Homework 4

To hand in on October 18th at the beginning of the exercise session, or by mail (before 14:00) at marie.fortin@lsv.fr.

Answers can be written in french or in english.

Exercise 1. Let AP = $\{p,q\}$, and $\Sigma = 2^{AP} = \{a,b,c,d\}$, where $a = \{p\}$, $b = \{q\}$, $c = \{p,q\}$, and $d = \emptyset$. We identify each letter in Σ with a boolean formula over AP, for instance, $a = p \land \neg q$.

For each LTL formula φ below, give a Büchi automaton acccepting the language $L(\varphi) = \{w \in \Sigma^{\omega} \mid w, 0 \models \varphi\}.$

- 1. $G(a \rightarrow (\neg a SU b))$
- 2. $(\mathsf{GF} a) \wedge (\mathsf{F} b) \wedge \neg (\mathsf{GF} c)$
- 3. $(\mathsf{F}\mathsf{G} a) \to (\mathsf{G}\mathsf{F} b)$
- 4. $G((a \lor b) \cup (c \lor d))$

Exercise 2. A Büchi automaton $\mathcal{A} = (Q, \Sigma, I, T, F)$ is deterministic if $|I| \leq 1$, and for each state q in Q and symbol a in Σ , $|\{(q, a, q') \in T \mid q' \in Q\}| \leq 1$.

- 1. Show that the set of languages recognizable by Büchi automata, and the set of languages recognizable by *deterministic* Büchi automata, are closed under intersection.
- 2. Show that the set of languages recognizable by Büchi automata, and the set of languages recognizable by *deterministic* Büchi automata, are closed under union.