
MPRI 1-22 Basics of Verification September 24, 2018

Homework 1

To hand in on September 27th at the beginning of the exercise session, or by
mail (before 14:00) at marie.fortin@lsv.fr.

Exercise 1 (Mutual Exclusion).

1. The following program is a mutual exclusion protocol for two processes due to
Pnueli. There is a shared boolean variable s, initialized to 1, and two shared
boolean variables yi, i in {0, 1}, initialized to 0. Each process Pi can read the
values of s, y0, and y1, but only write a new value in s and yi. Here is the code of
process Pi in C-like syntax:

while (true)
{
/∗ 1: Noncritical section . ∗/
atomic { yi = 1; s = i; };
/∗ 2: Wait for turn. ∗/
wait until ((y1−i == 0) || (s != i));
/∗ 3: Critical section . ∗/
yi = 0;
}

Draw the transition system of each process, and construct their parallel compo-
sition. Label the states appropriately using the atomic propositions wi and ci,
holding when process Pi is waiting or in the critical section, respectively.

2. Does the algorithm ensure mutual exclusion, i.e. that the two processes can never
be simultaneously inside the critical section?

3. Does the algorithm ensure starvation freedom, i.e. that every waiting process will
eventually access the critical section, provided that the other process does not stay
forever inside the critical section?

Exercise 2 (Vending Machines). Let C ⊆ N be a finite set of coin denominations
(for instance, C = {5, 10, 20, 50, 100, 200}), and P a finite set of products (for instance,
P = {coffee, tea}). We call vending machine any program m following the syntax below:

1

MPRI 1-22 Basics of Verification September 24, 2018

m ::= deliver(p) /∗ Deliver a product ∗/
| count := count− c /∗ Return a coin ∗/
| req := ⊥ /∗ Erase last request ∗/
| if cond {m} | while cond {m} | m ;m

cond ::= true | count ≥ n
| req = p /∗ Button for p pressed ∗/
| req = cancel /∗ Cancel button pressed ∗/
| req = ⊥ /∗ No button pressed ∗/

where p ∈ P , c ∈ C, n ∈ N. A user is a program

u ::= count := count + c /∗ Insert a coin ∗/
| req := p | req := cancel /∗ Push a button ∗/
| await(p) /∗ Wait until deliver(p) is performed ∗/
| u ; u

1. Show that any vending machine m can be modeled by a transition system with
variables (see lecture notes) Mm with a finite set of states, one integer variable
count, and one variable req with a finite domain.

2. Give a transition system Musers modeling the set of all executions of all possible
users: for all users u, any execution of u should correspond to some execution of
Musers , and conversely, any execution of Musers should correspond to an execution
of some user u.

3. (a) Let M = (S,Σ, (count, req), (N, P] {cancel), T, I,AP, `) be a transition
system with one integer variable count, one variable req with domain P]
{cancel}, a finite number of states and transitions, and such that all guards
on count appearing in M are of the form count ≥ i or i ≤ count ≤ j for some
constants i, j ∈ N, and all updates of count are of the form count := count−c
or count := count + c for some c ∈ C. Show that the following problem is
decidable:
Input: M as described above, and s ∈ S.
Question: Does there exist ν such that (s, ν) is reachable in M?

(b) Deduce that the satisfaction of the following safety property by a given vend-
ing machine m is decidable: “a coffee cannot be delivered if less than 50c have
been inserted”.

4. (Bonus) Show that the following problem is decidable: given a vending machine
m, is it always the case that if the coffee button is pressed after exactly 50c have
been inserted, and no other button is pressed later, then eventually the machine
gives out coffee?

5. Write a program m satifying these two properties.

2

