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TD 11: Simulation and Bisimulation

Exercise 1 (Bisimulations). Consider the following Kripke structures:

r0

∅

r1
{p}

r2
{p}

r3

{p}

r4
{q}

r5
{q}

s0

∅

s1
{p}

s2
{p}

s3
{q}

t0

∅

t1

∅

t3
{p}

t4
{p}

t2
{p}

t5
{p}

t6
{q}

t7
{q}

For each couple of structures, exhibit a bisimulation relation if they are bisimilar, or a
CTL∗ formula allowing to distinguish between them if they are not bisimilar.

Exercise 2 (Computing the Coarsest Bisimulation). Computing ≡ on a single Kripke
structure is very similar to the computation of a minimal DFA.

1. Design a partition refinement algorithm for computing ≡, i.e. an algorithm that
computes an initial relation ≡0 and refines it successively until ≡k = ≡ for some
k. Prove that your algorithm terminates and computes ≡.

2. Apply your algorithm to the union of two bisimilar systems from the previous
exercise and draw the quotiented system.

Exercise 3 (Simulations). Show that � is reflexive and transitive. Is it symmetric?
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Exercise 4 (Simulation Quotienting). Two Kripke structures M1 and M2 are simulation
equivalent, noted M1 ' M2 if M1 � M2 and M2 � M1. The lecture notes provide an
example of two simulation equivalent but not bisimilar structures. Consider now the
two following structures Ms and Mt:
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1. Which of the following relations hold: Ms �Mt, Mt �Ms, Ms 'Mt?

2. Construct the quotient of (Ms ∪Mt) by '. Is the resulting system bisimilar to
(Ms ∪Mt)?

3. Prove that if M/' is the quotient of M by ', then M/' �M and M � M/'.

4. Call a Kripke structure M = (S,→, s0,AP, ν) AP-deterministic if for each state s,
if there exist two transitions s→ s1 and s→ s2 with ν(s1) = ν(s2), then s1 = s2.

Show that, if two Kripke structures M1 and M2 are AP-deterministic, then they
are bisimilar iff they are simulation equivalent.

Exercise 5 (Logical Characterization). Let us define existential CTL∗ as the fragment
of CTL∗ defined by the following abstract syntax, where p ranges over the set of atomic
propositions AP:

ϕ ::= > | ⊥ | p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | Eψ (state formulæ)

ψ ::= ϕ | Xψ | ψ ∧ ψ | ψ ∨ ψ | ψUψ | ψ Rψ . (path formulæ)

Existential CTL∗ includes both LTL and existential CTL (hereafter noted ECTL), which
is defined by the following abstract syntax:

ϕ ::= > | ⊥ | p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | EXϕ | E(ϕ U ϕ) | E(ϕ R ϕ) . (state formulæ)

Let us consider two (not necessarily different) Kripke structures M1 = 〈S1, T1, I1,AP, l1〉
and M2 = 〈S2, T2, I2,AP, l2〉. We assume these structures to be total, where for any state
s there exists some state s′ such that (s, s′) is a transition.
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1. Prove the following two statements, for any two states s1 and s2, and any two
infinite paths π1 and π2 in M1 and M2, resp.:

(a) if s1 � s2, then for any existential CTL∗ state formula ϕ, s1 |= ϕ implies
s2 |= ϕ,

(b) if π1 = s0,1s1,1 · · · and π2 = s0,2s1,2 · · · with si,1 � si,2 for all i in N, then for
any existential CTL∗ path formula ψ, π1 |= ψ implies π2 |= ψ.

2. Let us consider the following relation on S1 × S2:

F = {(s1, s2) ∈ S1 × S2 | ∀ϕ ∈ ECTL, s1 |= ϕ⇒ s2 |= ϕ} .

Assuming that for all initial states s in I1, F(s) ∩ I2 is not empty, show that F is
a simulation between M1 and M2.

3. Conclude by proving the following theorem:

Theorem 1 (Logical Characterization of Simulation). Let M1 = 〈S1, T1, I1,AP, l1〉 and
M2 = 〈S2, T2, I2,AP, l2〉 be two total Kripke structures and s1 and s2 be two states of S1
and S2 resp. The following three statements are equivalent:

1. s1 � s2,

2. for all existential CTL∗ formulæ ϕ: s1 |= ϕ implies s2 |= ϕ,

3. for all existential CTL formulæ ϕ: s1 |= ϕ implies s2 |= ϕ.
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