
MPRI 1-22 Basics of Verification November 30, 2017

TD 9: Pushdown Systems

Reminder:
A pushdown system (PDS) is a triple P = (P,Γ,∆), where P is a finite set of control

states, Γ is a finite stack alphabet, and ∆ ⊆ (P × Γ) × (P × Γ∗) is a finite set of rules.
We write pA ↪→ qw when ((p,A), (q, w)) ∈ ∆. We associate with a PDS P and an
initial configuration c0 ∈ P × Γ∗ the transition system TP = (Con(P),→, c0), where
Con(P) = P × Γ∗ is the set of configurations, and pAw′ → qww′ for all w′ ∈ Γ∗ iff
pA ↪→ qw ∈ ∆. We write pw ⇒ p′w′ if there is a path from pw to p′w′ in TP .

Let P be a PDS. A P-automaton is a finite automaton A = (Q,Γ, P, T, F), where
the alphabet of A is the stack alphabet Γ, and the initial states of A are the control
states P . It is normalized if there are no transitions leading into initial states. We say
that A accepts the configuration pw if A has a path labelled by input w starting at p
and ending at some final state. We denote by L(A) be the set of configurations accepted
by A. A set C of configurations is called regular if there is some P-automaton A with
L(A) = C.

Given a set C of configurations of P, we let

pre∗(C) = {c′ | ∃c ∈ C : c′ ⇒ c}
post∗(C) = {c′ | ∃c ∈ C : c⇒ c′}

If C is regular, then so are pre∗(C) and post∗(C).
If A is a normalized P-automaton accepting C, A can be transformed into an au-

tomaton accepting pre∗(C) by applying the following saturation rule until no transition
can be added:

If q
w−→ r currently holds in A and pA ↪→ qw is a rule in P, then add the

transition (p,A, r) to A.

The procedure for post∗(C) is similar.

Exercise 1 (Computing pre∗(C)). Consider the pushdown system represented below,
with stack alphabet Γ = {a, b}.

p0

p2

p1

p3 p4

p5

p6a | aa
b | ab

a | aa
b | ab

a | aa
b | ab

a | ba
b | bb

b | ε

a | ε

b | ε

a | εa | ε

a | ε

1

MPRI 1-22 Basics of Verification November 30, 2017

Apply the algorithm described above to compute a P-automaton accepting pre∗(p6b
∗).

Exercise 2 (Labelled Pushdown Systems). Let P = (P,Γ,∆,Σ) be a labelled pushdown

system, i.e. the rules in ∆ are of the form pA
a
↪→ qw, where p, q ∈ P are control locations,

A ∈ Γ and w ∈ Γ∗ are stack symbols, and additionally a ∈ Σ is an action. For two
configurations c, c′ we write c

w⇒ c′, where w ∈ Σ∗, if c can be transformed into c′ by a
sequence of rules whose labels yield w.

Given a regular set of configurations C, it is known how to compute pre∗(C) = { c ∈
Con(P) | ∃c′ ∈ C,w ∈ Σ∗ : c

w⇒ c′ }. If C is accepted by an automaton with n states,
this takes O(n2 · |∆|) time.

1. Let L ⊆ Σ∗ be a regular language and C be a regular set of configurations. We
define

pre∗[L](C) := { c ∈ Con(P) | ∃c′ ∈ C,w ∈ L : c
w⇒ c′ }.

One can prove that pre∗[L](C) is regular. Describe how to compute a finite au-
tomaton accepting pre∗[L](C).

2. Give a bound on the amount of time it takes to compute pre∗[L](C).

Exercise 3 (Data-flow Analysis). We consider a problem from interprocedural data-flow
analysis. A program consists of a set Proc of procedures that can execute and recursively
call one another. The behaviour of each procedure p is described by a flow graph, an
example with two procedures is shown below.

n2 xInit

n1

eInit

NInit

xp

n3

ep

Np

x = 5

call(p)
skip

skip

y = 2x

x = 0

Formally, a flow graph for procedure p ∈ Proc is a tuple Gp = (Np, A,Ep, ep, xp),
where

• Np are the nodes, corresponding to program locations; we denote N :=
⋃

p∈Proc Np.

2

MPRI 1-22 Basics of Verification November 30, 2017

• A = AI ∪{ call(p) | p ∈ Proc } are the actions, where AI are internal actions (such
as assignments etc); additionally an action can call some procedure. A is identical
for all procedures.

• Ep ⊆ Np × A × Np are the edges, labelled with actions from A. We denote
E :=

⋃
p∈Proc Ep.

• ep is the entry point of procedure p, i.e. when p is called, execution will start at ep.

• xp is the exit point of p (without any outgoing edges); when xp is reached, p
terminates and execution resumes at last call site of p.

1. Construct a labelled pushdown system with one single control location that ex-
presses the behaviour of the procedures in Proc.

Suppose that the internal actions in AI describe assignments to global variables,
i.e. they are of the form v := expr, where v is a variable and expr the right-hand-side
expression. If v is a variable, then Dv ⊆ AI is the set of actions that assign a value to v
and Rv ⊆ AI the set of actions where v occurs on the right-hand side.

Let Init ∈ Proc be an initial procedure and n ∈ N a node in the flow graph. We say
that variable v is live at n if there exists a node n′ and an execution that (i) starts at
eInit , (ii) passes n, (iii) finally reaches n′ with an action from Rv, and (iv) there is no
assignment to v between n and n′ in this execution. (Intuitively, this means that the
value that v has at n matters for some execution; this is used in compiler construction
to determine whether an optimizing compiler may “forget” the value of v at n.) For
instance, in the shown example, the variable x is live at n1 and ep, but not in the other
nodes.

1. Describe a regular language L ⊆ A∗ that describes the sequences of actions that
can happen along such executions between n and n′.

2. Describe how, given a variable v, one can compute the set of nodes n such that v
is live at n.

Exercise 4 (Multi-Pushdown Systems). An n-dimensional multi-pushdown system (n-
MPDS) is a tuple M = (P,Γ, (∆i)0<i≤n) where n ≥ 1 is the number of stacks, P a
finite set of control states, Γ a finite stack alphabet, and each ∆i ⊆ P × Γ × P × Γ∗ is
a finite transition relation. A configuration of an n-MPDS is a tuple c = (q, w1, . . . , wn)
in P × (Γ∗)n. The transition relation → on configurations is defined as→ =

⋃
0<i≤n→i,

where

(q, w1, . . . , Awi, . . . , wn)→i (q′, w1, . . . , w
′
iwi, . . . , wn) iff qA ↪→ q′w′iwi ∈ ∆i

1. Show that the control state reachability problem, i.e. given an initial configuration
c in P × Γn and a control state p ∈ P , whether there exist w1, . . . , wn such that
c→∗ (p, w1, . . . , wn) is undecidable as soon as n ≥ 2.

3

MPRI 1-22 Basics of Verification November 30, 2017

2. Let us consider a restriction on →∗: k-bounded runs are defined as the k-iterates
c⇒k c′ of the relation

c→ c′ iff ∃i. c→∗i c′

i.e. a k-bounded run can be decomposed into k subruns where a single PDS is
running.

Show that the k-bounded control-state reachability problem, i.e. given an initial
configuration c in P ×Γn and a control state p ∈ P , whether there exist w1, . . . , wn

such that c⇒k (q, w1, . . . , wn) is decidable.

4

