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TD 12: Petri Nets

Exercise 1 (Traffic Lights). Consider again the traffic lights example from the lecture
notes:

r

y

g

r → ry y → r

ry → g g → y

1. How can you correct this Petri net to avert unwanted behaviours (like r → ry → rr)
in a 1-safe manner?

2. Extend your Petri net to model two traffic lights handling a street intersection.

Exercise 2 (Producer/Consumer). A producer/consumer system gathers two types of
processes:

producers who can make the actions produce (p) or deliver (d), and

consumers with the actions receive (r) and consume (c).

All the producers and consumers communicate through a single unordered channel.

1. Model a producer/consumer system with two producers and three consumers. How
can you modify this system to enforce a maximal capacity of ten simultaneous items
in the channel?

2. An inhibitor arc between a place p and a transition t makes t firable only if the
current marking at p is zero. In the following example, there is such an inhibitor
arc between p1 and t. A marking (0, 2, 1) allows to fire t to reach (0, 1, 2), but
(1, 1, 1) does not allow to fire t.
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p1

p2

p3

t

Using inhibitor arcs, enforce a priority for the first producer and the first consumer
on the channel: the other processes can use the channel only if it is not currently
used by the first producer and the first consumer.

Exercise 3 (Model Checking Petri Nets). Let us fix a Petri net N = 〈P, T, F,W,m0〉.
We consider as usual propositional LTL, with a set of atomic propositions AP equal to
P the set of places of the Petri net. We define proposition p to hold in a marking m in
NP if m(p) > 0.

The models of our LTL formulæ are computations m0m1 · · · in (NP )ω such that, for
all i ∈ N, mi →N mi+1 is a transition step of the Petri net N .

1. We want to prove that state-based LTL model checking can be performed in poly-
nomial space for 1-safe Petri nets. For this, prove that one can construct an
exponential-sized Büchi automaton BN from a 1-safe Petri net that recognizes all
the infinite computations of N starting in m0.

2. In the general case, state-based LTL model checking is undecidable. Prove it for
Petri nets with at least two unbounded places, by a reduction from the halting
problem for 2-counter Minsky machines.

3. We consider now a different set of atomic propositions, such that Σ = 2AP, and a
labeled Petri net, with a labeling homomorphism λ : T → Σ. The models of our

LTL formulæ are infinite words a0a1 · · · in Σω such that m0
t0−→N m1

t1−→N m2 · · ·
is an execution of N and λ(ti) = ai for all i.

Prove that action-based LTL model checking can be performed in polynomial space
for labeled 1-safe Petri nets.

Exercise 4 (VASS). An n-dimensional vector addition system with states (VASS) is
a tuple V = 〈Q, δ, q0〉 where Q is a finite set of states, q0 ∈ Q the initial state, and
δ ⊆ Q× Zn ×Q the transition relation. A configuration of V is a pair (q, v) in Q× Nn.
An execution of V is a sequence of configurations (q0, v0)(q1, v1) · · · (qm, vm) such that
v0 = 0̄, and for 0 < i ≤ m, (qi−1, vi − vi−1, qi) is in δ.

1. Show that any VASS can be simulated by a Petri net.
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2. Show that, conversely, any Petri net can be simulated by a VASS.

Exercise 5 (Dickson’s Lemma). A quasi-order (A,≤) is a set A endowed with a reflexive
and transitive ordering relation ≤. A well quasi order (wqo) is a quasi order (A,≤) s.t.,
for any infinite sequence a0a1 · · · in Aω, there exist indices i < j with ai ≤ aj .

1. Let (A,≤) be a wqo and B ⊆ A. Show that (B,≤) is a wqo.

2. Show that (N ] {ω},≤) is a wqo.

3. Let (A,≤) be a wqo. Show that any infinite sequence a0a1 · · · in Aω embeds an
infinite increasing subsequence ai0 ≤ ai1 ≤ ai2 ≤ · · · with i0 < i1 < i2 < · · · .

4. Let (A,≤A) and (B,≤B) be two wqo’s. Show that the cartesian product (A×B,≤×),
where the product ordering is defined by (a, b) ≤× (a′, b′) iff a ≤A a′ and b ≤B b′,
is a wqo.

Exercise 6 (Coverability Graphs).

1. The construction of coverability graphs, as defined in the lecture slides, is not
entirely deterministic: e.g., the order in which nodes are taken from the worklist is
undefined. Give an example of a net N and two possible coverability graphs of N
that are non-isomorphic to each other. In each case, indicate the order in which
nodes were treated in the worklist.

2. A marking of a net N is said to be a deadlock if no transition can fire in it. Clearly,
N contains a reachable deadlock iff the reachability graph of N contains a node
with no outgoing edges. Can the same be said of N and any of its coverability
graphs?
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