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TD 11: Simulation and Bisimulation

Exercise 1 (Bisimulations). Consider the following Kripke structures:
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For each couple of structures, exhibit a bisimulation relation if they are bisimilar, or a
CTL* formula allowing to distinguish between them if they are not bisimilar.

Exercise 2 (Computing the Coarsest Bisimulation). Computing = on a single Kripke
structure is very similar to the computation of a minimal DFA.

1. Design a partition refinement algorithm for computing =, i.e. an algorithm that
computes an initial relation =g and refines it successively until =, = = for some
k. Prove that your algorithm terminates and computes =.

2. Apply your algorithm to the union of two bisimilar systems from the previous
exercise and draw the quotiented system.

Exercise 3 (Simulations). Show that < is reflexive and transitive. Is it symmetric?
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Exercise 4 (Simulation Quotienting). Two Kripke structures M; and My are simulation
equivalent, noted My ~ M if My =< My and My < M. The lecture notes provide an
example of two simulation equivalent but not bisimilar structures. Consider now the
two following structures Mg and M;:
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1. Which of the following relations hold: M, < My, My <X Mg, Mg ~ M,;?

2. Construct the quotient of (Mg U M;) by ~. Is the resulting system bisimilar to
(Mg U My)?

3. Prove that if M/~ is the quotient of M by ~, then M/~ < M and M < M/~.
4. Call a Kripke structure M = (S, —, so, AP, v) AP-deterministic if for each state s,

if there exist two transitions s — s1 and s — sy with v(s;) = v(s2), then s; = so.

Show that, if two Kripke structures M; and M, are AP-deterministic, then they
are bisimilar iff they are simulation equivalent.

Exercise 5 (Logical Characterization). Let us define ezistential CTL* as the fragment
of CTL* defined by the following abstract syntax, where p ranges over the set of atomic
propositions AP:
=T |L|p|-plene|eVe|EY (state formulae)
Y=o | X¢ [0 AY YV e[ $US | $RY . (path formule)
Existential CTL* includes both LTL and existential CTL (hereafter noted ECTL), which
is defined by the following abstract syntax:
pu=T|Llpl-pleAe|leVe[EXp|El@U@)[E(@Ry).  (state formule)

Let us consider two (not necessarily different) Kripke structures My = (S1,Th, I1, AP, 1)
and My = (So,Ts, I, AP, ls). We assume these structures to be total, where for any state
s there exists some state s’ such that (s, s’) is a transition.
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3.

. Prove the following two statements, for any two states s; and so, and any two

infinite paths 71 and 7o in M7 and Mo, resp.:

(a) if s =< s9, then for any existential CTL* state formula ¢, s; = ¢ implies
s2 = ¢,

(b) if T = 80718171 .-+ and Ty = 80728172 .-+ with 51‘,1 j 54,2 for all 7 in N, then for
any existential CTL* path formula 1, m; = 1 implies mo = 9.

. Let us consider the following relation on S; x So:

F ={(s1,52) € 81 x Sy | Vo € ECTL, 51 = ¢ = s |= 0} .

Assuming that for all initial states s in I, F(s) N I3 is not empty, show that F is
a simulation between Mp and M.

Conclude by proving the following theorem:

Theorem 1 (Logical Characterization of Simulation). Let My = (S1,T1, 11, AP,l;) and

M, =

(Sa,To, Iz, AP, l3) be two total Kripke structures and s; and so be two states of Sy

and Sy resp. The following three statements are equivalent:

1.

51 = 8o,

2. for all existential CTL* formule ¢: s1 |E ¢ implies sy = ¢,

3. for all existential CTL formule ¢: s1 = ¢ implies so = ¢.



