TD 12: Petri Nets

Exercise 1 (Traffic Lights). Consider again the traffic lights example from the lecture notes:

![Petri Net Diagram]

1. How can you correct this Petri net to avert unwanted behaviours (like $r \rightarrow ry \rightarrow rr$) in a 1-safe manner?

2. Extend your Petri net to model two traffic lights handling a street intersection.

Exercise 2 (Producer/Consumer). A producer/consumer system gathers two types of processes:

- **producers** who can make the actions *produce* (p) or *deliver* (d), and
- **consumers** with the actions *receive* (r) and *consume* (c).

All the producers and consumers communicate through a single unordered channel.

1. Model a producer/consumer system with two producers and three consumers. How can you modify this system to enforce a maximal capacity of ten simultaneous items in the channel?

2. An *inhibitor arc* between a place p and a transition t makes t firable only if the current marking at p is zero. In the following example, there is such an inhibitor arc between p_1 and t. A marking $(0, 2, 1)$ allows to fire t to reach $(0, 1, 2)$, but $(1, 1, 1)$ does not allow to fire t.
Using inhibitor arcs, enforce a priority for the first producer and the first consumer on the channel: the other processes can use the channel only if it is not currently used by the first producer and the first consumer.

Exercise 3 (Model Checking Petri Nets). Let us fix a Petri net $\mathcal{N} = \langle P, T, F, W, m_0 \rangle$. We consider as usual propositional LTL, with a set of atomic propositions AP equal to P the set of places of the Petri net. We define proposition p to hold in a marking m in \mathbb{N}^P if $m(p) > 0$.

The models of our LTL formulae are computations $m_0m_1\cdots$ in $(\mathbb{N}^P)^\omega$ such that, for all $i \in \mathbb{N}$, $m_i \rightarrow_{\mathcal{N}} m_{i+1}$ is a transition step of the Petri net \mathcal{N}.

1. We want to prove that state-based LTL model checking can be performed in polynomial space for 1-safe Petri nets. For this, prove that one can construct an exponential-sized Büchi automaton $B_{\mathcal{N}}$ from a 1-safe Petri net that recognizes all the infinite computations of \mathcal{N} starting in m_0.

2. In the general case, state-based LTL model checking is undecidable. Prove it for Petri nets with at least two unbounded places, by a reduction from the halting problem for 2-counter Minsky machines.

3. We consider now a different set of atomic propositions, such that $\Sigma = 2^{\mathsf{AP}}$, and a labeled Petri net, with a labeling homomorphism $\lambda : T \rightarrow \Sigma$. The models of our LTL formulae are infinite words $a_0a_1\cdots$ in Σ^ω such that $m_0 \xrightarrow{t_0}_{\mathcal{N}} m_1 \xrightarrow{t_1}_{\mathcal{N}} m_2 \cdots$ is an execution of \mathcal{N} and $\lambda(t_i) = a_i$ for all i.

Prove that action-based LTL model checking can be performed in polynomial space for labeled 1-safe Petri nets.

Exercise 4 (VASS). An n-dimensional *vector addition system with states* (VASS) is a tuple $\mathcal{V} = \langle Q, \delta, q_0 \rangle$ where Q is a finite set of states, $q_0 \in Q$ the initial state, and $\delta \subseteq Q \times \mathbb{Z}^n \times Q$ the transition relation. A configuration of \mathcal{V} is a pair (q, v) in $Q \times \mathbb{N}^n$. An execution of \mathcal{V} is a sequence of configurations $(q_0, v_0)(q_1, v_1)\cdots(q_m, v_m)$ such that $v_0 = 0$, and for $0 < i \leq m$, $(q_{i-1}, v_i - v_{i-1}, q_i)$ is in δ.

1. Show that any VASS can be simulated by a Petri net.
2. Show that, conversely, any Petri net can be simulated by a VASS.

Exercise 5 (Dickson’s Lemma). A quasi-order \((A, \leq)\) is a set \(A\) endowed with a reflexive and transitive ordering relation \(\leq\). A well quasi order (wqo) is a quasi order \((A, \leq)\) s.t., for any infinite sequence \(a_0a_1\cdots\) in \(A^\omega\), there exist indices \(i < j\) with \(a_i \leq a_j\).

1. Let \((A, \leq)\) be a wqo and \(B \subseteq A\). Show that \((B, \leq)\) is a wqo.

2. Show that \((\mathbb{N} \cup \{\omega\}, \leq)\) is a wqo.

3. Let \((A, \leq)\) be a wqo. Show that any infinite sequence \(a_0a_1\cdots\) in \(A^\omega\) embeds an infinite increasing subsequence \(a_{i_0} \leq a_{i_1} \leq a_{i_2} \leq \cdots\) with \(i_0 < i_1 < i_2 < \cdots\).

4. Let \((A, \leq_A)\) and \((B, \leq_B)\) be two wqo’s. Show that the cartesian product \((A \times B, \leq_A \times_B)\), where the product ordering is defined by \((a, b) \leq_A (a', b')\) iff \(a \leq_A a'\) and \(b \leq_B b'\), is a wqo.

Exercise 6 (Coverability Graphs).

1. The construction of coverability graphs, as defined in the lecture slides, is not entirely deterministic: e.g., the order in which nodes are taken from the worklist is undefined. Give an example of a net \(\mathcal{N}\) and two possible coverability graphs of \(\mathcal{N}\) that are non-isomorphic to each other. In each case, indicate the order in which nodes were treated in the worklist.

2. A marking of a net \(\mathcal{N}\) is said to be a deadlock if no transition can fire in it. Clearly, \(\mathcal{N}\) contains a reachable deadlock iff the reachability graph of \(\mathcal{N}\) contains a node with no outgoing edges. Can the same be said of \(\mathcal{N}\) and any of its coverability graphs?