Homework 10

To hand in on December 13th at the beginning of the exercise session, or by mail (before 14:00) at marie.fortin@lsv.fr.

Answers can be written in french or in english.

Exercise 1. Let \mathcal{N} be the following Petri net:

1. Draw the reachability graph of \mathcal{N}. A marking m will be denoted by the tuple $\langle m(p_1), m(p_2), m(p_3), m(p_4) \rangle$, for instance the initial marking is $\langle 1, 0, 0, 1 \rangle$.

2. Is \mathcal{N} 1-safe ? 2-safe ? 3-safe ?

Exercise 2. We say that a Petri net $\mathcal{N} = \langle P, T, W, m_0 \rangle$ is acyclic if the directed graph $G_\mathcal{N} = (P \cup T, F)$ does not contain any cycle. Let \mathcal{A} denote the class of Petri nets that are 1-safe and acyclic.

1. Let $\mathcal{N} = \langle P, T, F, m_0 \rangle$ be a Petri net.

 (a) Show that if $m \xrightarrow{t_1} m_1 \xrightarrow{t_2} m'$ in \mathcal{N} and $t_1 \bullet \cap t_2 = \emptyset$, then there exists a marking m_2 such that $m \xrightarrow{t_2} m_2 \xrightarrow{t_1} m'$.

 (b) Let $m_1 \xrightarrow{t_1} m_2 \xrightarrow{t_2} \cdots \xrightarrow{t_k} m_{k+1}$ be an execution in \mathcal{N} for some $k > 1$. Assume that for all $1 < i < k$, there exists a nonempty path from t_1 to t_i in the graph $G_\mathcal{N}$, and that there is no nonempty path from t_1 to t_k in $G_\mathcal{N}$. Show that there exists an execution $m_1 \xrightarrow{t_k} m'_1 \xrightarrow{t_1} m'_2 \xrightarrow{t_2} \cdots \xrightarrow{t_{k-1}} m'_k = m_{k+1}$.
2. Let \(\mathcal{N} = \langle P, T, F, W, m_0 \rangle \) be a 1-safe, acyclic Petri net. We assume that for all \(t \in T, t \neq \emptyset \) or \(t^* \neq \emptyset \).

(a) Show that there is no reachable marking \(m \) from which some transition \(t \) can fire twice, i.e. that there are no \(t, m, m', m'' \) such that \(m \) is reachable from \(m_0 \) and \(m \xrightarrow{t} m' \xrightarrow{t} m'' \).

(b) Show that for all executions \(m_0 \xrightarrow{t_1} m_1 \xrightarrow{t_2} \cdots \xrightarrow{t_n} m_n \) in \(\mathcal{N} \), we have \(t_i \neq t_j \) for all \(i \neq j \).

3. Show that the reachability problem for the class \(\mathcal{A} \) is in NP.