \mathcal{A}_2 with 2 states for the formula $\varphi_2 = p \, \mathsf{S} \, q$. Prove that $[\![\mathcal{A}_2]\!] = [\![p \, \mathsf{S} \, q]\!]$.
- 3. Give an unambiguous synchronous Büchi transducer \mathcal{A}_3 with 3 states for the formula $\varphi_3 = \mathsf{G}\,p$. Prove that \mathcal{A}_3 is unambiguous, and that $[\![\mathcal{A}_3]\!] = [\![\mathsf{G}\,p]\!]$.
- 4. Give an unambiguous synchronous Büchi transducer \mathcal{A}_3 with 3 states for the formula $\varphi_4 = p \operatorname{R} q$. Prove that \mathcal{A}_4 is unambiguous, and that $[\![\mathcal{A}_4]\!] = [\![p \operatorname{R} q]\!]$.