TD 9: Pushdown Systems

Reminder:
A pushdown system (PDS) is a triple $\mathcal{P} = (P, \Gamma, \Delta)$, where P is a finite set of control states, Γ is a finite stack alphabet, and $\Delta \subseteq (P \times \Gamma) \times (P \times \Gamma^*)$ is a finite set of rules. We write $pA \rightarrow qw$ when $((p, A), (q, w)) \in \Delta$. We associate with a PDS \mathcal{P} and an initial configuration $c_0 \in P \times \Gamma^*$ the transition system $\mathcal{T}_{\mathcal{P}} = (Con(\mathcal{P}), \rightarrow, c_0)$, where $Con(\mathcal{P}) = P \times \Gamma^*$ is the set of configurations, and $pAw' \rightarrow qww'$ for all $w' \in \Gamma^*$ iff $pA \rightarrow qw \in \Delta$. We write $pw \Rightarrow p'w'$ if there is a path from pw to $p'w'$ in $\mathcal{T}_{\mathcal{P}}$.

Let \mathcal{P} be a PDS. A \mathcal{P}-automaton is a finite automaton $A = (Q, \Gamma, P, T, F)$, where the alphabet of A is the stack alphabet Γ, and the initial states of A are the control states P. It is normalized if there are no transitions leading into initial states. We say that A accepts the configuration pw if A has a path labelled by input w starting at p and ending at some final state. We denote by $L(A)$ be the set of configurations accepted by A. A set C of configurations is called regular if there is some \mathcal{P}-automaton A with $L(A) = C$.

Given a set C of configurations of \mathcal{P}, we let

$$pre^*(C) = \{c' \mid \exists c : c' \Rightarrow c\}$$

$$post^*(C) = \{c' \mid \exists c : c \Rightarrow c'\}$$

If C is regular, then so are $pre^*(C)$ and $post^*(C)$.

If A is a normalized \mathcal{P}-automaton accepting C, A can be transformed into an automaton accepting $pre^*(C)$ by applying the following saturation rule until no transition can be added:

If $q \xrightarrow{w} r$ currently holds in A and $pA \rightarrow qw$ is a rule in \mathcal{P}, then add the transition (p, A, r) to A.

The procedure for $post^*(C)$ is similar.

Exercise 1 (Computing $pre^*(C)$). Consider the pushdown system represented below, with stack alphabet $\Gamma = \{a, b\}$.

![Diagram of pushdown system](image)
Apply the algorithm described above to compute a \mathcal{P}-automaton accepting $\text{pre}^*(p_0b^*)$.

Exercise 2 (Labelled Pushdown Systems). Let $\mathcal{P} = (P, \Gamma, \Delta, \Sigma)$ be a labelled pushdown system, i.e. the rules in Δ are of the form $pA \xrightarrow{w} qw$, where $p, q \in P$ are control locations, $A \in \Gamma$ and $w \in \Gamma^*$ are stack symbols, and additionally $a \in \Sigma$ is an action. For two configurations c, c' we write $c \xrightarrow{w} c'$, where $w \in \Sigma^*$, if c can be transformed into c' by a sequence of rules whose labels yield w.

Given a regular set of configurations C, it is known how to compute $\text{pre}^*(C) = \{ c \in \text{Con}(\mathcal{P}) \mid \exists c' \in C, w \in \Sigma^* : c \xrightarrow{w} c' \}$. If C is accepted by an automaton with n states, this takes $O(n^2 \cdot |\Delta|)$ time.

1. Let $L \subseteq \Sigma^*$ be a regular language and C be a regular set of configurations. We define
 \[
 \text{pre}^*[L](C) := \{ c \in \text{Con}(\mathcal{P}) \mid \exists c' \in C, w \in L : c \xrightarrow{w} c' \}.
 \]
 One can prove that $\text{pre}^*[L](C)$ is regular. Describe how to compute a finite automaton accepting $\text{pre}^*[L](C)$.

2. Give a bound on the amount of time it takes to compute $\text{pre}^*[L](C)$.

Exercise 3 (Data-flow Analysis). We consider a problem from interprocedural data-flow analysis. A program consists of a set Proc of procedures that can execute and recursively call one another. The behaviour of each procedure p is described by a flow graph, an example with two procedures is shown below.

