TD 10: BDDs

Exercise 1 (Some BDDs). Draw the BDDs for the following functions, using the order of your choice on the variables \(\{x_1, x_2, x_3\} \):

1. \((x_1 \Leftrightarrow x_2) \lor (x_1 \Leftrightarrow x_3) \),
2. the constant sum function \(s_c(x_1, x_2, x_3) \) for \(c = 1 \): its value is 1 iff \(c = \sum_{i=1}^{3} x_i \),
3. the hidden weighted bit function \(h(x_1, x_2, x_3) \): its value is that of variable \(x_s \), where \(s = \sum_{i=1}^{3} x_i \) and \(x_0 \) is defined as 0.

Exercise 2 (Symmetric Functions). A symmetric function of \(n \) variables has the same value for all permutations of the same \(n \) tuple of arguments. Show that a BDD for a symmetric function has at most \(\frac{n(n+1)}{2} + 1 \) nodes (when omitting the 0-node).

Exercise 3 (Counting Solutions). Write a linear time algorithm for counting the number of solutions of a boolean function \(f \) represented by a BDD, i.e. of the number of valuations \(\nu \) s.t. \(\nu \models f \).

Exercise 4 (An Upper Bound on the Size of BDDs). The size \(B(f) \) of a BDD for a function \(f \) is defined as the number of its nodes. Consider an arbitrary boolean function \(f \) on the ordered set \(x_1 \cdots x_n \), and consider a variable \(x_k \).

1. Show that we can bound the number of nodes labeled by \(\{x_1, \ldots, x_k\} \) by \(2^k - 1 \).
2. How many different subfunctions on the ordered set of variables \(x_{k+1} \cdots x_n \) exist?
 Deduce another bound for the number of nodes labeled by \(\{x_{k+1}, \ldots, x_n\} \).
3. What global bound do you obtain for \(k = n - \log_2(n - \log_2 n) \)?

Exercise 5 (Finding the Optimal Order). There are in general \(n! \) different orders for the variables \(\{x_1, \ldots, x_n\} \), and building the BDD for each of these is computationally expensive. One can nevertheless design an exponential time algorithm for finding the optimal order. Indeed, an optimal ordering on a subset \(X \) of variables does not depend on the order in which \(X' = \{x_1, \ldots, x_n\} \setminus X \) has been accessed.

1. Fix a boolean function \(f \) over variables \(\{x_1, \ldots, x_n\} \). We assume that \(f \) is provided as a BDD \(B \) for the ordering \(x_1, x_2, \ldots, x_n \).
 Given a subset \(X \) of \(\{x_1, \ldots, x_n\} \) and a variable \(x \) in \(X \), how many nodes labeled by \(x \) does any BDD \(B' \) for \(f \) has if it first treats \(X' = \{x_1, \ldots, x_n\} \setminus X \), then \(x \), and last \(X \setminus \{x\} \)? How can you compute this number on the provided BDD \(B \) for \(f \)?
2. Reduce the optimal order problem to the search of a path of minimal weight in a weighted graph with subsets of \(\{x_1, \ldots, x_n\} \) as vertices.