Formally, a flow graph for procedure $p \in \text{Proc}$ is a tuple $G_p = (N_p, A, E_p, e_p, x_p)$, where

- N_p are the nodes, corresponding to program locations; we denote $N := \bigcup_{p \in \text{Proc}} N_p$.

\[
\begin{align*}
N_{\text{init}} & \quad N_p \\
&
\begin{array}{c}
\quad e_{\text{init}} \\
\quad \text{xinit} \\
n_1 \quad \text{call}(p) \quad \text{skip} \\
n_2 \quad \text{skip} \\
n_3 \quad x = 0 \\
e_p \quad y = 2x \\
x_p
\end{array}
\end{align*}
\]
• \(A = A_I \cup \{ \text{call}(p) \mid p \in \text{Proc} \} \) are the actions, where \(A_I \) are internal actions (such as assignments etc); additionally an action can call some procedure. \(A \) is identical for all procedures.

• \(E_p \subseteq N_p \times A \times N_p \) are the edges, labelled with actions from \(A \). We denote \(E := \bigcup_{p \in \text{Proc}} E_p \).

• \(e_p \) is the entry point of procedure \(p \), i.e. when \(p \) is called, execution will start at \(e_p \).

• \(x_p \) is the exit point of \(p \) (without any outgoing edges); when \(x_p \) is reached, \(p \) terminates and execution resumes at last call site of \(p \).

1. Construct a labelled pushdown system with one single control location that expresses the behaviour of the procedures in \(\text{Proc} \).

Suppose that the internal actions in \(A_I \) describe assignments to global variables, i.e. they are of the form \(v := \text{expr} \), where \(v \) is a variable and \(\text{expr} \) the right-hand-side expression. If \(v \) is a variable, then \(D_v \subseteq A_I \) is the set of actions that assign a value to \(v \) and \(R_v \subseteq A_I \) the set of actions where \(v \) occurs on the right-hand side.

Let \(\text{Init} \in \text{Proc} \) be an initial procedure and \(n \in N \) a node in the flow graph. We say that variable \(v \) is live at \(n \) if there exists a node \(n' \) and an execution that (i) starts at \(e_{\text{Init}} \), (ii) passes \(n \), (iii) finally reaches \(n' \) with an action from \(R_v \), and (iv) there is no assignment to \(v \) between \(n \) and \(n' \) in this execution. (Intuitively, this means that the value that \(v \) has at \(n \) matters for some execution; this is used in compiler construction to determine whether an optimizing compiler may “forget” the value of \(v \) at \(n \).) For instance, in the shown example, the variable \(x \) is live at \(n_1 \) and \(e_p \), but not in the other nodes.

1. Describe a regular language \(L \subseteq A^* \) that describes the sequences of actions that can happen along such executions between \(n \) and \(n' \).

2. Describe how, given a variable \(v \), one can compute the set of nodes \(n \) such that \(v \) is live at \(n \).

Exercise 4 (Multi-Pushdown Systems). An \(n \)-dimensional multi-pushdown system \((n\text{-MPDS}) \) is a tuple \(\mathcal{M} = (P, \Gamma, (\Delta_i)_{0 \leq i \leq n}) \) where \(n \geq 1 \) is the number of stacks, \(P \) a finite set of control states, \(\Gamma \) a finite stack alphabet, and each \(\Delta_i \subseteq P \times \Gamma \times P \times \Gamma^* \) is a finite transition relation. A configuration of an \(n \text{-MPDS} \) is a tuple \(c = (q, w_1, \ldots, w_n) \) in \(P \times (\Gamma^*)^n \). The transition relation \(\to \) on configurations is defined as \(\to = \bigcup_{0 \leq i \leq n} \gamma_i \), where

\[
(q, w_1, \ldots, A w_i, \ldots, w_n) \xrightarrow{\gamma_i} (q', w_1, \ldots, w'_i w_i, \ldots, w_n) \quad \text{iff} \quad qA \xrightarrow{\gamma'} q' w'_i w_i \in \Delta_i
\]

1. Show that the control state reachability problem, i.e. given an initial configuration \(c \in P \times \Gamma^n \) and a control state \(p \in P \), whether there exist \(w_1, \ldots, w_n \) such that \(c \xrightarrow{\ast} (p, w_1, \ldots, w_n) \) is undecidable as soon as \(n \geq 2 \).
2. Let us consider a restriction on \rightarrow^*: *k-bounded* runs are defined as the k-iterates $c \Rightarrow^k c'$ of the relation

$$ c \rightarrow c' \text{ iff } \exists i. c \rightarrow_i^* c' $$

i.e. a k-bounded run can be decomposed into k subruns where a single PDS is running.

Show that the k-bounded control-state reachability problem, i.e. given an initial configuration c in $P \times \Gamma^n$ and a control state $p \in P$, whether there exist w_1, \ldots, w_n such that $c \Rightarrow^k (q, w_1, \ldots, w_n)$ is decidable.